Multi-layer manifold learning for deep non-negative matrix factorization-based multi-view clustering

•An orthogonal deep non-negative matrix factorization (Deep-NMF) framework that aims to learn the non-linear parts-based representation for multi-view data is proposed.•The T-SNE visualizations of the features learned by the proposed Deep-NMF and its counterpart ascertain the effectiveness of the pr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Pattern recognition Ročník 131; s. 108815
Hlavní autoři: Luong, Khanh, Nayak, Richi, Balasubramaniam, Thirunavukarasu, Bashar, Md Abul
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.11.2022
Témata:
ISSN:0031-3203, 1873-5142
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •An orthogonal deep non-negative matrix factorization (Deep-NMF) framework that aims to learn the non-linear parts-based representation for multi-view data is proposed.•The T-SNE visualizations of the features learned by the proposed Deep-NMF and its counterpart ascertain the effectiveness of the proposed framework for multi-view clustering.•The proposed Deep-NMF method learns and incorporates the most consensed manifold for multi-view data in all layers of the multi-layer architecture.•The objective function is designed to uncover the consensus representation that is unique and encodes both the view-shared, view-specific information for multi-view data.•Extensive experiments including features visualization, components-based and multi-layer ability analysis, comprehensive examples have been conducted and presented in this work. Multi-view data clustering based on Non-negative Matrix Factorization (NMF) has been commonly used for pattern recognition by grouping multi-view high-dimensional data by projecting it to a lower-order dimensional space. However, the NMF framework fails to learn the accurate lower-order representation of the input data if it exhibits complex and non-linear relationships. This paper proposes a deep non-negative matrix factorization-based framework for effective multi-view data clustering by uncovering both the non-linear relationships and the intrinsic components of the data. Both the consensus and complementary information present in multiple views are sufficiently learned in the proposed framework with the effective use of constraints such as normalized cut-type and orthogonal. The optimal manifold of multi-view data is effectively incorporated in all layers of the framework. Extensive experimental results show the proposed method outperforms state-of-the-art multi-view matrix factorization-based methods.
AbstractList •An orthogonal deep non-negative matrix factorization (Deep-NMF) framework that aims to learn the non-linear parts-based representation for multi-view data is proposed.•The T-SNE visualizations of the features learned by the proposed Deep-NMF and its counterpart ascertain the effectiveness of the proposed framework for multi-view clustering.•The proposed Deep-NMF method learns and incorporates the most consensed manifold for multi-view data in all layers of the multi-layer architecture.•The objective function is designed to uncover the consensus representation that is unique and encodes both the view-shared, view-specific information for multi-view data.•Extensive experiments including features visualization, components-based and multi-layer ability analysis, comprehensive examples have been conducted and presented in this work. Multi-view data clustering based on Non-negative Matrix Factorization (NMF) has been commonly used for pattern recognition by grouping multi-view high-dimensional data by projecting it to a lower-order dimensional space. However, the NMF framework fails to learn the accurate lower-order representation of the input data if it exhibits complex and non-linear relationships. This paper proposes a deep non-negative matrix factorization-based framework for effective multi-view data clustering by uncovering both the non-linear relationships and the intrinsic components of the data. Both the consensus and complementary information present in multiple views are sufficiently learned in the proposed framework with the effective use of constraints such as normalized cut-type and orthogonal. The optimal manifold of multi-view data is effectively incorporated in all layers of the framework. Extensive experimental results show the proposed method outperforms state-of-the-art multi-view matrix factorization-based methods.
ArticleNumber 108815
Author Luong, Khanh
Nayak, Richi
Bashar, Md Abul
Balasubramaniam, Thirunavukarasu
Author_xml – sequence: 1
  givenname: Khanh
  orcidid: 0000-0001-6981-7367
  surname: Luong
  fullname: Luong, Khanh
  email: khanh.luong@qut.edu.au
– sequence: 2
  givenname: Richi
  surname: Nayak
  fullname: Nayak, Richi
  email: r.nayak@qut.edu.au
– sequence: 3
  givenname: Thirunavukarasu
  orcidid: 0000-0002-8821-6003
  surname: Balasubramaniam
  fullname: Balasubramaniam, Thirunavukarasu
  email: thirunavukarasu.balas@qut.edu.au
– sequence: 4
  givenname: Md Abul
  surname: Bashar
  fullname: Bashar, Md Abul
  email: m1.bashar@qut.edu.au
BookMark eNqFUMtOwzAQtBBItIU_4OAfSPHaSZxyQEIVL6mIC5wtx95UrtKkst1C-XrchhMHuOxKMzuzmhmT067vkJArYFNgUF6vphsdTb-ccsZ5gqoKihMygkqKrICcn5IRYwIywZk4J-MQVoyBTMSI2JdtG13W6j16utada_rW0ha171y3pE3vqUXc0PQx63Cpo9thuovefdJGm9h795XAxNY6oKXro93O4Qc17TZE9Mnmgpw1ug14-bMn5P3h_m3-lC1eH5_nd4vMCFbGrOKSl6yoZVFXrISmqCpW5DOEGdQ5SCvAytKINJBrA1rPZCkklNbwXGppxITkg6_xfQgeG7Xxbq39XgFTh6bUSg1NqUNTamgqyW5-yYyLx1DRa9f-J74dxJiCpdxeBeOwM2idRxOV7d3fBt_R7oo3
CitedBy_id crossref_primary_10_1016_j_patcog_2023_109860
crossref_primary_10_1109_TSIPN_2024_3511262
crossref_primary_10_1016_j_patcog_2023_110179
crossref_primary_10_1016_j_patcog_2022_109102
crossref_primary_10_1007_s00371_024_03661_3
crossref_primary_10_1016_j_is_2024_102379
crossref_primary_10_1016_j_engappai_2024_107978
crossref_primary_10_1016_j_eswa_2023_121518
crossref_primary_10_1016_j_engappai_2025_110661
crossref_primary_10_1016_j_patcog_2024_111140
crossref_primary_10_1016_j_eswa_2025_129556
crossref_primary_10_1007_s10489_024_05652_2
crossref_primary_10_1016_j_ins_2024_120769
crossref_primary_10_1016_j_envres_2023_117355
crossref_primary_10_1016_j_dsp_2024_104713
crossref_primary_10_1109_TCE_2023_3319018
crossref_primary_10_1109_TCSVT_2024_3508785
crossref_primary_10_1016_j_eswa_2024_123645
crossref_primary_10_1016_j_knosys_2022_109736
crossref_primary_10_1145_3767726
crossref_primary_10_1007_s13042_025_02589_x
crossref_primary_10_1109_TNNLS_2023_3304626
crossref_primary_10_1016_j_engappai_2024_109508
crossref_primary_10_1007_s10489_025_06367_8
crossref_primary_10_1109_TNNLS_2025_3551159
crossref_primary_10_1016_j_jhydrol_2025_132892
crossref_primary_10_1016_j_neucom_2024_128594
crossref_primary_10_1007_s00138_023_01455_6
crossref_primary_10_1016_j_engappai_2025_110715
crossref_primary_10_1016_j_ins_2024_120458
crossref_primary_10_1007_s10044_025_01455_4
crossref_primary_10_1007_s10489_024_05870_8
crossref_primary_10_1016_j_eswa_2024_123831
crossref_primary_10_1016_j_patcog_2023_109963
crossref_primary_10_1109_TCE_2025_3525523
crossref_primary_10_1007_s12206_025_0808_y
crossref_primary_10_1016_j_trc_2024_104607
crossref_primary_10_1007_s11075_025_02147_0
crossref_primary_10_1016_j_cosrev_2025_100788
crossref_primary_10_1016_j_neucom_2024_128367
crossref_primary_10_1016_j_neucom_2024_127555
crossref_primary_10_26599_BDMA_2023_9020004
crossref_primary_10_1016_j_ins_2024_120585
crossref_primary_10_1016_j_patcog_2025_112011
crossref_primary_10_1109_ACCESS_2023_3285662
crossref_primary_10_1016_j_knosys_2024_112662
crossref_primary_10_1007_s10489_023_04716_z
crossref_primary_10_1016_j_knosys_2023_111330
crossref_primary_10_1016_j_dsp_2024_104534
crossref_primary_10_1109_TBDATA_2025_3547174
crossref_primary_10_1016_j_patcog_2025_111679
crossref_primary_10_1016_j_inffus_2024_102785
crossref_primary_10_3390_math13091422
crossref_primary_10_1016_j_dsp_2023_104118
crossref_primary_10_1016_j_patcog_2024_110645
crossref_primary_10_1109_TETCI_2024_3451352
crossref_primary_10_1109_TIP_2023_3261746
crossref_primary_10_1109_TNNLS_2023_3265699
crossref_primary_10_1109_TCE_2024_3440485
crossref_primary_10_1016_j_knosys_2025_114158
crossref_primary_10_1016_j_neunet_2023_10_001
crossref_primary_10_1016_j_neunet_2024_106602
crossref_primary_10_1016_j_knosys_2025_114357
crossref_primary_10_1016_j_knosys_2025_113349
crossref_primary_10_1016_j_asoc_2023_110702
crossref_primary_10_1109_LSP_2025_3553804
crossref_primary_10_1016_j_patcog_2024_111010
Cites_doi 10.1038/44565
10.1109/TCYB.2019.2918495
10.1109/TPAMI.2008.277
10.1109/TCYB.2017.2747400
10.1016/j.knosys.2020.105582
10.1371/journal.pone.0208494
10.1007/s10115-004-0194-1
10.1109/TPAMI.2010.231
10.1016/j.patcog.2019.107015
10.1109/TPAMI.2016.2554555
10.1016/j.patcog.2021.107890
10.1016/j.knosys.2021.106807
10.26599/BDMA.2018.9020003
10.3390/technologies9010002
10.1109/34.868688
10.1016/j.neunet.2017.02.003
10.1016/j.neucom.2019.12.054
10.1109/TIP.2006.884956
10.1145/1007730.1007731
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2022.108815
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2022_108815
S0031320322002965
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-8272605b75b8061f5880549e191b417d31d76c3d76e2ac1aa9763716dc247a7c3
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000866467500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Sat Nov 29 07:30:13 EST 2025
Tue Nov 18 22:08:46 EST 2025
Fri Feb 23 02:40:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-view data/clustering
Manifold learning
Deep Non-negative Matrix Factorization (Deep-NMF)
Non-negative Matrix Factorization (NMF)
Deep Matrix Factorization (DMF)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-8272605b75b8061f5880549e191b417d31d76c3d76e2ac1aa9763716dc247a7c3
ORCID 0000-0001-6981-7367
0000-0002-8821-6003
ParticipantIDs crossref_primary_10_1016_j_patcog_2022_108815
crossref_citationtrail_10_1016_j_patcog_2022_108815
elsevier_sciencedirect_doi_10_1016_j_patcog_2022_108815
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Tian, Yu, Liu, Zhan, Wang (bib0028) 2018; 48
Yang, Wang (bib0041) 2018; 1
Zhou, Zhang, Peng, Bhaskar, Yang (bib0027) 2020; 50
Jianbo Shi, Malik (bib0020) 2000; 22
Zhang, Shan, Chen, Gao (bib0049) 2007; 16
Ding, Li, Jordan (bib0017) 2010; 32
van der Maaten, Hinton (bib0051) 2008; 9
Lee, Seung (bib0011) 1999; 401
Cao, Zhang, Fu, Liu, Zhang (bib0024) 2015
Jaiswal, Babu, Zadeh, Banerjee, Makedon (bib0040) 2021; 9
Chen, Kornblith, Norouzi, Hinton (bib0035) 2020
Luong, Nayak (bib0002) 2020
Ding, Li, Peng, Park (bib0044) 2006
Luo, Zhang, Zhang, Cao (bib0025) 2018; vol. 32
Chang, Hu, Li, Wang, Peng (bib0050) 2021; 217
Liu, Teng, Fei, Zhang, Fang, Zhang, Wu (bib0026) 2021; 115
Song, Liu, Huang, Wang, Tan (bib0008) 2013
Liang, Huang, Wang (bib0022) 2019
Schütze, Manning, Raghavan (bib0047) 2008; vol. 39
Nitsche, Tropmann-Frick (bib0039) 2018
Huang, Kang, Xu (bib0001) 2020; 97
Liang, Yang, Li, Sun, Xie (bib0004) 2020; 194
Kumar, Rai, Daume (bib0021) 2011; vol. 24
Ng, Jordan, Weiss (bib0007) 2001
Ross, Zemel (bib0043) 2006; 7
Trigeorgis, Bousmalis, Zafeiriou, Schuller (bib0013) 2016; 39
Boyd, Vandenberghe (bib0045) 2004
Yuan, Lin, Kuen, Zhang, Wang, Maire, Kale, Faieta (bib0038) 2021
Lyu, Xie, Sun (bib0031) 2017
Li, Zhou, Qiu, Wang, Zhang, Xie (bib0042) 2020; 390
Zhong, Ghosh (bib0046) 2005; 8
Luong, Nayak (bib0003) 2018
Andrew, Arora, Bilmes, Livescu (bib0033) 2013; vol. 28
Luong, Balasubramaniam, Nayak (bib0030) 2018
Belkin, Niyogi, Sindhwani (bib0019) 2006; 7
He, Fan, Wu, Xie, Girshick (bib0036) 2020
Jing, Jiawei, Jialu, Chi (bib0010) 2013
Morgado, Vasconcelos, Misra (bib0037) 2021
Wang, Arora, Livescu, Bilmes (bib0034) 2015
Zhao, Ding, Fu (bib0014) 2017
Zong, Zhang, Zhao, Yu, Zhao (bib0029) 2017; 88
Parsons, Haque, Liu (bib0006) 2004; 6
Wei, Wang, Yu, Domeniconi, Zhang (bib0015) 2020
Cui, Yu, Zhang, Li (bib0016) 2019
Lee, Seung (bib0005) 2001
Cai, He, Han, Huang (bib0018) 2011; 33
Li, Nie, Huang, Huang (bib0009) 2015
Zhou, Ye, Du (bib0023) 2018
Hou, Nayak (bib0048) 2015
Trigeorgis, Bousmalis, Zafeiriou, Schuller (bib0012) 2014
Zhao, Xu, Guan, Liu (bib0032) 2020
Wang (10.1016/j.patcog.2022.108815_bib0034) 2015
Boyd (10.1016/j.patcog.2022.108815_bib0045) 2004
Kumar (10.1016/j.patcog.2022.108815_bib0021) 2011; vol. 24
Song (10.1016/j.patcog.2022.108815_bib0008) 2013
Trigeorgis (10.1016/j.patcog.2022.108815_bib0013) 2016; 39
Ding (10.1016/j.patcog.2022.108815_bib0017) 2010; 32
Ross (10.1016/j.patcog.2022.108815_bib0043) 2006; 7
Liu (10.1016/j.patcog.2022.108815_bib0026) 2021; 115
Zong (10.1016/j.patcog.2022.108815_bib0029) 2017; 88
Ding (10.1016/j.patcog.2022.108815_bib0044) 2006
Hou (10.1016/j.patcog.2022.108815_bib0048) 2015
van der Maaten (10.1016/j.patcog.2022.108815_bib0051) 2008; 9
Jianbo Shi (10.1016/j.patcog.2022.108815_bib0020) 2000; 22
Yuan (10.1016/j.patcog.2022.108815_bib0038) 2021
Morgado (10.1016/j.patcog.2022.108815_bib0037) 2021
Chang (10.1016/j.patcog.2022.108815_bib0050) 2021; 217
Trigeorgis (10.1016/j.patcog.2022.108815_bib0012) 2014
Liang (10.1016/j.patcog.2022.108815_bib0022) 2019
Parsons (10.1016/j.patcog.2022.108815_bib0006) 2004; 6
Zhao (10.1016/j.patcog.2022.108815_bib0014) 2017
Jaiswal (10.1016/j.patcog.2022.108815_bib0040) 2021; 9
Ng (10.1016/j.patcog.2022.108815_bib0007) 2001
Zhou (10.1016/j.patcog.2022.108815_bib0023) 2018
Jing (10.1016/j.patcog.2022.108815_bib0010) 2013
Cao (10.1016/j.patcog.2022.108815_bib0024) 2015
Zhong (10.1016/j.patcog.2022.108815_bib0046) 2005; 8
Zhang (10.1016/j.patcog.2022.108815_bib0049) 2007; 16
Schütze (10.1016/j.patcog.2022.108815_bib0047) 2008; vol. 39
Luong (10.1016/j.patcog.2022.108815_bib0030) 2018
Belkin (10.1016/j.patcog.2022.108815_bib0019) 2006; 7
Huang (10.1016/j.patcog.2022.108815_bib0001) 2020; 97
Cui (10.1016/j.patcog.2022.108815_bib0016) 2019
Zhou (10.1016/j.patcog.2022.108815_bib0027) 2020; 50
Lyu (10.1016/j.patcog.2022.108815_bib0031) 2017
Andrew (10.1016/j.patcog.2022.108815_bib0033) 2013; vol. 28
Lee (10.1016/j.patcog.2022.108815_bib0011) 1999; 401
Wang (10.1016/j.patcog.2022.108815_bib0028) 2018; 48
Lee (10.1016/j.patcog.2022.108815_bib0005) 2001
Luong (10.1016/j.patcog.2022.108815_bib0002) 2020
Luong (10.1016/j.patcog.2022.108815_bib0003) 2018
Liang (10.1016/j.patcog.2022.108815_bib0004) 2020; 194
Cai (10.1016/j.patcog.2022.108815_bib0018) 2011; 33
Yang (10.1016/j.patcog.2022.108815_bib0041) 2018; 1
He (10.1016/j.patcog.2022.108815_bib0036) 2020
Zhao (10.1016/j.patcog.2022.108815_bib0032) 2020
Li (10.1016/j.patcog.2022.108815_bib0009) 2015
Nitsche (10.1016/j.patcog.2022.108815_bib0039) 2018
Luo (10.1016/j.patcog.2022.108815_bib0025) 2018; vol. 32
Li (10.1016/j.patcog.2022.108815_bib0042) 2020; 390
Wei (10.1016/j.patcog.2022.108815_bib0015) 2020
Chen (10.1016/j.patcog.2022.108815_bib0035) 2020
References_xml – volume: 390
  start-page: 108
  year: 2020
  end-page: 116
  ident: bib0042
  article-title: Deep graph regularized non-negative matrix factorization for multi-view clustering
  publication-title: Neurocomputing
– volume: 401
  start-page: 788
  year: 1999
  end-page: 791
  ident: bib0011
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
– start-page: 285
  year: 2018
  end-page: 300
  ident: bib0030
  article-title: A novel technique of using coupled matrix and greedy coordinate descent for multi-view data representation
  publication-title: International Conference on Web Information Systems Engineering
– volume: 7
  year: 2006
  ident: bib0043
  article-title: Learning parts-based representations of data
  publication-title: J. Mach. Learn. Res.
– start-page: 252
  year: 2013
  end-page: 260
  ident: bib0010
  article-title: Multi-view clustering via joint nonnegative matrix factorization
  publication-title: SDM
– volume: vol. 24
  start-page: 1413
  year: 2011
  end-page: 1421
  ident: bib0021
  article-title: Co-regularized multi-view spectral clustering
  publication-title: Advances in Neural Information Processing Systems
– start-page: 567
  year: 2019
  end-page: 582
  ident: bib0016
  article-title: Self-weighted multi-view clustering with deep matrix factorization
  publication-title: Asian Conference on Machine Learning
– start-page: 865
  year: 2020
  end-page: 876
  ident: bib0002
  article-title: A novel approach to learning consensus and complementary information for multi-view data clustering
  publication-title: 2020 IEEE 36th International Conference on Data Engineering (ICDE)
– start-page: 586
  year: 2015
  end-page: 594
  ident: bib0024
  article-title: Diversity-induced multi-view subspace clustering
  publication-title: CVPR
– year: 2020
  ident: bib0032
  article-title: Multiview concept learning via deep matrix factorization
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 7
  start-page: 2399
  year: 2006
  end-page: 2434
  ident: bib0019
  article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
  publication-title: J. Mach. Learn. Res.
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: bib0051
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: vol. 28
  start-page: 1247
  year: 2013
  end-page: 1255
  ident: bib0033
  article-title: Deep canonical correlation analysis
  publication-title: ICML
– start-page: 1597
  year: 2020
  end-page: 1607
  ident: bib0035
  article-title: A simple framework for contrastive learning of visual representations
  publication-title: International Conference on Machine Learning
– start-page: 1204
  year: 2019
  end-page: 1209
  ident: bib0022
  article-title: Consistency meets inconsistency: a unified graph learning framework for multi-view clustering
  publication-title: ICDM
– start-page: 6348
  year: 2020
  end-page: 6355
  ident: bib0015
  article-title: Multi-view multiple clusterings using deep matrix factorization
  publication-title: AAAI
– start-page: 509
  year: 2018
  end-page: 520
  ident: bib0003
  article-title: Learning association relationship and accurate geometric structures for multi-type relational data
  publication-title: 2018 IEEE 34th International Conference on Data Engineering (ICDE)
– volume: 217
  start-page: 106807
  year: 2021
  ident: bib0050
  article-title: Multi-view clustering via deep concept factorization
  publication-title: Knowl. Based Syst.
– volume: 32
  start-page: 45
  year: 2010
  end-page: 55
  ident: bib0017
  article-title: Convex and semi-nonnegative matrix factorizations
  publication-title: PAMI
– volume: 39
  start-page: 417
  year: 2016
  end-page: 429
  ident: bib0013
  article-title: A deep matrix factorization method for learning attribute representations
  publication-title: PAMI
– volume: 48
  start-page: 2620
  year: 2018
  end-page: 2632
  ident: bib0028
  article-title: Diverse non-negative matrix factorization for multiview data representation
  publication-title: IEEE Trans. Cybern.
– volume: 88
  start-page: 74
  year: 2017
  end-page: 89
  ident: bib0029
  article-title: Multi-view clustering via multi-manifold regularized non-negative matrix factorization
  publication-title: Neural Netw.
– volume: 33
  start-page: 1548
  year: 2011
  end-page: 1560
  ident: bib0018
  article-title: Graph regularized nonnegative matrix factorization for data representation
  publication-title: PAMI
– start-page: 1083
  year: 2015
  end-page: 1092
  ident: bib0034
  article-title: On deep multi-view representation learning
  publication-title: ICML
– volume: 8
  start-page: 374
  year: 2005
  end-page: 384
  ident: bib0046
  article-title: Generative model-based document clustering: a comparative study
  publication-title: Knowl. Inf. Syst.
– volume: 16
  start-page: 57
  year: 2007
  end-page: 68
  ident: bib0049
  article-title: Histogram of Gabor phase patterns (HGPP): a novel object representation approach for face recognition
  publication-title: IEEE Trans. Image Process.
– volume: vol. 39
  year: 2008
  ident: bib0047
  article-title: Introduction to Information Retrieval
– volume: 50
  start-page: 3517
  year: 2020
  end-page: 3530
  ident: bib0027
  article-title: Dual shared-specific multiview subspace clustering
  publication-title: IEEE Trans. Cybern.
– start-page: 131
  year: 2018
  end-page: 145
  ident: bib0039
  article-title: Scope and challenges of language modelling-an interrogative survey on context and embeddings
  publication-title: International Conference on Data Analytics and Management in Data Intensive Domains
– year: 2004
  ident: bib0045
  article-title: Convex Optimization
– start-page: 126
  year: 2006
  end-page: 135
  ident: bib0044
  article-title: Orthogonal nonnegative matrix t-factorizations for clustering
  publication-title: ACM SIGKDD
– volume: 1
  start-page: 83
  year: 2018
  end-page: 107
  ident: bib0041
  article-title: Multi-view clustering: a survey
  publication-title: Big Data Min. Anal.
– start-page: 556
  year: 2001
  end-page: 562
  ident: bib0005
  article-title: Algorithms for non-negative matrix factorization
  publication-title: Advances in Neural Information Processing Systems 13
– start-page: 2750
  year: 2015
  end-page: 2756
  ident: bib0009
  article-title: Large-scale multi-view spectral clustering via bipartite graph
  publication-title: AAAI
– start-page: 443
  year: 2017
  end-page: 452
  ident: bib0031
  article-title: A deep orthogonal non-negative matrix factorization method for learning attribute representations
  publication-title: International Conference on Neural Information Processing
– start-page: 2921
  year: 2017
  end-page: 2927
  ident: bib0014
  article-title: Multi-view clustering via deep matrix factorization
  publication-title: AAAI
– start-page: 849
  year: 2001
  end-page: 856
  ident: bib0007
  article-title: On spectral clustering: analysis and an algorithm
  publication-title: NIPS
– volume: vol. 32
  year: 2018
  ident: bib0025
  article-title: Consistent and specific multi-view subspace clustering
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– start-page: 117
  year: 2013
  end-page: 124
  ident: bib0008
  article-title: Auto-encoder based data clustering
  publication-title: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications
– year: 2018
  ident: bib0023
  article-title: Spectral clustering with distinction and consensus learning on multiple views data
  publication-title: PLoS ONE
– volume: 6
  start-page: 90
  year: 2004
  end-page: 105
  ident: bib0006
  article-title: Subspace clustering for high dimensional data: areview
  publication-title: SIGKDD Explor. Newsl.
– volume: 115
  start-page: 107890
  year: 2021
  ident: bib0026
  article-title: A novel consensus learning approach to incomplete multi-view clustering
  publication-title: Pattern Recognit.
– volume: 97
  start-page: 107015
  year: 2020
  ident: bib0001
  article-title: Auto-weighted multi-view clustering via deep matrix decomposition
  publication-title: Pattern Recognit.
– start-page: 615
  year: 2015
  end-page: 626
  ident: bib0048
  article-title: Robust clustering of multi-type relational data via a heterogeneous manifold ensemble
  publication-title: 2015 IEEE 31st International Conference on Data Engineering
– volume: 194
  start-page: 105582
  year: 2020
  ident: bib0004
  article-title: Multi-view clustering by non-negative matrix factorization with co-orthogonal constraints
  publication-title: Knowl. Based Syst.
– volume: 9
  start-page: 2
  year: 2021
  ident: bib0040
  article-title: A survey on contrastive self-supervised learning
  publication-title: Technologies
– start-page: 1692
  year: 2014
  end-page: 1700
  ident: bib0012
  article-title: A deep semi-NMF model for learning hidden representations
  publication-title: ICML
– start-page: 9729
  year: 2020
  end-page: 9738
  ident: bib0036
  article-title: Momentum contrast for unsupervised visual representation learning
  publication-title: The IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 22
  start-page: 888
  year: 2000
  end-page: 905
  ident: bib0020
  article-title: Normalized cuts and image segmentation
  publication-title: PAMI
– start-page: 6995
  year: 2021
  end-page: 7004
  ident: bib0038
  article-title: Multimodal contrastive training for visual representation learning
  publication-title: The IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 12475
  year: 2021
  end-page: 12486
  ident: bib0037
  article-title: Audio-visual instance discrimination with cross-modal agreement
  publication-title: The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 252
  year: 2013
  ident: 10.1016/j.patcog.2022.108815_bib0010
  article-title: Multi-view clustering via joint nonnegative matrix factorization
– start-page: 117
  year: 2013
  ident: 10.1016/j.patcog.2022.108815_bib0008
  article-title: Auto-encoder based data clustering
– year: 2020
  ident: 10.1016/j.patcog.2022.108815_bib0032
  article-title: Multiview concept learning via deep matrix factorization
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 865
  year: 2020
  ident: 10.1016/j.patcog.2022.108815_bib0002
  article-title: A novel approach to learning consensus and complementary information for multi-view data clustering
– start-page: 1597
  year: 2020
  ident: 10.1016/j.patcog.2022.108815_bib0035
  article-title: A simple framework for contrastive learning of visual representations
– volume: 401
  start-page: 788
  issue: 6755
  year: 1999
  ident: 10.1016/j.patcog.2022.108815_bib0011
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– volume: 50
  start-page: 3517
  issue: 8
  year: 2020
  ident: 10.1016/j.patcog.2022.108815_bib0027
  article-title: Dual shared-specific multiview subspace clustering
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2918495
– volume: 32
  start-page: 45
  issue: 1
  year: 2010
  ident: 10.1016/j.patcog.2022.108815_bib0017
  article-title: Convex and semi-nonnegative matrix factorizations
  publication-title: PAMI
  doi: 10.1109/TPAMI.2008.277
– start-page: 126
  year: 2006
  ident: 10.1016/j.patcog.2022.108815_bib0044
  article-title: Orthogonal nonnegative matrix t-factorizations for clustering
– volume: 48
  start-page: 2620
  issue: 9
  year: 2018
  ident: 10.1016/j.patcog.2022.108815_bib0028
  article-title: Diverse non-negative matrix factorization for multiview data representation
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2747400
– start-page: 9729
  year: 2020
  ident: 10.1016/j.patcog.2022.108815_bib0036
  article-title: Momentum contrast for unsupervised visual representation learning
– volume: 194
  start-page: 105582
  year: 2020
  ident: 10.1016/j.patcog.2022.108815_bib0004
  article-title: Multi-view clustering by non-negative matrix factorization with co-orthogonal constraints
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2020.105582
– year: 2018
  ident: 10.1016/j.patcog.2022.108815_bib0023
  article-title: Spectral clustering with distinction and consensus learning on multiple views data
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0208494
– volume: 8
  start-page: 374
  issue: 3
  year: 2005
  ident: 10.1016/j.patcog.2022.108815_bib0046
  article-title: Generative model-based document clustering: a comparative study
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-004-0194-1
– volume: 33
  start-page: 1548
  issue: 8
  year: 2011
  ident: 10.1016/j.patcog.2022.108815_bib0018
  article-title: Graph regularized nonnegative matrix factorization for data representation
  publication-title: PAMI
  doi: 10.1109/TPAMI.2010.231
– start-page: 509
  year: 2018
  ident: 10.1016/j.patcog.2022.108815_bib0003
  article-title: Learning association relationship and accurate geometric structures for multi-type relational data
– volume: 97
  start-page: 107015
  year: 2020
  ident: 10.1016/j.patcog.2022.108815_bib0001
  article-title: Auto-weighted multi-view clustering via deep matrix decomposition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107015
– start-page: 285
  year: 2018
  ident: 10.1016/j.patcog.2022.108815_bib0030
  article-title: A novel technique of using coupled matrix and greedy coordinate descent for multi-view data representation
– start-page: 6995
  year: 2021
  ident: 10.1016/j.patcog.2022.108815_bib0038
  article-title: Multimodal contrastive training for visual representation learning
– volume: 9
  start-page: 2579
  issue: 86
  year: 2008
  ident: 10.1016/j.patcog.2022.108815_bib0051
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 39
  start-page: 417
  issue: 3
  year: 2016
  ident: 10.1016/j.patcog.2022.108815_bib0013
  article-title: A deep matrix factorization method for learning attribute representations
  publication-title: PAMI
  doi: 10.1109/TPAMI.2016.2554555
– start-page: 615
  year: 2015
  ident: 10.1016/j.patcog.2022.108815_bib0048
  article-title: Robust clustering of multi-type relational data via a heterogeneous manifold ensemble
– volume: 115
  start-page: 107890
  year: 2021
  ident: 10.1016/j.patcog.2022.108815_bib0026
  article-title: A novel consensus learning approach to incomplete multi-view clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.107890
– volume: 217
  start-page: 106807
  year: 2021
  ident: 10.1016/j.patcog.2022.108815_bib0050
  article-title: Multi-view clustering via deep concept factorization
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2021.106807
– volume: vol. 28
  start-page: 1247
  year: 2013
  ident: 10.1016/j.patcog.2022.108815_bib0033
  article-title: Deep canonical correlation analysis
– start-page: 1083
  year: 2015
  ident: 10.1016/j.patcog.2022.108815_bib0034
  article-title: On deep multi-view representation learning
– volume: 1
  start-page: 83
  issue: 2
  year: 2018
  ident: 10.1016/j.patcog.2022.108815_bib0041
  article-title: Multi-view clustering: a survey
  publication-title: Big Data Min. Anal.
  doi: 10.26599/BDMA.2018.9020003
– volume: vol. 39
  year: 2008
  ident: 10.1016/j.patcog.2022.108815_bib0047
– start-page: 12475
  year: 2021
  ident: 10.1016/j.patcog.2022.108815_bib0037
  article-title: Audio-visual instance discrimination with cross-modal agreement
– start-page: 6348
  year: 2020
  ident: 10.1016/j.patcog.2022.108815_bib0015
  article-title: Multi-view multiple clusterings using deep matrix factorization
– volume: 9
  start-page: 2
  issue: 1
  year: 2021
  ident: 10.1016/j.patcog.2022.108815_bib0040
  article-title: A survey on contrastive self-supervised learning
  publication-title: Technologies
  doi: 10.3390/technologies9010002
– volume: 22
  start-page: 888
  issue: 8
  year: 2000
  ident: 10.1016/j.patcog.2022.108815_bib0020
  article-title: Normalized cuts and image segmentation
  publication-title: PAMI
  doi: 10.1109/34.868688
– start-page: 586
  year: 2015
  ident: 10.1016/j.patcog.2022.108815_bib0024
  article-title: Diversity-induced multi-view subspace clustering
– volume: 88
  start-page: 74
  year: 2017
  ident: 10.1016/j.patcog.2022.108815_bib0029
  article-title: Multi-view clustering via multi-manifold regularized non-negative matrix factorization
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2017.02.003
– volume: 390
  start-page: 108
  year: 2020
  ident: 10.1016/j.patcog.2022.108815_bib0042
  article-title: Deep graph regularized non-negative matrix factorization for multi-view clustering
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.12.054
– volume: 16
  start-page: 57
  issue: 1
  year: 2007
  ident: 10.1016/j.patcog.2022.108815_bib0049
  article-title: Histogram of Gabor phase patterns (HGPP): a novel object representation approach for face recognition
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2006.884956
– volume: vol. 32
  year: 2018
  ident: 10.1016/j.patcog.2022.108815_bib0025
  article-title: Consistent and specific multi-view subspace clustering
– start-page: 1204
  year: 2019
  ident: 10.1016/j.patcog.2022.108815_bib0022
  article-title: Consistency meets inconsistency: a unified graph learning framework for multi-view clustering
– year: 2004
  ident: 10.1016/j.patcog.2022.108815_bib0045
– start-page: 849
  year: 2001
  ident: 10.1016/j.patcog.2022.108815_bib0007
  article-title: On spectral clustering: analysis and an algorithm
– volume: vol. 24
  start-page: 1413
  year: 2011
  ident: 10.1016/j.patcog.2022.108815_bib0021
  article-title: Co-regularized multi-view spectral clustering
– volume: 7
  start-page: 2399
  year: 2006
  ident: 10.1016/j.patcog.2022.108815_bib0019
  article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
  publication-title: J. Mach. Learn. Res.
– volume: 6
  start-page: 90
  issue: 1
  year: 2004
  ident: 10.1016/j.patcog.2022.108815_bib0006
  article-title: Subspace clustering for high dimensional data: areview
  publication-title: SIGKDD Explor. Newsl.
  doi: 10.1145/1007730.1007731
– start-page: 443
  year: 2017
  ident: 10.1016/j.patcog.2022.108815_bib0031
  article-title: A deep orthogonal non-negative matrix factorization method for learning attribute representations
– start-page: 567
  year: 2019
  ident: 10.1016/j.patcog.2022.108815_bib0016
  article-title: Self-weighted multi-view clustering with deep matrix factorization
– start-page: 556
  year: 2001
  ident: 10.1016/j.patcog.2022.108815_bib0005
  article-title: Algorithms for non-negative matrix factorization
– start-page: 1692
  year: 2014
  ident: 10.1016/j.patcog.2022.108815_bib0012
  article-title: A deep semi-NMF model for learning hidden representations
– start-page: 131
  year: 2018
  ident: 10.1016/j.patcog.2022.108815_bib0039
  article-title: Scope and challenges of language modelling-an interrogative survey on context and embeddings
– volume: 7
  issue: 11
  year: 2006
  ident: 10.1016/j.patcog.2022.108815_bib0043
  article-title: Learning parts-based representations of data
  publication-title: J. Mach. Learn. Res.
– start-page: 2921
  year: 2017
  ident: 10.1016/j.patcog.2022.108815_bib0014
  article-title: Multi-view clustering via deep matrix factorization
– start-page: 2750
  year: 2015
  ident: 10.1016/j.patcog.2022.108815_bib0009
  article-title: Large-scale multi-view spectral clustering via bipartite graph
SSID ssj0017142
Score 2.6255555
Snippet •An orthogonal deep non-negative matrix factorization (Deep-NMF) framework that aims to learn the non-linear parts-based representation for multi-view data is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108815
SubjectTerms Deep Matrix Factorization (DMF)
Deep Non-negative Matrix Factorization (Deep-NMF)
Manifold learning
Multi-view data/clustering
Non-negative Matrix Factorization (NMF)
Title Multi-layer manifold learning for deep non-negative matrix factorization-based multi-view clustering
URI https://dx.doi.org/10.1016/j.patcog.2022.108815
Volume 131
WOSCitedRecordID wos000866467500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxoEL41MMBvKB2-Qqjh3cHCu0acCYdiiot8hfXbuFrOqaqvwb_MU8x3bSsWmwAxerihzH6vvl-f1e3gdC7zMjJOjFCckHJidcporkmjOXscyVpYyrptfh92NxcjIYj_PTXu9XzIVZlaKqBut1Pv-vooZrIGyXOnsPcbeLwgX4DUKHEcQO4z8JvkmpJaUEW9rFps4ml6WJzSF80KSxdr4PtJ9U9szX_f7hCvWvQ_OdkJlJ3AFnfMQhafJbdFm7sgrxsAsm7WlTodNlxYRQpO7D_nEdAn6_TGXV-Z3lT3kRk_pnnSsV7PgauLvbs0fpaDpb1JVc1RdyIX2DFj_zaurDwr-a_aEKkY3BcwGkl7aei6CNGSUsTdg1bRwOBa9PKShBn-55Q9V7r8N5fw5H1uVZ3z2g302_Xln7jxOvjUOMIW7nhV-lcKsUfpUHaDsVWQ6acnv46WD8uf02JSj3NejD7mNCZhM1eHM3txs8G0bM6Al6HNgHHnrUPEU9Wz1DO7GzBw6K_jkyGyDCEUQ4gggDiLADEd4EEfYgwreACHcgwh2IXqBvhwejj0ck9OMgGojlEt5f4divEpkagBk4yUD3Zzy3QPkVp8IwasQHzWCwqdRUSjB1GfBxo1MupNDsJdqCfdlXCJuUKg3MRCkg9MCAlU1kktgkh-Ul53oXsfinFToUq3c9U8riLpHtItLeNffFWv4yX0R5FMHg9IZkASC7887X93zSG_SoewP20NZyUdu36KFeLWdXi3cBYb8BuRGnQA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-layer+manifold+learning+for+deep+non-negative+matrix+factorization-based+multi-view+clustering&rft.jtitle=Pattern+recognition&rft.au=Luong%2C+Khanh&rft.au=Nayak%2C+Richi&rft.au=Balasubramaniam%2C+Thirunavukarasu&rft.au=Bashar%2C+Md+Abul&rft.date=2022-11-01&rft.issn=0031-3203&rft.volume=131&rft.spage=108815&rft_id=info:doi/10.1016%2Fj.patcog.2022.108815&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2022_108815
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon