Global solution of optimization problems with signomial parts
In this paper a new approach for the global solution of nonconvex MINLP (Mixed Integer NonLinear Programming) problems that contain signomial (generalized geometric) expressions is proposed and illustrated. By applying different variable transformation techniques and a discretization scheme a lower...
Uloženo v:
| Vydáno v: | Discrete optimization Ročník 5; číslo 1; s. 108 - 120 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.02.2008
|
| Témata: | |
| ISSN: | 1572-5286, 1873-636X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper a new approach for the global solution of nonconvex MINLP (Mixed Integer NonLinear Programming) problems that contain signomial (generalized geometric) expressions is proposed and illustrated. By applying different variable transformation techniques and a discretization scheme a lower bounding convex MINLP problem can be derived. The convexified MINLP problem can be solved with standard methods. The key element in this approach is that all transformations are applied termwise. In this way all convex parts of the problem are left unaffected by the transformations. The method is illustrated by four example problems. |
|---|---|
| ISSN: | 1572-5286 1873-636X |
| DOI: | 10.1016/j.disopt.2007.11.005 |