Direct electroseparation of zinc from zinc sulfide in eco-friendly deep eutectic solvent: Highlighting the role of malonic acid
•Zn is directly separated from ZnS in choline chloride-urea-malonic acid (ChCl-urea-MA) deep eutectic solvent.•This process achieves the current efficiency of 86.5 % with the energy consumption of 2621.8 kW·h·t−1.•MA causes 0.13 mol·L-1 ZnS being dissolved to form stable MA-based ligands.•This study...
Gespeichert in:
| Veröffentlicht in: | Separation and purification technology Jg. 306; S. 122686 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
15.02.2023
|
| Schlagworte: | |
| ISSN: | 1383-5866 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Zn is directly separated from ZnS in choline chloride-urea-malonic acid (ChCl-urea-MA) deep eutectic solvent.•This process achieves the current efficiency of 86.5 % with the energy consumption of 2621.8 kW·h·t−1.•MA causes 0.13 mol·L-1 ZnS being dissolved to form stable MA-based ligands.•This study initiatively simplifies Zn separation from ZnS in green solution with hazardous waste minimization.
Zinc sulfide (ZnS), one of the main ingredients of zinc ore and emerging materials, partly processes environmental risk. Deep eutectic solvents (DESs) are green solvents to efficiently separate metals with less emission. In this study, a novel route for direct electroseparation of Zn from ZnS in eco-friendly choline chloride-urea DES with the addition of malonic acid (MA) is studied for the first time. The role of MA and the reduction behavior of Zn(II) are systematically analyzed by cyclic voltammetry. The reduction of Zn(II) is quasi-reversible and follows one-step two-electron transfer process. Pure Zn with nanostructure is obtained with the current efficiency of 86.5 % and energy consumption of 2621.8 kW·h·t−1 at the optimized parameters of 10 mA·cm−2, 353 K and 100 mM·L-1 ZnS. Mechanisms analyses indicate that in the presence of 60 mM·L-1 MA, besides [ZnCl−3]- and [ZnCl−5]3-, some ZnS are dissolved to form stable [Zn(MA)2-Cl−2]4-, [Zn(MA)2-Cl-]3- and other MA based ligands, which causes a higher Zn ion solubility of 0.13 mol·L-1 and may promote the subsequent electroseparation of ZnS. Results from this study are expected to propose a simplified route to directly separate Zn from ZnS without oxidation pretreatment to achieve hazardous waste minimization. |
|---|---|
| AbstractList | •Zn is directly separated from ZnS in choline chloride-urea-malonic acid (ChCl-urea-MA) deep eutectic solvent.•This process achieves the current efficiency of 86.5 % with the energy consumption of 2621.8 kW·h·t−1.•MA causes 0.13 mol·L-1 ZnS being dissolved to form stable MA-based ligands.•This study initiatively simplifies Zn separation from ZnS in green solution with hazardous waste minimization.
Zinc sulfide (ZnS), one of the main ingredients of zinc ore and emerging materials, partly processes environmental risk. Deep eutectic solvents (DESs) are green solvents to efficiently separate metals with less emission. In this study, a novel route for direct electroseparation of Zn from ZnS in eco-friendly choline chloride-urea DES with the addition of malonic acid (MA) is studied for the first time. The role of MA and the reduction behavior of Zn(II) are systematically analyzed by cyclic voltammetry. The reduction of Zn(II) is quasi-reversible and follows one-step two-electron transfer process. Pure Zn with nanostructure is obtained with the current efficiency of 86.5 % and energy consumption of 2621.8 kW·h·t−1 at the optimized parameters of 10 mA·cm−2, 353 K and 100 mM·L-1 ZnS. Mechanisms analyses indicate that in the presence of 60 mM·L-1 MA, besides [ZnCl−3]- and [ZnCl−5]3-, some ZnS are dissolved to form stable [Zn(MA)2-Cl−2]4-, [Zn(MA)2-Cl-]3- and other MA based ligands, which causes a higher Zn ion solubility of 0.13 mol·L-1 and may promote the subsequent electroseparation of ZnS. Results from this study are expected to propose a simplified route to directly separate Zn from ZnS without oxidation pretreatment to achieve hazardous waste minimization. |
| ArticleNumber | 122686 |
| Author | Yuan, Tian Shimizu, Kazuya Wang, Daoxiang Luo, Daijiang Ru, Juanjian Wang, Ding Zhang, Zhenya Wang, Zhiwei |
| Author_xml | – sequence: 1 givenname: Zhiwei surname: Wang fullname: Wang, Zhiwei organization: Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China – sequence: 2 givenname: Zhenya surname: Zhang fullname: Zhang, Zhenya organization: Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan – sequence: 3 givenname: Tian surname: Yuan fullname: Yuan, Tian organization: Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan – sequence: 4 givenname: Kazuya surname: Shimizu fullname: Shimizu, Kazuya organization: Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan – sequence: 5 givenname: Ding surname: Wang fullname: Wang, Ding email: wangding@kust.edu.cn organization: Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China – sequence: 6 givenname: Daijiang surname: Luo fullname: Luo, Daijiang organization: Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China – sequence: 7 givenname: Daoxiang surname: Wang fullname: Wang, Daoxiang organization: Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China – sequence: 8 givenname: Juanjian surname: Ru fullname: Ru, Juanjian email: rujuanjian@kust.edu.cn organization: Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China |
| BookMark | eNqFkL1OwzAURj0UibbwBgx-gRQ7TlKnAxIqP0WqxAKz5TjXrSvXjhy3Ull4dVzCxADD9fVwzyd9Z4JGzjtA6IaSGSW0ut3Neui6Q5jlJM9nNM8rXo3QmDLOspJX1SWa9P2OEDqnPB-jzwcTQEUMNr3BJ1YGGY132Gv8YZzCOvj98OsPVpsWsHEYlM90MOBae8ItQIfhEFOCSVfeHsHFBV6ZzdamicZtcNwCDt7COXYvrXfpUirTXqELLW0P1z97it6fHt-Wq2z9-vyyvF9nipEqZpwq2gLlsi04ECqplnVRcs2bpiANY3MKBGpdMFnMteKszGWuC1oWTS2lrjWbosWQq1LJPoAWysTvojFIYwUl4qxP7MSgT5z1iUFfgotfcBfMXobTf9jdgEEqdjQQRK-SMgXtt3PRevN3wBeS05Op |
| CitedBy_id | crossref_primary_10_1016_j_psep_2024_03_084 crossref_primary_10_1016_j_colsurfa_2024_134241 crossref_primary_10_1016_j_jece_2025_119393 crossref_primary_10_1016_j_nanoso_2025_101481 crossref_primary_10_1016_j_seppur_2023_125619 crossref_primary_10_1002_adem_202300731 crossref_primary_10_1007_s40831_024_00928_w crossref_primary_10_3390_ma18102348 |
| Cites_doi | 10.1007/s11581-019-03293-x 10.1039/D0GC02023K 10.1016/j.molliq.2021.115909 10.1021/jp900478u 10.2113/gsecongeo.54.1.57 10.1016/j.envres.2020.109513 10.1016/j.surfcoat.2020.126636 10.1007/s100080050117 10.1039/b413328e 10.1016/j.carbon.2022.04.013 10.1039/D0GC00701C 10.1016/j.electacta.2018.10.163 10.1016/j.molliq.2021.117059 10.1016/j.hydromet.2014.08.001 10.1016/j.carbpol.2012.07.041 10.1016/j.matchemphys.2019.04.052 10.1016/j.jhazmat.2022.129368 10.1016/j.jece.2022.108004 10.1016/j.apt.2014.08.008 10.1016/j.electacta.2019.06.161 10.1007/s10008-020-04894-7 10.1149/1945-7111/ac18e2 10.1016/j.apcatb.2022.121460 10.1021/acssuschemeng.8b06331 10.1039/C5RA05746A 10.1021/acs.nanolett.2c00763 10.1016/j.electacta.2012.01.003 10.1016/j.jhazmat.2020.122090 10.1016/j.seppur.2020.116779 10.1021/ic049931s 10.1021/acs.chemrev.0c00385 10.1016/j.apt.2022.103670 10.1016/j.hydromet.2016.08.010 10.1016/j.jallcom.2018.08.246 10.1016/j.hydromet.2020.105362 10.1016/j.scitotenv.2022.153174 10.1016/j.apsusc.2016.05.138 10.1016/j.mineng.2021.107295 10.3389/fmicb.2022.900740 10.1016/j.jhazmat.2019.120846 10.1016/j.electacta.2022.140054 10.1149/1945-7111/ab8824 10.3390/resources7040088 10.1039/b511691k |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. |
| Copyright_xml | – notice: 2022 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.seppur.2022.122686 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_seppur_2022_122686 S1383586622022432 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABJNI ABMAC ABNUV ABXRA ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEIPS AEKER AENEX AEZYN AFJKZ AFRZQ AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSH SSM SSZ T5K ~G- 9DU AAQXK AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FGOYB HZ~ R2- SEW ~HD |
| ID | FETCH-LOGICAL-c306t-81c1de18ad48e01a1fa9458f8bb40b3371e0e9f43a47fc8352a2f4154b9aaf9f3 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000899388200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1383-5866 |
| IngestDate | Tue Nov 18 22:42:14 EST 2025 Sat Nov 29 07:04:55 EST 2025 Sun Apr 06 06:54:43 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Zinc sulfide (ZnS) Hazardous waste minimization Deep eutectic solvents (DESs) Electroseparation Zinc (Zn) |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-81c1de18ad48e01a1fa9458f8bb40b3371e0e9f43a47fc8352a2f4154b9aaf9f3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_seppur_2022_122686 crossref_primary_10_1016_j_seppur_2022_122686 elsevier_sciencedirect_doi_10_1016_j_seppur_2022_122686 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-15 |
| PublicationDateYYYYMMDD | 2023-02-15 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Separation and purification technology |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Wang, Wu, Geng, Ru, Hua, Bu, Xue, Wang (b0090) 2022; 346 Pateli, Thompson, Alabdullah, Abbott, Jenkin, Hartley (b0085) 2020; 22 Li, Yang, Yang, Wei, Li, Ma, Yang, Wang, Zeng, Yu, Yu, Zhang (b0080) 2022; 821 Abkhoshk, Jorjani, Al-Harahsheh, Rashchi, Naazeri (b0070) 2014; 149 Zuerner, Frisch (b0125) 2019; 7 Buker, Boettcher, Leimbach, Hahne, Dickbreder, Bund (b0130) 2022; 411 Abbott (b0235) 2022; 36 Wang, Xu, Lei, Li, Lu, Xiang, Chen, Hua, Li (b0005) 2022; 175 Wang, Cheng, Bu, Cheng, Ru, Hua, Wang (b0180) 2022; 33 Jerkiewicz, Perreault, Radovic-Hrapovic (b0225) 2009; 113 Zhang, Ru, Hua, Geng (b0220) 2021; 168 Wang, Zhang, Lu, Xu (b0140) 2020; 22 Xie, Zou, Lu, Lu, Cheng, Xu, Zhou (b0185) 2016; 385 Wu, Song, Wang, Sun, Xu, Yang (b0010) 2022; 313 Czamanske (b0115) 1959; 54 Li, Zhang, Bian, Ahn, Shen, Ji (b0015) 2022; 22 Ru, Hua, Xu, Li, Li, Wang, Gong, Zhou (b0120) 2015; 26 Lovrić, Hermes, Scholz (b0190) 1998; 2 Pikula, Mintcheva, Kulinich, Zakharenko, Markina, Chaika, Orlova, Mezhuev, Kokkinakis, Tsatsakis, Golokhvast (b0040) 2020; 186 Rötzer, Schmidt (b0030) 2018; 7 Xu, Fu (b0060) 2022; 437 Geng, Dong, Lu, Wang, Huang, Zou, Zhang, Xu, Lu (b0240) 2020; 242 Wang, Tan, Liu, Li (b0100) 2019; 380 Hussain, Khan, Sheikh, Mumtaz, Chohan, Shamim, Liu (b0045) 2022; 13 Dastidar, Netravali (b0135) 2012; 90 Huang, Geng, Han, Cao, Peng, Zhu, Zhang, Dou (b0075) 2020; 389 Lukaczynska, Cherigui, Ceglia, Van Den Bergh, De Strycker, Terryn, Ustarroz (b0160) 2019; 319 Lecocq, Graille, Santini, Baudouin, Chauvin, Basset, Arzel, Bouchu, Fenet (b0205) 2005; 29 Hansen, Spittle, Chen, Poe, Zhang, Klein, Horton, Adhikari, Zelovich, Doherty, Gurkan, Maginn, Ragauskas, Dadmun, Zawodzinski, Baker, Tuckerman, Savinell, Sangoro (b0095) 2021; 121 Liu, Hao, Mo, Zhang (b0200) 2015; 5 Zhang, Hua, Gao, Xu, Li, Li, Zhang, Xiong, Su, Wang, Ru (b0025) 2016; 166 Wang, Ru, Hua, Bu, Geng, Zhang (b0165) 2021; 25 Kaya, Hussaini, Kursunoglu (b0055) 2020; 195 Fathi (b0065) 2005; 79 Wang, Ru, Hua, Wang, Bu (b0150) 2020; 167 Bakkar, Neubert (b0110) 2019; 771 Abbott, Capper, Davies, Rasheed (b0215) 2004; 43 W.H. Organization, A global overview of national regulations and standards for drinking-water quality, (2021). Wang, Wu, Ru, Hua, Bu, Wang (b0145) 2021; 406 Rao, Zou, Wang, Lu, Shi, Hsu, Xu, Lu (b0155) 2019; 232 Abbott, Bell, Handa, Stoddart (b0210) 2005; 7 Villemejeanne, Legeai, Meux, Dourdain, Mendil-Jakani, Billy (b0105) 2022; 10 Zhai, Abraham, Chen, Fan, Hu, Cai, Thangadurai (b0020) 2022; 195 Jangir, Sethy, Verma, Bahadur, Kuperkar (b0170) 2021; 332 Wang, Xu, Liu, Huang, Ren, Wang, Hua, Zhang, Ru (b0230) 2020; 26 Wang, Li, Bu, Ru, Hua, Wang (b0035) 2022 Yue, Jia, Yao, Sun, Jing (b0195) 2012; 65 Cao, Xu, Shi, Wang, Xue (b0175) 2019; 295 Wang (10.1016/j.seppur.2022.122686_b0150) 2020; 167 Rötzer (10.1016/j.seppur.2022.122686_b0030) 2018; 7 Czamanske (10.1016/j.seppur.2022.122686_b0115) 1959; 54 Lovrić (10.1016/j.seppur.2022.122686_b0190) 1998; 2 Li (10.1016/j.seppur.2022.122686_b0015) 2022; 22 Rao (10.1016/j.seppur.2022.122686_b0155) 2019; 232 Zhang (10.1016/j.seppur.2022.122686_b0220) 2021; 168 Huang (10.1016/j.seppur.2022.122686_b0075) 2020; 389 Dastidar (10.1016/j.seppur.2022.122686_b0135) 2012; 90 Abbott (10.1016/j.seppur.2022.122686_b0215) 2004; 43 Abkhoshk (10.1016/j.seppur.2022.122686_b0070) 2014; 149 Geng (10.1016/j.seppur.2022.122686_b0240) 2020; 242 Bakkar (10.1016/j.seppur.2022.122686_b0110) 2019; 771 Pateli (10.1016/j.seppur.2022.122686_b0085) 2020; 22 Wang (10.1016/j.seppur.2022.122686_b0180) 2022; 33 Wang (10.1016/j.seppur.2022.122686_b0140) 2020; 22 Lukaczynska (10.1016/j.seppur.2022.122686_b0160) 2019; 319 Fathi (10.1016/j.seppur.2022.122686_b0065) 2005; 79 Wang (10.1016/j.seppur.2022.122686_b0035) 2022 10.1016/j.seppur.2022.122686_b0050 Villemejeanne (10.1016/j.seppur.2022.122686_b0105) 2022; 10 Jangir (10.1016/j.seppur.2022.122686_b0170) 2021; 332 Wu (10.1016/j.seppur.2022.122686_b0010) 2022; 313 Wang (10.1016/j.seppur.2022.122686_b0145) 2021; 406 Zhai (10.1016/j.seppur.2022.122686_b0020) 2022; 195 Zuerner (10.1016/j.seppur.2022.122686_b0125) 2019; 7 Cao (10.1016/j.seppur.2022.122686_b0175) 2019; 295 Zhang (10.1016/j.seppur.2022.122686_b0025) 2016; 166 Kaya (10.1016/j.seppur.2022.122686_b0055) 2020; 195 Yue (10.1016/j.seppur.2022.122686_b0195) 2012; 65 Abbott (10.1016/j.seppur.2022.122686_b0235) 2022; 36 Wang (10.1016/j.seppur.2022.122686_b0100) 2019; 380 Jerkiewicz (10.1016/j.seppur.2022.122686_b0225) 2009; 113 Ru (10.1016/j.seppur.2022.122686_b0120) 2015; 26 Wang (10.1016/j.seppur.2022.122686_b0230) 2020; 26 Lecocq (10.1016/j.seppur.2022.122686_b0205) 2005; 29 Xie (10.1016/j.seppur.2022.122686_b0185) 2016; 385 Pikula (10.1016/j.seppur.2022.122686_b0040) 2020; 186 Wang (10.1016/j.seppur.2022.122686_b0165) 2021; 25 Liu (10.1016/j.seppur.2022.122686_b0200) 2015; 5 Xu (10.1016/j.seppur.2022.122686_b0060) 2022; 437 Hussain (10.1016/j.seppur.2022.122686_b0045) 2022; 13 Wang (10.1016/j.seppur.2022.122686_b0090) 2022; 346 Li (10.1016/j.seppur.2022.122686_b0080) 2022; 821 Hansen (10.1016/j.seppur.2022.122686_b0095) 2021; 121 Abbott (10.1016/j.seppur.2022.122686_b0210) 2005; 7 Buker (10.1016/j.seppur.2022.122686_b0130) 2022; 411 Wang (10.1016/j.seppur.2022.122686_b0005) 2022; 175 |
| References_xml | – reference: W.H. Organization, A global overview of national regulations and standards for drinking-water quality, (2021). – volume: 346 year: 2022 ident: b0090 article-title: The role of electrolyte ratio in electrodeposition of nanoscale Fe-Cr alloy from choline chloride-ethylene glycol ionic liquid: A suitable layer for corrosion resistance publication-title: J. Mol. Liq. – volume: 26 start-page: 91 year: 2015 end-page: 97 ident: b0120 article-title: Preparation of sub-micrometer lead wires from PbO by electrodeposition in choline chloride-urea deep eutectic solvent publication-title: Adv. Powder Technol. – volume: 79 start-page: 15 year: 2005 end-page: 22 ident: b0065 article-title: A short history of hydrometallurgy publication-title: Hydrometallurgy – volume: 319 start-page: 690 year: 2019 end-page: 704 ident: b0160 article-title: Influence of water content and applied potential on the electrodeposition of Ni coatings from deep eutectic solvents publication-title: Electrochim. Acta – volume: 295 start-page: 550 year: 2019 end-page: 557 ident: b0175 article-title: Electrochemical behavior and electrodeposition of cobalt from choline chloride-urea deep eutectic solvent publication-title: Electrochim. Acta – volume: 821 start-page: 17 year: 2022 ident: b0080 article-title: Removal of chloride from water and wastewater: Removal mechanisms an recent trends publication-title: Sci. Total Environ. – volume: 232 start-page: 6 year: 2019 end-page: 15 ident: b0155 article-title: Electrodeposition of Ni-Cu alloy films from nickel matte in deep eutectic solvent publication-title: Mater. Chem. Phys. – volume: 65 start-page: 30 year: 2012 end-page: 36 ident: b0195 article-title: Structure and electrochemical behavior of ionic liquid analogue based on choline chloride and urea publication-title: Electrochim. Acta – volume: 411 start-page: 16 year: 2022 ident: b0130 article-title: Influence of carboxylic acids on the performance of trivalent chromium electrolytes for the deposition of functional coatings publication-title: Electrochim. Acta – volume: 166 start-page: 16 year: 2016 end-page: 21 ident: b0025 article-title: Recovery of zinc from a low-grade zinc oxide ore with high silicon by sulfuric acid curing and water leaching publication-title: Hydrometallurgy – volume: 380 start-page: 8 year: 2019 ident: b0100 article-title: A low-toxicity and high-efficiency deep eutectic solvent for the separation of aluminum foil and cathode materials from spent lithium-ion batteries publication-title: J. Hazard. Mater. – volume: 149 start-page: 153 year: 2014 end-page: 167 ident: b0070 article-title: Review of the hydrometallurgical processing of non-sulfide zinc ores publication-title: Hydrometallurgy – volume: 90 start-page: 1620 year: 2012 end-page: 1628 ident: b0135 article-title: 'Green' crosslinking of native starches with malonic acid and their properties publication-title: Carbohydr. Polym. – volume: 175 start-page: 9 year: 2022 ident: b0005 article-title: Recycling of zinc oxide dust using ChCl-urea deep eutectic solvent with nitrilotriacetic acid as complexing agents publication-title: Miner. Eng. – volume: 406 start-page: 10 year: 2021 ident: b0145 article-title: Eco-friendly preparation of nanocrystalline Fe-Cr alloy coating by electrodeposition in deep eutectic solvent without any additives for anti-corrosion publication-title: Surf. Coat. Technol. – volume: 13 start-page: 15 year: 2022 ident: b0045 article-title: Zinc essentiality, toxicity, and its bacterial bioremediation: A comprehensive insight publication-title: Front. Microbiol. – volume: 437 start-page: 15 year: 2022 ident: b0060 article-title: The mechanistic insights into the leaching behaviors of potentially toxic elements from the indigenous zinc smelting slags under the slag dumping site scenario publication-title: J. Hazard. Mater. – volume: 43 start-page: 3447 year: 2004 end-page: 3452 ident: b0215 article-title: Ionic liquids based upon metal halide/substituted quaternary ammonium salt mixtures publication-title: Inorg. Chem. – volume: 22 start-page: 4473 year: 2020 end-page: 4482 ident: b0140 article-title: A novel method for screening deep eutectic solvent to recycle the cathode of Li-ion batteries publication-title: Green Chem. – volume: 195 start-page: 33 year: 2020 ident: b0055 article-title: Critical review on secondary zinc resources and their recycling technologies publication-title: Hydrometallurgy – year: 2022 ident: b0035 article-title: One-step direct desulfurization of cuprous sulfide for copper recovery via electrolysis in deep eutectic solvent publication-title: Sep. Purif. Technol. – volume: 22 start-page: 4067 year: 2022 end-page: 4073 ident: b0015 article-title: ZnF publication-title: Nano Lett. – volume: 195 start-page: 253 year: 2022 end-page: 262 ident: b0020 article-title: Abundant canadian pine with polysulfide redox mediating ZnS/CuS nanocomposite to attain high-capacity lithium sulfur battery publication-title: Carbon – volume: 22 start-page: 5476 year: 2020 end-page: 5486 ident: b0085 article-title: The effect of pH and hydrogen bond donor on the dissolution of metal oxides in deep eutectic solvents publication-title: Green Chem. – volume: 54 start-page: 57 year: 1959 end-page: 63 ident: b0115 article-title: Sulfide solubility in aqueous solutions publication-title: Econ. Geol. – volume: 332 start-page: 12 year: 2021 ident: b0170 article-title: An inclusive thermophysical and rheology portrayal of deep eutectic solvents (DES) for metal oxides dissolution enhancement publication-title: J. Mol. Liq. – volume: 7 start-page: 705 year: 2005 end-page: 707 ident: b0210 article-title: O-acetylation of cellulose and monosaccharides using a zinc based ionic liquid publication-title: Green Chem. – volume: 36 start-page: 5 year: 2022 ident: b0235 article-title: Deep eutectic solvents and their application in electrochemistry publication-title: Curr. Opin. Green Sustain. Chem. – volume: 771 start-page: 424 year: 2019 end-page: 432 ident: b0110 article-title: Recycling of cupola furnace dust: Extraction and electrodeposition of zinc in deep eutectic solvents publication-title: J. Alloy. Compd. – volume: 242 start-page: 10 year: 2020 ident: b0240 article-title: Electrolytic production of Cu-Ni alloy from nickel matte through chlorination and deep eutectic solvent leaching-electrodeposition publication-title: Sep. Purif. Technol. – volume: 33 start-page: 9 year: 2022 ident: b0180 article-title: Understanding the electrochemical behavior of Sn(II) in choline chloride-ethylene glycol deep eutectic solvent for tin powders preparation publication-title: Adv. Powder Technol. – volume: 25 start-page: 1111 year: 2021 end-page: 1120 ident: b0165 article-title: Electrodeposition of Sn powders with pyramid chain and dendrite structures in deep eutectic solvent: roles of current density and SnCl publication-title: J. Solid State Electrochem. – volume: 2 start-page: 401 year: 1998 end-page: 404 ident: b0190 article-title: The effect of the electrolyte concentration in the solution on the voltammetric response of insertion electrodes publication-title: J. Solid State Electrochem. – volume: 313 start-page: 10 year: 2022 ident: b0010 article-title: Natural sphalerite photocatalyst for treatment of oily wastewater produced by solvent extraction from spent lithium-ion battery recycling publication-title: Appl. Catal. B-Environ. – volume: 389 start-page: 11 year: 2020 ident: b0075 article-title: A perspective of stepwise utilization of hazardous zinc plant purification residue based on selective alkaline leaching of zinc publication-title: J. Hazard. Mater. – volume: 7 start-page: 88 year: 2018 ident: b0030 article-title: Decreasing metal ore grades-is the fear of resource depletion justified? publication-title: Resources-Basel – volume: 121 start-page: 1232 year: 2021 end-page: 1285 ident: b0095 article-title: Deep eutectic solvents: A review of fundamentals and applications publication-title: Chem. Rev. – volume: 7 start-page: 5300 year: 2019 end-page: 5308 ident: b0125 article-title: Leaching and selective extraction of indium and tin from zinc flue dust using an oxalic acid-based deep eutectic solvent publication-title: ACS Sustain. Chem. Eng. – volume: 167 start-page: 7 year: 2020 ident: b0150 article-title: Morphology-Controlled Preparation of Sn Powders by Electrodeposition in Deep Eutectic Solvent as Anodes for Lithium Ion Batteries publication-title: J. Electrochem. Soc. – volume: 113 start-page: 12309 year: 2009 end-page: 12316 ident: b0225 article-title: Effect of temperature variation on the under-potential deposition of copper on Pt(111) in aqueous H publication-title: J. Phys. Chem. C – volume: 10 start-page: 6 year: 2022 ident: b0105 article-title: ElectroLeaching-ElectroChemical Deposition (EL-ECD) of gold and palladium in a deep eutectic solvent (DES) publication-title: J. Environ. Chem. Eng. – volume: 29 start-page: 700 year: 2005 end-page: 706 ident: b0205 article-title: Synthesis and characterization of ionic liquids based upon 1-butyl-2,3-dimethylimidazoliumchloride/ZnCl publication-title: New J. Chem. – volume: 168 start-page: 9 year: 2021 ident: b0220 article-title: Eco-friendly extraction of lead from galena by in situ electrochemical reduction in ChCl-EG deep eutectic solvent publication-title: J. Electrochem. Soc. – volume: 5 start-page: 48675 year: 2015 end-page: 48704 ident: b0200 article-title: Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions publication-title: RSC Adv. – volume: 186 start-page: 9 year: 2020 ident: b0040 article-title: Aquatic toxicity and mode of action of CdS and ZnS nanoparticles in four microalgae species publication-title: Environ. Res. – volume: 385 start-page: 481 year: 2016 end-page: 489 ident: b0185 article-title: Electrodeposition of Zn and Cu-Zn alloy from ZnO/CuO precursors in deep eutectic solvent publication-title: Appl. Surf. Sci. – volume: 26 start-page: 1483 year: 2020 end-page: 1490 ident: b0230 article-title: Influence of chloride ion on zinc electrodeposition from choline chloride based deep eutectic solvent publication-title: Ionics – volume: 26 start-page: 1483 issue: 3 year: 2020 ident: 10.1016/j.seppur.2022.122686_b0230 article-title: Influence of chloride ion on zinc electrodeposition from choline chloride based deep eutectic solvent publication-title: Ionics doi: 10.1007/s11581-019-03293-x – volume: 22 start-page: 5476 issue: 16 year: 2020 ident: 10.1016/j.seppur.2022.122686_b0085 article-title: The effect of pH and hydrogen bond donor on the dissolution of metal oxides in deep eutectic solvents publication-title: Green Chem. doi: 10.1039/D0GC02023K – volume: 332 start-page: 12 year: 2021 ident: 10.1016/j.seppur.2022.122686_b0170 article-title: An inclusive thermophysical and rheology portrayal of deep eutectic solvents (DES) for metal oxides dissolution enhancement publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2021.115909 – volume: 113 start-page: 12309 issue: 28 year: 2009 ident: 10.1016/j.seppur.2022.122686_b0225 article-title: Effect of temperature variation on the under-potential deposition of copper on Pt(111) in aqueous H2SO4 publication-title: J. Phys. Chem. C doi: 10.1021/jp900478u – volume: 54 start-page: 57 issue: 1 year: 1959 ident: 10.1016/j.seppur.2022.122686_b0115 article-title: Sulfide solubility in aqueous solutions publication-title: Econ. Geol. doi: 10.2113/gsecongeo.54.1.57 – volume: 186 start-page: 9 year: 2020 ident: 10.1016/j.seppur.2022.122686_b0040 article-title: Aquatic toxicity and mode of action of CdS and ZnS nanoparticles in four microalgae species publication-title: Environ. Res. doi: 10.1016/j.envres.2020.109513 – volume: 406 start-page: 10 year: 2021 ident: 10.1016/j.seppur.2022.122686_b0145 article-title: Eco-friendly preparation of nanocrystalline Fe-Cr alloy coating by electrodeposition in deep eutectic solvent without any additives for anti-corrosion publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2020.126636 – volume: 2 start-page: 401 issue: 6 year: 1998 ident: 10.1016/j.seppur.2022.122686_b0190 article-title: The effect of the electrolyte concentration in the solution on the voltammetric response of insertion electrodes publication-title: J. Solid State Electrochem. doi: 10.1007/s100080050117 – volume: 29 start-page: 700 issue: 5 year: 2005 ident: 10.1016/j.seppur.2022.122686_b0205 article-title: Synthesis and characterization of ionic liquids based upon 1-butyl-2,3-dimethylimidazoliumchloride/ZnCl2 publication-title: New J. Chem. doi: 10.1039/b413328e – volume: 195 start-page: 253 year: 2022 ident: 10.1016/j.seppur.2022.122686_b0020 article-title: Abundant canadian pine with polysulfide redox mediating ZnS/CuS nanocomposite to attain high-capacity lithium sulfur battery publication-title: Carbon doi: 10.1016/j.carbon.2022.04.013 – volume: 22 start-page: 4473 issue: 14 year: 2020 ident: 10.1016/j.seppur.2022.122686_b0140 article-title: A novel method for screening deep eutectic solvent to recycle the cathode of Li-ion batteries publication-title: Green Chem. doi: 10.1039/D0GC00701C – volume: 295 start-page: 550 year: 2019 ident: 10.1016/j.seppur.2022.122686_b0175 article-title: Electrochemical behavior and electrodeposition of cobalt from choline chloride-urea deep eutectic solvent publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.10.163 – volume: 79 start-page: 15 issue: 1–2 year: 2005 ident: 10.1016/j.seppur.2022.122686_b0065 article-title: A short history of hydrometallurgy publication-title: Hydrometallurgy – volume: 346 year: 2022 ident: 10.1016/j.seppur.2022.122686_b0090 article-title: The role of electrolyte ratio in electrodeposition of nanoscale Fe-Cr alloy from choline chloride-ethylene glycol ionic liquid: A suitable layer for corrosion resistance publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2021.117059 – volume: 149 start-page: 153 year: 2014 ident: 10.1016/j.seppur.2022.122686_b0070 article-title: Review of the hydrometallurgical processing of non-sulfide zinc ores publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2014.08.001 – volume: 90 start-page: 1620 issue: 4 year: 2012 ident: 10.1016/j.seppur.2022.122686_b0135 article-title: 'Green' crosslinking of native starches with malonic acid and their properties publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2012.07.041 – volume: 232 start-page: 6 year: 2019 ident: 10.1016/j.seppur.2022.122686_b0155 article-title: Electrodeposition of Ni-Cu alloy films from nickel matte in deep eutectic solvent publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2019.04.052 – volume: 437 start-page: 15 year: 2022 ident: 10.1016/j.seppur.2022.122686_b0060 article-title: The mechanistic insights into the leaching behaviors of potentially toxic elements from the indigenous zinc smelting slags under the slag dumping site scenario publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2022.129368 – volume: 10 start-page: 6 issue: 3 year: 2022 ident: 10.1016/j.seppur.2022.122686_b0105 article-title: ElectroLeaching-ElectroChemical Deposition (EL-ECD) of gold and palladium in a deep eutectic solvent (DES) publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2022.108004 – volume: 26 start-page: 91 issue: 1 year: 2015 ident: 10.1016/j.seppur.2022.122686_b0120 article-title: Preparation of sub-micrometer lead wires from PbO by electrodeposition in choline chloride-urea deep eutectic solvent publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2014.08.008 – volume: 319 start-page: 690 year: 2019 ident: 10.1016/j.seppur.2022.122686_b0160 article-title: Influence of water content and applied potential on the electrodeposition of Ni coatings from deep eutectic solvents publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.06.161 – volume: 25 start-page: 1111 issue: 3 year: 2021 ident: 10.1016/j.seppur.2022.122686_b0165 article-title: Electrodeposition of Sn powders with pyramid chain and dendrite structures in deep eutectic solvent: roles of current density and SnCl2 concentration publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-020-04894-7 – volume: 168 start-page: 9 issue: 8 year: 2021 ident: 10.1016/j.seppur.2022.122686_b0220 article-title: Eco-friendly extraction of lead from galena by in situ electrochemical reduction in ChCl-EG deep eutectic solvent publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ac18e2 – year: 2022 ident: 10.1016/j.seppur.2022.122686_b0035 article-title: One-step direct desulfurization of cuprous sulfide for copper recovery via electrolysis in deep eutectic solvent publication-title: Sep. Purif. Technol. – volume: 313 start-page: 10 year: 2022 ident: 10.1016/j.seppur.2022.122686_b0010 article-title: Natural sphalerite photocatalyst for treatment of oily wastewater produced by solvent extraction from spent lithium-ion battery recycling publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2022.121460 – volume: 7 start-page: 5300 issue: 5 year: 2019 ident: 10.1016/j.seppur.2022.122686_b0125 article-title: Leaching and selective extraction of indium and tin from zinc flue dust using an oxalic acid-based deep eutectic solvent publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b06331 – volume: 5 start-page: 48675 issue: 60 year: 2015 ident: 10.1016/j.seppur.2022.122686_b0200 article-title: Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions publication-title: RSC Adv. doi: 10.1039/C5RA05746A – ident: 10.1016/j.seppur.2022.122686_b0050 – volume: 22 start-page: 4067 issue: 10 year: 2022 ident: 10.1016/j.seppur.2022.122686_b0015 article-title: ZnF2-assisted synthesis of highly luminescent InP/ZnSe/ZnS quantum dots for efficient and stable electroluminescence publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c00763 – volume: 65 start-page: 30 year: 2012 ident: 10.1016/j.seppur.2022.122686_b0195 article-title: Structure and electrochemical behavior of ionic liquid analogue based on choline chloride and urea publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.01.003 – volume: 389 start-page: 11 year: 2020 ident: 10.1016/j.seppur.2022.122686_b0075 article-title: A perspective of stepwise utilization of hazardous zinc plant purification residue based on selective alkaline leaching of zinc publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122090 – volume: 242 start-page: 10 year: 2020 ident: 10.1016/j.seppur.2022.122686_b0240 article-title: Electrolytic production of Cu-Ni alloy from nickel matte through chlorination and deep eutectic solvent leaching-electrodeposition publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.116779 – volume: 43 start-page: 3447 issue: 11 year: 2004 ident: 10.1016/j.seppur.2022.122686_b0215 article-title: Ionic liquids based upon metal halide/substituted quaternary ammonium salt mixtures publication-title: Inorg. Chem. doi: 10.1021/ic049931s – volume: 121 start-page: 1232 issue: 3 year: 2021 ident: 10.1016/j.seppur.2022.122686_b0095 article-title: Deep eutectic solvents: A review of fundamentals and applications publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00385 – volume: 33 start-page: 9 issue: 8 year: 2022 ident: 10.1016/j.seppur.2022.122686_b0180 article-title: Understanding the electrochemical behavior of Sn(II) in choline chloride-ethylene glycol deep eutectic solvent for tin powders preparation publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2022.103670 – volume: 36 start-page: 5 year: 2022 ident: 10.1016/j.seppur.2022.122686_b0235 article-title: Deep eutectic solvents and their application in electrochemistry publication-title: Curr. Opin. Green Sustain. Chem. – volume: 166 start-page: 16 year: 2016 ident: 10.1016/j.seppur.2022.122686_b0025 article-title: Recovery of zinc from a low-grade zinc oxide ore with high silicon by sulfuric acid curing and water leaching publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2016.08.010 – volume: 771 start-page: 424 year: 2019 ident: 10.1016/j.seppur.2022.122686_b0110 article-title: Recycling of cupola furnace dust: Extraction and electrodeposition of zinc in deep eutectic solvents publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2018.08.246 – volume: 195 start-page: 33 year: 2020 ident: 10.1016/j.seppur.2022.122686_b0055 article-title: Critical review on secondary zinc resources and their recycling technologies publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2020.105362 – volume: 821 start-page: 17 year: 2022 ident: 10.1016/j.seppur.2022.122686_b0080 article-title: Removal of chloride from water and wastewater: Removal mechanisms an recent trends publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.153174 – volume: 385 start-page: 481 year: 2016 ident: 10.1016/j.seppur.2022.122686_b0185 article-title: Electrodeposition of Zn and Cu-Zn alloy from ZnO/CuO precursors in deep eutectic solvent publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.05.138 – volume: 175 start-page: 9 year: 2022 ident: 10.1016/j.seppur.2022.122686_b0005 article-title: Recycling of zinc oxide dust using ChCl-urea deep eutectic solvent with nitrilotriacetic acid as complexing agents publication-title: Miner. Eng. doi: 10.1016/j.mineng.2021.107295 – volume: 13 start-page: 15 year: 2022 ident: 10.1016/j.seppur.2022.122686_b0045 article-title: Zinc essentiality, toxicity, and its bacterial bioremediation: A comprehensive insight publication-title: Front. Microbiol. doi: 10.3389/fmicb.2022.900740 – volume: 380 start-page: 8 year: 2019 ident: 10.1016/j.seppur.2022.122686_b0100 article-title: A low-toxicity and high-efficiency deep eutectic solvent for the separation of aluminum foil and cathode materials from spent lithium-ion batteries publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.120846 – volume: 411 start-page: 16 year: 2022 ident: 10.1016/j.seppur.2022.122686_b0130 article-title: Influence of carboxylic acids on the performance of trivalent chromium electrolytes for the deposition of functional coatings publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2022.140054 – volume: 167 start-page: 7 issue: 8 year: 2020 ident: 10.1016/j.seppur.2022.122686_b0150 article-title: Morphology-Controlled Preparation of Sn Powders by Electrodeposition in Deep Eutectic Solvent as Anodes for Lithium Ion Batteries publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ab8824 – volume: 7 start-page: 88 issue: 4 year: 2018 ident: 10.1016/j.seppur.2022.122686_b0030 article-title: Decreasing metal ore grades-is the fear of resource depletion justified? publication-title: Resources-Basel doi: 10.3390/resources7040088 – volume: 7 start-page: 705 issue: 10 year: 2005 ident: 10.1016/j.seppur.2022.122686_b0210 article-title: O-acetylation of cellulose and monosaccharides using a zinc based ionic liquid publication-title: Green Chem. doi: 10.1039/b511691k |
| SSID | ssj0017182 |
| Score | 2.4422984 |
| Snippet | •Zn is directly separated from ZnS in choline chloride-urea-malonic acid (ChCl-urea-MA) deep eutectic solvent.•This process achieves the current efficiency of... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 122686 |
| SubjectTerms | Deep eutectic solvents (DESs) Electroseparation Hazardous waste minimization Zinc (Zn) Zinc sulfide (ZnS) |
| Title | Direct electroseparation of zinc from zinc sulfide in eco-friendly deep eutectic solvent: Highlighting the role of malonic acid |
| URI | https://dx.doi.org/10.1016/j.seppur.2022.122686 |
| Volume | 306 |
| WOSCitedRecordID | wos000899388200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1383-5866 databaseCode: AIEXJ dateStart: 19970519 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017182 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKxwEOiE8xvuQDt8pTE6eLzW1CQ4DQhLSByi6R49iqUZZWbVO2XviL-B95ju00o9NgBy6RZTnPSd4v9nvP7wOh1wLE2mikEhJLxUkiOCX5PpOgpeRU5ACIoomt-vopPTpi4zH_3Ov9CrEwqzKtKnZ-zmf_ldXQB8y2obM3YHdLFDqgDUyHK7Adrv_EeLeIDXx9m4Vyyb2dWLg2lXQRJU1rUZfaFC5tiJwSbXMeF-XFoFBqNlC1PV8wMGparrwJ0XqFlFadD0FWwTnxTJRNKR0hzaXKn8eb6ZuMBPXcuia5juUVVn238pxOzA9ltmzapxNVXbTbyLfaV1buAPx4Ys7MunZuIuvaD_ZGjdgeJRMX1unXYVCcyYi5gixhoabD7lIbgeDosmhv7QLOIGGD9mfwXnswQby3GX456fYfm2Hrohi8375njkpmqWSOyi20E6cjzvpo5-DD4fhje2wFG31zvB6ePsRqNg6F209ztSzUkW9O7qN7XjHBBw5QD1BPVQ_R3U66ykfop4MW3oIWnmpsAYUttFzLQwubCnehhS20cIAW9tB6g7vAwgAsbIFlyXpgYQusx-jLu8OTt--JL-BBJPBqSVgko0JFTBQJU8NIRFrwZMQ0y_NkmFOaRmqouE6oSFItrS4gYg0SZZJzITTX9AnqV9NKPUWYi4LqVOeKgzwqeJ5Lmur9mEsgRiVju4iGT5lJn93eFlkps-sYuYtIe9fMZXf5y_g0cCnzEqqTPDOA3rV3PrvhTM_Rnc1_8QL1l_NavUS35WppFvNXHne_Ae_Qu6s |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+electroseparation+of+zinc+from+zinc+sulfide+in+eco-friendly+deep+eutectic+solvent%3A+Highlighting+the+role+of+malonic+acid&rft.jtitle=Separation+and+purification+technology&rft.au=Wang%2C+Zhiwei&rft.au=Zhang%2C+Zhenya&rft.au=Yuan%2C+Tian&rft.au=Shimizu%2C+Kazuya&rft.date=2023-02-15&rft.issn=1383-5866&rft.volume=306&rft.spage=122686&rft_id=info:doi/10.1016%2Fj.seppur.2022.122686&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_seppur_2022_122686 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-5866&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-5866&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-5866&client=summon |