Global solution of optimization problems with signomial parts

In this paper a new approach for the global solution of nonconvex MINLP (Mixed Integer NonLinear Programming) problems that contain signomial (generalized geometric) expressions is proposed and illustrated. By applying different variable transformation techniques and a discretization scheme a lower...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete optimization Ročník 5; číslo 1; s. 108 - 120
Hlavní autoři: Pörn, Ray, Björk, Kaj-Mikael, Westerlund, Tapio
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.02.2008
Témata:
ISSN:1572-5286, 1873-636X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper a new approach for the global solution of nonconvex MINLP (Mixed Integer NonLinear Programming) problems that contain signomial (generalized geometric) expressions is proposed and illustrated. By applying different variable transformation techniques and a discretization scheme a lower bounding convex MINLP problem can be derived. The convexified MINLP problem can be solved with standard methods. The key element in this approach is that all transformations are applied termwise. In this way all convex parts of the problem are left unaffected by the transformations. The method is illustrated by four example problems.
ISSN:1572-5286
1873-636X
DOI:10.1016/j.disopt.2007.11.005