An unsupervised machine learning algorithm for in-situ defect-detection in laser powder-bed fusion

This research studies the development of a machine-learning algorithm to detect porosity induced during laser powder bed fusion (LPBF) due to the lack of fusion (LoF) phenomenon. The detection algorithm is based on analyzing in-situ light intensity data emitted from the melt pool during LPBF. A Self...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of manufacturing processes Ročník 81; s. 476 - 489
Hlavní autori: Taherkhani, Katayoon, Eischer, Christopher, Toyserkani, Ehsan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.09.2022
Predmet:
ISSN:1526-6125, 2212-4616
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This research studies the development of a machine-learning algorithm to detect porosity induced during laser powder bed fusion (LPBF) due to the lack of fusion (LoF) phenomenon. The detection algorithm is based on analyzing in-situ light intensity data emitted from the melt pool during LPBF. A Self-Organizing Map (SOM), an unsupervised machine learning algorithm, is thoroughly customized to classify disturbances in the light intensity signal, where the clustered disturbances are mapped with the geometrical feature and position of defects. The defects' position and size are correlated with the actual geometrical feature and position of defects identified through a post-processing computed tomography (CT) scanning. To this end, two sets of samples are designed, including 1) samples with intentional micro-voids to mimic the lack of fusion in the printed parts for assessing the sensor response and calibrating/optimizing the SOM algorithm, and 2) samples with randomized pores induced normally during the process to evaluate the proposed SOM algorithm at different process parameters. Along with the SOM approach, a volumetric segmentation method and confusion matrix are incorporated into the SOM-based algorithm to examine the sensitivity (true positive rates) and specificity (true negative rates) of defect prediction. The comparison between the outcome of the prediction algorithm and experimental CT data indicates that the sensitivity and specificity are from 61 % to 94 % and 69 % to 93 %, respectively, where the prediction percentage is highly dependent on the process parameters. In comparison with conventional prediction algorithms (e.g., Absolute Limits), the proposed SOM algorithm has a higher prediction rate when it is faster and can rapidly identify the location of defects that may open up an opportunity to develop intermittent controllers for LPBF.
AbstractList This research studies the development of a machine-learning algorithm to detect porosity induced during laser powder bed fusion (LPBF) due to the lack of fusion (LoF) phenomenon. The detection algorithm is based on analyzing in-situ light intensity data emitted from the melt pool during LPBF. A Self-Organizing Map (SOM), an unsupervised machine learning algorithm, is thoroughly customized to classify disturbances in the light intensity signal, where the clustered disturbances are mapped with the geometrical feature and position of defects. The defects' position and size are correlated with the actual geometrical feature and position of defects identified through a post-processing computed tomography (CT) scanning. To this end, two sets of samples are designed, including 1) samples with intentional micro-voids to mimic the lack of fusion in the printed parts for assessing the sensor response and calibrating/optimizing the SOM algorithm, and 2) samples with randomized pores induced normally during the process to evaluate the proposed SOM algorithm at different process parameters. Along with the SOM approach, a volumetric segmentation method and confusion matrix are incorporated into the SOM-based algorithm to examine the sensitivity (true positive rates) and specificity (true negative rates) of defect prediction. The comparison between the outcome of the prediction algorithm and experimental CT data indicates that the sensitivity and specificity are from 61 % to 94 % and 69 % to 93 %, respectively, where the prediction percentage is highly dependent on the process parameters. In comparison with conventional prediction algorithms (e.g., Absolute Limits), the proposed SOM algorithm has a higher prediction rate when it is faster and can rapidly identify the location of defects that may open up an opportunity to develop intermittent controllers for LPBF.
Author Eischer, Christopher
Taherkhani, Katayoon
Toyserkani, Ehsan
Author_xml – sequence: 1
  givenname: Katayoon
  surname: Taherkhani
  fullname: Taherkhani, Katayoon
  organization: Multi-scale Additive Manufacturing Lab, Department of Mechanical and Mechatronics Engineering, University of Waterloo, Canada
– sequence: 2
  givenname: Christopher
  surname: Eischer
  fullname: Eischer, Christopher
  organization: Electro-Optical Systems (EOS), Krailling, Germany
– sequence: 3
  givenname: Ehsan
  surname: Toyserkani
  fullname: Toyserkani, Ehsan
  email: ehsan.toyserkani@uwaterloo.ca
  organization: Multi-scale Additive Manufacturing Lab, Department of Mechanical and Mechatronics Engineering, University of Waterloo, Canada
BookMark eNqFkL1OwzAUhS1UJFrgDRj8AgnXduoEBqSq4k-qxAKz5djXraPEqeykiLcnVZkYYDrD0Xd077cgs9AHJOSGQc6Aydsmbzq9j33OgfMcZA5lcUbmnDOeFZLJGZmzJZeZZHx5QRYpNQCMF8DmpF4FOoY07jEefEJLO212PiBtUcfgw5bqdttHP-w66vpIfciSH0Zq0aEZMovDFL4PU0FbnTDSff9pMWb1tOXGNFVX5NzpNuH1T16Sj6fH9_VLtnl7fl2vNpkRIIes4qiFLSWAAItoamGcMRWzABW3jGl-x0AbJnRZ1YY5o4VDrHRdFw6EKMUluT_tmtinFNEp4wd9PG6I2reKgTraUo062VJHWwqkmmxNcPEL3kff6fj1H_ZwwnB67OAxqmQ8BoPWx0mMsr3_e-Ab_f2LiQ
CitedBy_id crossref_primary_10_1016_j_mfglet_2025_06_117
crossref_primary_10_1177_09544089251345640
crossref_primary_10_1016_j_measurement_2025_117413
crossref_primary_10_1016_j_optlaseng_2025_109194
crossref_primary_10_1007_s10845_024_02490_4
crossref_primary_10_1002_eem2_70041
crossref_primary_10_1007_s10845_023_02232_y
crossref_primary_10_1007_s00170_025_15273_9
crossref_primary_10_3390_inventions9040087
crossref_primary_10_1016_j_jmapro_2024_02_006
crossref_primary_10_1007_s00170_025_16164_9
crossref_primary_10_1016_j_jmapro_2023_12_024
crossref_primary_10_1007_s00170_025_16431_9
crossref_primary_10_1016_j_jmapro_2025_03_107
crossref_primary_10_1016_j_optlaseng_2024_108522
crossref_primary_10_1088_2631_7990_ad65cd
crossref_primary_10_3390_jmmp8050197
crossref_primary_10_1016_j_addma_2024_104354
crossref_primary_10_1016_j_measurement_2024_114877
crossref_primary_10_1016_j_jmapro_2023_05_030
crossref_primary_10_1007_s00170_023_12663_9
crossref_primary_10_1007_s10311_024_01741_3
crossref_primary_10_1016_j_mtcomm_2022_104900
crossref_primary_10_1007_s41939_024_00658_2
crossref_primary_10_1007_s00170_025_15777_4
crossref_primary_10_1371_journal_pone_0316996
crossref_primary_10_1142_S201032472540003X
crossref_primary_10_1016_j_engappai_2024_109058
crossref_primary_10_1007_s00170_025_15507_w
crossref_primary_10_1016_j_addma_2023_103894
crossref_primary_10_1016_j_matdes_2024_112850
crossref_primary_10_1016_j_heliyon_2024_e35047
crossref_primary_10_1016_j_jmapro_2023_05_048
crossref_primary_10_3390_ma17133287
crossref_primary_10_1007_s10845_023_02170_9
crossref_primary_10_1016_j_ijmecsci_2023_108102
crossref_primary_10_1016_j_mfglet_2025_06_156
Cites_doi 10.1007/s00170-018-1728-0
10.1016/j.aej.2014.09.007
10.1080/24725854.2017.1417656
10.1016/j.matdes.2018.07.002
10.1016/j.ijleo.2016.01.070
10.1016/j.jmatprotec.2015.12.024
10.1109/ACCESS.2021.3067302
10.1016/j.measurement.2018.12.067
10.1117/1.OE.54.1.011008
10.1007/s40964-019-00108-3
10.1016/j.cirp.2019.03.021
10.1016/j.jmatprotec.2011.09.020
10.4028/www.scientific.net/KEM.554-557.1828
10.1016/j.phpro.2010.08.078
10.1007/s10845-018-1451-6
10.1016/j.ijfatigue.2019.105194
10.1016/j.jmsy.2019.02.005
10.1016/j.actamat.2016.05.017
10.4028/www.scientific.net/MSF.834.93
10.1080/00207543.2014.916431
10.1016/j.asoc.2007.02.002
10.1186/s12864-019-6413-7
10.1016/j.rcim.2017.07.001
10.1016/j.matdes.2016.01.099
10.1016/j.jmatprotec.2009.07.017
10.1016/j.phpro.2011.03.085
10.1007/s11665-018-3690-2
10.1080/00224065.2018.1507563
10.1115/1.4028540
10.1115/1.4038598
ContentType Journal Article
Copyright 2022 The Society of Manufacturing Engineers
Copyright_xml – notice: 2022 The Society of Manufacturing Engineers
DBID AAYXX
CITATION
DOI 10.1016/j.jmapro.2022.06.074
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2212-4616
EndPage 489
ExternalDocumentID 10_1016_j_jmapro_2022_06_074
S1526612522004534
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29K
3V.
4.4
457
4G.
5GY
5VS
7-5
71M
7WY
883
88I
8AO
8FE
8FG
8FL
8FW
8P~
8R4
8R5
9M8
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJCF
ABJNI
ABMAC
ABUWG
ABXDB
ABYKQ
ACDAQ
ACGFS
ACGOD
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKRA
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BENPR
BEZIV
BGLVJ
BJAXD
BKOJK
BLXMC
BPHCQ
CCPQU
CS3
D-I
DU5
DWQXO
E3Z
EBS
EFJIC
EFLBG
EJD
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FRNLG
FYGXN
GBLVA
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
HCIFZ
HVGLF
HZ~
H~9
J1W
JJJVA
K60
K6~
KOM
L6V
M0C
M0F
M2P
M41
M7S
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQBIZ
PQQKQ
PROAC
PTHSS
Q2X
Q38
R2-
RIG
RNS
ROL
RWL
S0X
SDF
SES
SPC
SPCBC
SST
SSZ
T5K
TAE
TN5
U5U
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFFHD
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
PHGZM
PHGZT
PQBZA
PQGLB
~HD
ID FETCH-LOGICAL-c306t-82ea3d760030deecb3cfcc81d0082d11a2910ac13a78bc1fca3fee8abb4f03373
ISICitedReferencesCount 47
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000878519800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1526-6125
IngestDate Sat Nov 29 07:05:10 EST 2025
Tue Nov 18 22:31:06 EST 2025
Fri Feb 23 02:38:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Laser powder bed fusion
Quality assurance
Additive manufacturing
Clustering algorithm
In-situ sensors
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-82ea3d760030deecb3cfcc81d0082d11a2910ac13a78bc1fca3fee8abb4f03373
PageCount 14
ParticipantIDs crossref_citationtrail_10_1016_j_jmapro_2022_06_074
crossref_primary_10_1016_j_jmapro_2022_06_074
elsevier_sciencedirect_doi_10_1016_j_jmapro_2022_06_074
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Journal of manufacturing processes
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Taherkhani, Sheydaeian, Eischer, Otto, Toyserkani (bb0220) Oct. 2021; 46
Gestel (bb0025) 2015
Gobert, Reutzel, Petrich, Nassar, Phoha (bb0055) 2018; 21
Bayle, Doubenskaia (bb0020) 2008; 698505
Everton (bb0015) Apr. 2016; 95
Grasso, Colosimo, Pacella (bb0090) 2014; 52
Kwon (bb0210) 2020; 31
Zhang (bb0065) 2019; 128
Shevchik, Kenel, Leinenbach, Wasmer (bb0110) 2018; 21
Craeghs, Bechmann, Berumen, Kruth (bb0050) 2010; 5
Knaak, Masseling, Duong, Abels, Gillner (bb0115) 2021; 9
Toyserkani, Sarker, Ibhadode, Liravi, Russo, Taherkhani (bb0005) 2021
Chaudhary, Bhatia, Ahlawat (bb0240) 2014
Jafari-Marandi, Khanzadeh, Tian, Smith, Bian (bb0175) 2019; 51
Furumoto, Ueda, Kobayashi, Yassin, Hosokawa, Abe (bb0160) 2009; 209
Wu, Yu, Wang (bb0185) 2019; 136
Caggiano, Zhang, Alfieri, Caiazzo, Gao, Teti (bb0150) 2019; 68
Fuchs, Eischer (bb0225) 2018
Chicco, Jurman (bb0245) 2020; 21
Ferrar, Mullen, Jones, Stamp, Sutcliffe (bb0255) 2012; 212
Jacobsmuhlen, Kleszczynski, Schneider, Witt (bb0145) 2013
Khanzadeh, Chowdhury, Tschopp, Doude, Marufuzzaman, Bian (bb0170) 2019; 51
Kamimura (bb0235) 2011
Scime, Beuth (bb0070) 2018; 19
Wasmer, Kenel, Leinenbach, Shevchik (bb0195) 2018
Gaikwad, Imani, Rao, Yang, Reutzel (bb0155) 2019; 20
Petrich, Gobert, Phoha, Nassar, Reutzel (bb0125) 2017
Kanko, Sibley, Fraser (bb0215) 2016; 231
Okaro, Jayasinghe, Sutcliffe, Black, Paoletti, Green (bb0100) 2019; 27
Toyserkani, Khajepour, Corbin (bb0140) 2004
Haykin (bb0230) 1999
Matthews, Guss, Khairallah, Rubenchik, Depond, King (bb0200) 2016; 114
Lott, Schleifenbaum, Meiners, Wissenbach, Hinke, Bültmann (bb0075) 2011; 12
Abdelrahman, Reutzel, Nassar, Starr (bb0040) 2017; 15
Van Belle, Vansteenkiste, Boyer (bb0035) 2013; 554
Scime, Beuth (bb0060) 2019; 25
Gong, Rafi, Starr, Stucker (bb0205) 2013
Ye (bb0030) 2018; 96
Thombansen, Gatej, Pereira (bb0080) 2014; 54
Alimardani, Toyserkani (bb0130) 2008; 8
Baumgartl, Tomas, Buettner, Merkel (bb0165) 2020; 5
Khanzadeh, Rao, Jafari-Marandi, Smith, Tschopp, Bian (bb0180) 2018; 140
Zhang, Hong, Ye, Zhu, Fuh (bb0105) 2018; 156
Reijonen, Revuelta, Riipinen, Ruusuvuori, Puukko (bb0250) 2020; 32
Doubenskaia, Smurov, Teleshevskiy, Bertrand, Zhirnov (bb0085) 2015; 834
Grasso, Demir, Previtali, Colosimo (bb0045) 2018; 49
Tapia, Elwany (bb0010) 2014; 136
Sutton, Barto (bb0190) 2018; 2018
Wasmer, Le-Quang, Meylan, Shevchik (bb0120) Feb. 2019; 28
Sohrabpoor (bb0135) 2016; 127
Colosimo, Grasso (bb0095) 2018; 50
Zhang (10.1016/j.jmapro.2022.06.074_bb0065) 2019; 128
Wasmer (10.1016/j.jmapro.2022.06.074_bb0195) 2018
Shevchik (10.1016/j.jmapro.2022.06.074_bb0110) 2018; 21
Jacobsmuhlen (10.1016/j.jmapro.2022.06.074_bb0145) 2013
Kanko (10.1016/j.jmapro.2022.06.074_bb0215) 2016; 231
Gestel (10.1016/j.jmapro.2022.06.074_bb0025) 2015
Kwon (10.1016/j.jmapro.2022.06.074_bb0210) 2020; 31
Everton (10.1016/j.jmapro.2022.06.074_bb0015) 2016; 95
Scime (10.1016/j.jmapro.2022.06.074_bb0070) 2018; 19
Bayle (10.1016/j.jmapro.2022.06.074_bb0020) 2008; 698505
Grasso (10.1016/j.jmapro.2022.06.074_bb0090) 2014; 52
Gong (10.1016/j.jmapro.2022.06.074_bb0205) 2013
Haykin (10.1016/j.jmapro.2022.06.074_bb0230) 1999
Colosimo (10.1016/j.jmapro.2022.06.074_bb0095) 2018; 50
Baumgartl (10.1016/j.jmapro.2022.06.074_bb0165) 2020; 5
Reijonen (10.1016/j.jmapro.2022.06.074_bb0250) 2020; 32
Okaro (10.1016/j.jmapro.2022.06.074_bb0100) 2019; 27
Toyserkani (10.1016/j.jmapro.2022.06.074_bb0005) 2021
Khanzadeh (10.1016/j.jmapro.2022.06.074_bb0180) 2018; 140
Doubenskaia (10.1016/j.jmapro.2022.06.074_bb0085) 2015; 834
Alimardani (10.1016/j.jmapro.2022.06.074_bb0130) 2008; 8
Knaak (10.1016/j.jmapro.2022.06.074_bb0115) 2021; 9
Sutton (10.1016/j.jmapro.2022.06.074_bb0190) 2018; 2018
Caggiano (10.1016/j.jmapro.2022.06.074_bb0150) 2019; 68
Craeghs (10.1016/j.jmapro.2022.06.074_bb0050) 2010; 5
Wasmer (10.1016/j.jmapro.2022.06.074_bb0120) 2019; 28
Khanzadeh (10.1016/j.jmapro.2022.06.074_bb0170) 2019; 51
Lott (10.1016/j.jmapro.2022.06.074_bb0075) 2011; 12
Tapia (10.1016/j.jmapro.2022.06.074_bb0010) 2014; 136
Taherkhani (10.1016/j.jmapro.2022.06.074_bb0220) 2021; 46
Gobert (10.1016/j.jmapro.2022.06.074_bb0055) 2018; 21
Jafari-Marandi (10.1016/j.jmapro.2022.06.074_bb0175) 2019; 51
Zhang (10.1016/j.jmapro.2022.06.074_bb0105) 2018; 156
Ferrar (10.1016/j.jmapro.2022.06.074_bb0255) 2012; 212
Abdelrahman (10.1016/j.jmapro.2022.06.074_bb0040) 2017; 15
Grasso (10.1016/j.jmapro.2022.06.074_bb0045) 2018; 49
Fuchs (10.1016/j.jmapro.2022.06.074_bb0225) 2018
Petrich (10.1016/j.jmapro.2022.06.074_bb0125) 2017
Kamimura (10.1016/j.jmapro.2022.06.074_bb0235) 2011
Chicco (10.1016/j.jmapro.2022.06.074_bb0245) 2020; 21
Van Belle (10.1016/j.jmapro.2022.06.074_bb0035) 2013; 554
Sohrabpoor (10.1016/j.jmapro.2022.06.074_bb0135) 2016; 127
Chaudhary (10.1016/j.jmapro.2022.06.074_bb0240) 2014
Wu (10.1016/j.jmapro.2022.06.074_bb0185) 2019; 136
Scime (10.1016/j.jmapro.2022.06.074_bb0060) 2019; 25
Toyserkani (10.1016/j.jmapro.2022.06.074_bb0140) 2004
Gaikwad (10.1016/j.jmapro.2022.06.074_bb0155) 2019; 20
Ye (10.1016/j.jmapro.2022.06.074_bb0030) 2018; 96
Matthews (10.1016/j.jmapro.2022.06.074_bb0200) 2016; 114
Thombansen (10.1016/j.jmapro.2022.06.074_bb0080) 2014; 54
Furumoto (10.1016/j.jmapro.2022.06.074_bb0160) 2009; 209
References_xml – volume: 140
  year: 2018
  ident: bb0180
  article-title: Quantifying geometric accuracy with unsupervised machine learning: using self-organizing map on fused filament fabrication additive manufacturing parts
  publication-title: J. Manuf. Sci. Eng. Trans. ASME
– volume: 5
  start-page: 277
  year: 2020
  end-page: 285
  ident: bb0165
  article-title: A deep learning-based model for defect detection in laser-powder bed fusion using in-situ thermographic monitoring
  publication-title: Prog Addit Manuf
– volume: 128
  year: 2019
  ident: bb0065
  article-title: High cycle fatigue life prediction of laser additive manufactured stainless steel: a machine learning approach
  publication-title: Int J Fatigue
– start-page: 117
  year: 2015
  ident: bb0025
  article-title: Study of physical phenomena of selective laser melting towards increased productivity
  publication-title: Thesis EPFL
– volume: 554
  start-page: 1828
  year: 2013
  end-page: 1834
  ident: bb0035
  article-title: Investigation of residual stresses induced during the selective laser melting process
  publication-title: Key Eng Mater
– volume: 32
  year: 2020
  ident: bb0250
  article-title: On the effect of shielding gas flow on porosity and melt pool geometry in laser powder bed fusion additive manufacturing
  publication-title: Addit Manuf
– volume: 834
  start-page: 93
  year: 2015
  end-page: 102
  ident: bb0085
  article-title: Determination of true temperature in selective laser melting of metal powder using infrared camera
  publication-title: Mater Sci Forum
– volume: 9
  start-page: 55214
  year: 2021
  end-page: 55231
  ident: bb0115
  article-title: Improving build quality in laser powder bed fusion using high dynamic range imaging and model-based reinforcement learning
  publication-title: IEEE Access
– volume: 21
  start-page: 517
  year: 2018
  end-page: 528
  ident: bb0055
  article-title: Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging
  publication-title: Addit Manuf
– volume: 231
  start-page: 488
  year: 2016
  end-page: 500
  ident: bb0215
  article-title: In situ morphology-based defect detection of selective laser melting through inline coherent imaging
  publication-title: J Mater Process Technol
– volume: 21
  start-page: 1
  year: 2020
  end-page: 13
  ident: bb0245
  article-title: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation
  publication-title: BMC Genomics
– volume: 212
  start-page: 355
  year: 2012
  end-page: 364
  ident: bb0255
  article-title: Gas flow effects on selective laser melting (SLM) manufacturing performance
  publication-title: J Mater Process Technol
– volume: 25
  start-page: 151
  year: 2019
  end-page: 165
  ident: bb0060
  article-title: Using machine learning to identify in-situ melt pool signatures indicative of flaw formation in a laser powder bed fusion additive manufacturing process
  publication-title: Addit Manuf
– year: 2021
  ident: bb0005
  article-title: Metal additive manufacturing
– volume: 68
  start-page: 451
  year: 2019
  end-page: 454
  ident: bb0150
  article-title: Machine learning-based image processing for on-line defect recognition in additive manufacturing
  publication-title: CIRP Ann
– volume: 136
  start-page: 445
  year: 2019
  end-page: 453
  ident: bb0185
  article-title: Experimental study of the process failure diagnosis in additive manufacturing based on acoustic emission
  publication-title: Meas J Int Meas Confed
– volume: 95
  start-page: 431
  year: Apr. 2016
  end-page: 445
  ident: bb0015
  article-title: Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing
  publication-title: Mater. Des.
– volume: 51
  start-page: 437
  year: 2019
  end-page: 455
  ident: bb0170
  article-title: In-situ monitoring of melt pool images for porosity prediction in directed energy deposition processes
  publication-title: IISE Trans.
– year: 1999
  ident: bb0230
  article-title: Chapter 9: self-organizing maps
  publication-title: Neural Networks A Compr. Found
– start-page: 1363
  year: 2017
  end-page: 1381
  ident: bb0125
  article-title: Machine learning for defect detection for PBFAm using high resolution layerwise imaging coupled with post-build CT scans
  publication-title: Solid freeform fabrication 2017: proceedings of the 28th annual international solid freeform fabrication symposium - an additive manufacturing conference, SFF 2017
– year: 2018
  ident: bb0195
  article-title: In situ and real-time monitoring of powder-bed AM by Combining acoustic emission and artificial intelligence
  publication-title: Industrializing additive manufacturing - proceedings of additive manufacturing in products and applications - AMPA2017
– volume: 5
  start-page: 505
  year: 2010
  end-page: 514
  ident: bb0050
  article-title: Feedback control of layerwise laser melting using optical sensors
  publication-title: Phys. Procedia
– volume: 15
  start-page: 1
  year: 2017
  end-page: 11
  ident: bb0040
  article-title: Flaw detection in powder bed fusion using optical imaging
  publication-title: Addit. Manuf.
– volume: 2018
  year: 2018
  ident: bb0190
  article-title: Reinforcement learning: An Introduction
– volume: 27
  start-page: 42
  year: 2019
  end-page: 53
  ident: bb0100
  article-title: Automatic fault detection for laser powder-bed fusion using semi-supervised machine learning
  publication-title: Addit Manuf
– year: 2013
  ident: bb0205
  article-title: Generation and detection of defects in metallic parts fabricated by selective laser melting and electron beam melting and their effects on mechanical properties
  publication-title: Solid Free. Fabr.
– year: 2014
  ident: bb0240
  article-title: A novel self-organizing map (SOM) learning algorithm with nearest and farthest neurons
  publication-title: Alexandria Eng. J.
– year: 2011
  ident: bb0235
  article-title: Information-theoretic approach to interpret internal representations of self-organizing maps
  publication-title: Self organizing maps - applications and novel algorithm design
– volume: 156
  start-page: 458
  year: 2018
  end-page: 469
  ident: bb0105
  article-title: Extraction and evaluation of melt pool, plume and spatter information for powder-bed fusion AM process monitoring
  publication-title: Mater Des
– year: 2004
  ident: bb0140
  article-title: Laser cladding
– volume: 20
  year: 2019
  ident: bb0155
  article-title: Design rules and in-situ quality monitoring of thin-wall features made using laser powder bed fusion
  publication-title: Proceedings of the ASME 2019 14th international manufacturing science and engineering conference (MSEC2019)
– volume: 50
  year: 2018
  ident: bb0095
  article-title: Spatially weighted PCA for monitoring video image data with application to additive manufacturing
  publication-title: J. Qual. Technol.
– start-page: 707
  year: 2013
  end-page: 712
  ident: bb0145
  article-title: High resolution imaging for inspection of Laser Beam Melting systems
  publication-title: 2013 IEEE international instrumentation and measurement technology conference (I2MTC)
– volume: 49
  start-page: 229
  year: 2018
  end-page: 239
  ident: bb0045
  article-title: In situ monitoring of selective laser melting of zinc powder via infrared imaging of the process plume
  publication-title: Robot. Comput. Integr. Manuf.
– volume: 698505
  year: 2008
  ident: bb0020
  article-title: Selective laser melting process monitoring with high-speed infra-red camera and pyrometer
– volume: 209
  start-page: 5973
  year: 2009
  end-page: 5980
  ident: bb0160
  article-title: Study on laser consolidation of metal powder with yb:fiber laser-evaluation of line consolidation structure
  publication-title: J Mater Process Technol
– volume: 12
  start-page: 683
  year: 2011
  end-page: 690
  ident: bb0075
  article-title: Design of an optical system for the in situ process monitoring of selective laser melting (SLM)
  publication-title: Phys. Procedia
– volume: 19
  start-page: 114
  year: 2018
  end-page: 126
  ident: bb0070
  article-title: Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm
  publication-title: Addit Manuf
– volume: 28
  start-page: 666
  year: Feb. 2019
  end-page: 672
  ident: bb0120
  article-title: In situ quality monitoring in AM using acoustic emission: a reinforcement learning approach
  publication-title: J Mater Eng Perform
– volume: 51
  start-page: 29
  year: 2019
  end-page: 41
  ident: bb0175
  article-title: From in-situ monitoring toward high-throughput process control: cost-driven decision-making framework for laser-based additive manufacturing
  publication-title: J Manuf Syst
– volume: 21
  start-page: 598
  year: 2018
  end-page: 604
  ident: bb0110
  article-title: Acoustic emission for in situ quality monitoring in additive manufacturing using spectral convolutional neural networks
  publication-title: Addit Manuf
– volume: 54
  year: 2014
  ident: bb0080
  article-title: Process observation in fiber laser–based selective laser melting
  publication-title: Opt. Eng.
– volume: 8
  start-page: 316
  year: 2008
  end-page: 323
  ident: bb0130
  article-title: Prediction of laser solid freeform fabrication using neuro-fuzzy method
  publication-title: Appl Soft Comput J
– volume: 114
  start-page: 33
  year: 2016
  end-page: 42
  ident: bb0200
  article-title: Denudation of metal powder layers in laser powder bed fusion processes
  publication-title: Acta Mater
– volume: 31
  start-page: 375
  year: 2020
  end-page: 386
  ident: bb0210
  article-title: A deep neural network for classification of melt-pool images in metal additive manufacturing
  publication-title: J Intell Manuf
– volume: 127
  start-page: 4031
  year: 2016
  end-page: 4038
  ident: bb0135
  article-title: Analysis of laser powder deposition parameters: ANFIS modeling and ICA optimization
  publication-title: Optik (Stuttg)
– volume: 52
  start-page: 6110
  year: 2014
  end-page: 6135
  ident: bb0090
  article-title: Profile monitoring via sensor fusion: the use of PCA methods for multi-channel data
  publication-title: Int J Prod Res
– volume: 96
  start-page: 2791
  year: 2018
  end-page: 2801
  ident: bb0030
  article-title: Defect detection in selective laser melting technology by acoustic signals with deep belief networks
  publication-title: Int J Adv Manuf Technol
– volume: 46
  year: Oct. 2021
  ident: bb0220
  article-title: Development of a defect-detection platform using photodiode signals collected from the melt pool of laser powder-bed fusion
  publication-title: Addit Manuf
– year: 2018
  ident: bb0225
  article-title: In-process monitoring systems for metal additive manufacturing
  publication-title: EOS Electro Optical Systems
– volume: 136
  year: 2014
  ident: bb0010
  article-title: A review on process monitoring and control in metal-based additive manufacturing
  publication-title: J Manuf Sci Eng
– start-page: 707
  year: 2013
  ident: 10.1016/j.jmapro.2022.06.074_bb0145
  article-title: High resolution imaging for inspection of Laser Beam Melting systems
– volume: 15
  start-page: 1
  year: 2017
  ident: 10.1016/j.jmapro.2022.06.074_bb0040
  article-title: Flaw detection in powder bed fusion using optical imaging
  publication-title: Addit. Manuf.
– volume: 96
  start-page: 2791
  year: 2018
  ident: 10.1016/j.jmapro.2022.06.074_bb0030
  article-title: Defect detection in selective laser melting technology by acoustic signals with deep belief networks
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-018-1728-0
– year: 2014
  ident: 10.1016/j.jmapro.2022.06.074_bb0240
  article-title: A novel self-organizing map (SOM) learning algorithm with nearest and farthest neurons
  publication-title: Alexandria Eng. J.
  doi: 10.1016/j.aej.2014.09.007
– volume: 32
  year: 2020
  ident: 10.1016/j.jmapro.2022.06.074_bb0250
  article-title: On the effect of shielding gas flow on porosity and melt pool geometry in laser powder bed fusion additive manufacturing
  publication-title: Addit Manuf
– volume: 51
  start-page: 437
  issue: 5
  year: 2019
  ident: 10.1016/j.jmapro.2022.06.074_bb0170
  article-title: In-situ monitoring of melt pool images for porosity prediction in directed energy deposition processes
  publication-title: IISE Trans.
  doi: 10.1080/24725854.2017.1417656
– volume: 21
  start-page: 598
  year: 2018
  ident: 10.1016/j.jmapro.2022.06.074_bb0110
  article-title: Acoustic emission for in situ quality monitoring in additive manufacturing using spectral convolutional neural networks
  publication-title: Addit Manuf
– start-page: 1363
  year: 2017
  ident: 10.1016/j.jmapro.2022.06.074_bb0125
  article-title: Machine learning for defect detection for PBFAm using high resolution layerwise imaging coupled with post-build CT scans
– volume: 156
  start-page: 458
  year: 2018
  ident: 10.1016/j.jmapro.2022.06.074_bb0105
  article-title: Extraction and evaluation of melt pool, plume and spatter information for powder-bed fusion AM process monitoring
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2018.07.002
– volume: 127
  start-page: 4031
  issue: 8
  year: 2016
  ident: 10.1016/j.jmapro.2022.06.074_bb0135
  article-title: Analysis of laser powder deposition parameters: ANFIS modeling and ICA optimization
  publication-title: Optik (Stuttg)
  doi: 10.1016/j.ijleo.2016.01.070
– volume: 231
  start-page: 488
  year: 2016
  ident: 10.1016/j.jmapro.2022.06.074_bb0215
  article-title: In situ morphology-based defect detection of selective laser melting through inline coherent imaging
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2015.12.024
– volume: 9
  start-page: 55214
  year: 2021
  ident: 10.1016/j.jmapro.2022.06.074_bb0115
  article-title: Improving build quality in laser powder bed fusion using high dynamic range imaging and model-based reinforcement learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3067302
– year: 2013
  ident: 10.1016/j.jmapro.2022.06.074_bb0205
  article-title: Generation and detection of defects in metallic parts fabricated by selective laser melting and electron beam melting and their effects on mechanical properties
  publication-title: Solid Free. Fabr.
– volume: 136
  start-page: 445
  year: 2019
  ident: 10.1016/j.jmapro.2022.06.074_bb0185
  article-title: Experimental study of the process failure diagnosis in additive manufacturing based on acoustic emission
  publication-title: Meas J Int Meas Confed
  doi: 10.1016/j.measurement.2018.12.067
– volume: 54
  issue: 1
  year: 2014
  ident: 10.1016/j.jmapro.2022.06.074_bb0080
  article-title: Process observation in fiber laser–based selective laser melting
  publication-title: Opt. Eng.
  doi: 10.1117/1.OE.54.1.011008
– year: 2018
  ident: 10.1016/j.jmapro.2022.06.074_bb0195
  article-title: In situ and real-time monitoring of powder-bed AM by Combining acoustic emission and artificial intelligence
– volume: 5
  start-page: 277
  year: 2020
  ident: 10.1016/j.jmapro.2022.06.074_bb0165
  article-title: A deep learning-based model for defect detection in laser-powder bed fusion using in-situ thermographic monitoring
  publication-title: Prog Addit Manuf
  doi: 10.1007/s40964-019-00108-3
– volume: 698505
  issue: January 2008
  year: 2008
  ident: 10.1016/j.jmapro.2022.06.074_bb0020
  article-title: Selective laser melting process monitoring with high-speed infra-red camera and pyrometer
– volume: 68
  start-page: 451
  issue: 1
  year: 2019
  ident: 10.1016/j.jmapro.2022.06.074_bb0150
  article-title: Machine learning-based image processing for on-line defect recognition in additive manufacturing
  publication-title: CIRP Ann
  doi: 10.1016/j.cirp.2019.03.021
– volume: 212
  start-page: 355
  issue: 2
  year: 2012
  ident: 10.1016/j.jmapro.2022.06.074_bb0255
  article-title: Gas flow effects on selective laser melting (SLM) manufacturing performance
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2011.09.020
– volume: 554
  start-page: 1828
  year: 2013
  ident: 10.1016/j.jmapro.2022.06.074_bb0035
  article-title: Investigation of residual stresses induced during the selective laser melting process
  publication-title: Key Eng Mater
  doi: 10.4028/www.scientific.net/KEM.554-557.1828
– volume: 5
  start-page: 505
  issue: PART 2
  year: 2010
  ident: 10.1016/j.jmapro.2022.06.074_bb0050
  article-title: Feedback control of layerwise laser melting using optical sensors
  publication-title: Phys. Procedia
  doi: 10.1016/j.phpro.2010.08.078
– volume: 31
  start-page: 375
  year: 2020
  ident: 10.1016/j.jmapro.2022.06.074_bb0210
  article-title: A deep neural network for classification of melt-pool images in metal additive manufacturing
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-018-1451-6
– volume: 21
  start-page: 517
  year: 2018
  ident: 10.1016/j.jmapro.2022.06.074_bb0055
  article-title: Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging
  publication-title: Addit Manuf
– year: 2021
  ident: 10.1016/j.jmapro.2022.06.074_bb0005
– volume: 19
  start-page: 114
  year: 2018
  ident: 10.1016/j.jmapro.2022.06.074_bb0070
  article-title: Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm
  publication-title: Addit Manuf
– volume: 128
  year: 2019
  ident: 10.1016/j.jmapro.2022.06.074_bb0065
  article-title: High cycle fatigue life prediction of laser additive manufactured stainless steel: a machine learning approach
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2019.105194
– volume: 51
  start-page: 29
  year: 2019
  ident: 10.1016/j.jmapro.2022.06.074_bb0175
  article-title: From in-situ monitoring toward high-throughput process control: cost-driven decision-making framework for laser-based additive manufacturing
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2019.02.005
– volume: 114
  start-page: 33
  year: 2016
  ident: 10.1016/j.jmapro.2022.06.074_bb0200
  article-title: Denudation of metal powder layers in laser powder bed fusion processes
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2016.05.017
– volume: 46
  year: 2021
  ident: 10.1016/j.jmapro.2022.06.074_bb0220
  article-title: Development of a defect-detection platform using photodiode signals collected from the melt pool of laser powder-bed fusion
  publication-title: Addit Manuf
– year: 2011
  ident: 10.1016/j.jmapro.2022.06.074_bb0235
  article-title: Information-theoretic approach to interpret internal representations of self-organizing maps
– volume: 834
  start-page: 93
  issue: November
  year: 2015
  ident: 10.1016/j.jmapro.2022.06.074_bb0085
  article-title: Determination of true temperature in selective laser melting of metal powder using infrared camera
  publication-title: Mater Sci Forum
  doi: 10.4028/www.scientific.net/MSF.834.93
– volume: 52
  start-page: 6110
  issue: 20
  year: 2014
  ident: 10.1016/j.jmapro.2022.06.074_bb0090
  article-title: Profile monitoring via sensor fusion: the use of PCA methods for multi-channel data
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2014.916431
– volume: 8
  start-page: 316
  issue: 1
  year: 2008
  ident: 10.1016/j.jmapro.2022.06.074_bb0130
  article-title: Prediction of laser solid freeform fabrication using neuro-fuzzy method
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2007.02.002
– year: 2018
  ident: 10.1016/j.jmapro.2022.06.074_bb0225
  article-title: In-process monitoring systems for metal additive manufacturing
  publication-title: EOS Electro Optical Systems
– volume: 21
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.jmapro.2022.06.074_bb0245
  article-title: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation
  publication-title: BMC Genomics
  doi: 10.1186/s12864-019-6413-7
– volume: 49
  start-page: 229
  year: 2018
  ident: 10.1016/j.jmapro.2022.06.074_bb0045
  article-title: In situ monitoring of selective laser melting of zinc powder via infrared imaging of the process plume
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2017.07.001
– year: 1999
  ident: 10.1016/j.jmapro.2022.06.074_bb0230
  article-title: Chapter 9: self-organizing maps
– volume: 95
  start-page: 431
  year: 2016
  ident: 10.1016/j.jmapro.2022.06.074_bb0015
  article-title: Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.01.099
– volume: 20
  year: 2019
  ident: 10.1016/j.jmapro.2022.06.074_bb0155
  article-title: Design rules and in-situ quality monitoring of thin-wall features made using laser powder bed fusion
– start-page: 117
  year: 2015
  ident: 10.1016/j.jmapro.2022.06.074_bb0025
  article-title: Study of physical phenomena of selective laser melting towards increased productivity
– volume: 209
  start-page: 5973
  issue: 18–19
  year: 2009
  ident: 10.1016/j.jmapro.2022.06.074_bb0160
  article-title: Study on laser consolidation of metal powder with yb:fiber laser-evaluation of line consolidation structure
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2009.07.017
– year: 2004
  ident: 10.1016/j.jmapro.2022.06.074_bb0140
– volume: 12
  start-page: 683
  year: 2011
  ident: 10.1016/j.jmapro.2022.06.074_bb0075
  article-title: Design of an optical system for the in situ process monitoring of selective laser melting (SLM)
  publication-title: Phys. Procedia
  doi: 10.1016/j.phpro.2011.03.085
– volume: 28
  start-page: 666
  issue: 2
  year: 2019
  ident: 10.1016/j.jmapro.2022.06.074_bb0120
  article-title: In situ quality monitoring in AM using acoustic emission: a reinforcement learning approach
  publication-title: J Mater Eng Perform
  doi: 10.1007/s11665-018-3690-2
– volume: 50
  issue: 4
  year: 2018
  ident: 10.1016/j.jmapro.2022.06.074_bb0095
  article-title: Spatially weighted PCA for monitoring video image data with application to additive manufacturing
  publication-title: J. Qual. Technol.
  doi: 10.1080/00224065.2018.1507563
– volume: 2018
  year: 2018
  ident: 10.1016/j.jmapro.2022.06.074_bb0190
– volume: 25
  start-page: 151
  year: 2019
  ident: 10.1016/j.jmapro.2022.06.074_bb0060
  article-title: Using machine learning to identify in-situ melt pool signatures indicative of flaw formation in a laser powder bed fusion additive manufacturing process
  publication-title: Addit Manuf
– volume: 136
  issue: 6
  year: 2014
  ident: 10.1016/j.jmapro.2022.06.074_bb0010
  article-title: A review on process monitoring and control in metal-based additive manufacturing
  publication-title: J Manuf Sci Eng
  doi: 10.1115/1.4028540
– volume: 27
  start-page: 42
  year: 2019
  ident: 10.1016/j.jmapro.2022.06.074_bb0100
  article-title: Automatic fault detection for laser powder-bed fusion using semi-supervised machine learning
  publication-title: Addit Manuf
– volume: 140
  issue: 3
  year: 2018
  ident: 10.1016/j.jmapro.2022.06.074_bb0180
  article-title: Quantifying geometric accuracy with unsupervised machine learning: using self-organizing map on fused filament fabrication additive manufacturing parts
  publication-title: J. Manuf. Sci. Eng. Trans. ASME
  doi: 10.1115/1.4038598
SSID ssj0012401
Score 2.4665303
Snippet This research studies the development of a machine-learning algorithm to detect porosity induced during laser powder bed fusion (LPBF) due to the lack of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 476
SubjectTerms Additive manufacturing
Clustering algorithm
In-situ sensors
Laser powder bed fusion
Machine learning
Quality assurance
Title An unsupervised machine learning algorithm for in-situ defect-detection in laser powder-bed fusion
URI https://dx.doi.org/10.1016/j.jmapro.2022.06.074
Volume 81
WOSCitedRecordID wos000878519800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 2212-4616
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012401
  issn: 1526-6125
  databaseCode: AIEXJ
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcEE-xvOQDt8qrJs7WybFCRYDQikNBvUWO42zTbd0oj2X3Z_CPGcd2Em3Rwh64RFVaO0nny_iz_c0MQu8935fpzBNkKsKMBL44JREwUzKTOsePrvTQ7p7_-MrOzsLVKvo2Gv1ysTCXW6ZUeHUVFf_V1HAOjK1DZ-9g7q5TOAGfwehwBLPD8Z8MP1eTRlVNoZ1ABXRy18olpasPcT7h2_N9mdfrXSsxzBWp8rqZpFILO0gqaymcABKYtSwnxf5nKkuSQF9ZUzk7HhLaHVeNjpMwgY-FiUDoJYpLDvC4WJsaUlrFwa_3vQZgkVcOPoN8B_0a-DXcyYVtu1g7JZFdroCZrtNjdR7WByR4JtrZuWBTtcX60IDNBsNxYCoMHXh6s-iwOdnsODzQib6UScQa9COb282_MeB1MkSncNvEppdY9xJroR8L7qEjn51G4RgdzT8vVl-6rSmgQCYJr30OF4_ZigYP7-bPfGfAYZaP0SNrKzw3oHmCRlI9RQ8HKSmfoWSu8BA-2MIHO_jgDj4Y4IMtfPBN-MAXuIUP7uGDDXyeo-8fF8sPn4itw0EEvLY1CX3Jaap3cOk0lVIkVGRCwERH88fU87gPnJMLj3IWJsLLBKeZlCFPkiCbUsroCzRWeyVfIpzSUIS-iBifJgHjERcwuYuCWSZTP0q4OEbU_VuxsEnqda2UbXybrY4R6VoVJknLX37PnCFiSzQNgYwBXbe2fHXHK71GD_qX4A0a12Uj36L74rLOq_KdhdZvbM6oBg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+unsupervised+machine+learning+algorithm+for+in-situ+defect-detection+in+laser+powder-bed+fusion&rft.jtitle=Journal+of+manufacturing+processes&rft.au=Taherkhani%2C+Katayoon&rft.au=Eischer%2C+Christopher&rft.au=Toyserkani%2C+Ehsan&rft.date=2022-09-01&rft.issn=1526-6125&rft.volume=81&rft.spage=476&rft.epage=489&rft_id=info:doi/10.1016%2Fj.jmapro.2022.06.074&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmapro_2022_06_074
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-6125&client=summon