Designing a GPU-parallel algorithm for raw SAR data compression: A focus on parallel performance estimation

When a Synthetic Aperture Radar (SAR) acquires raw data using a satellite or airborne platform, it must be transferred to the ground for further processing. For example, SAR raw data need a so-called ’focusing’ signal processing to render it into a visible image. Such processing is time and computin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Future generation computer systems Ročník 112; s. 695 - 708
Hlavní autoři: Romano, Diego, Lapegna, Marco, Mele, Valeria, Laccetti, Giuliano
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.11.2020
Témata:
ISSN:0167-739X, 1872-7115
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract When a Synthetic Aperture Radar (SAR) acquires raw data using a satellite or airborne platform, it must be transferred to the ground for further processing. For example, SAR raw data need a so-called ’focusing’ signal processing to render it into a visible image. Such processing is time and computing consuming, and it is commonly carried out in computing centres. Since the data transfer rate is a typical limitation when communicating with the ground station, compression is necessary to reduce transmission time. So far, this procedure has been implemented in application-specific hardware, but recent adoption of avionic computational GPUs opened to new high-performance onboard perspectives. Due to the limited availability of avionic GPUs, we focused on parallel performance estimation starting from measures relative to a similar off-the-shelf solution. In this paper, we present a GPU algorithm for raw SAR data compression, which uses 1-dimensional DCT transforms, followed by quantisation and entropy coding. We evaluate results using ENVISAT (Environmental Satellite) ASAR Image Mode level 0 data by measuring compression rates, statistical parameters, and distortion on decompressed and then focused images. Moreover, by evaluating the Algorithmic Overhead induced by the parallelisation strategy, we predict the best thread-block configuration for possible adoption of such a GPU algorithm on one of the most available avionic hardware. •Raw SAR images can be compressed through GPU on-board satellites and aircrafts.•No significant quality degradation is measured when focusing decompressed images.•Algorithm performance on GPU can be predicted by means of algorithmic overhead estimation.
AbstractList When a Synthetic Aperture Radar (SAR) acquires raw data using a satellite or airborne platform, it must be transferred to the ground for further processing. For example, SAR raw data need a so-called ’focusing’ signal processing to render it into a visible image. Such processing is time and computing consuming, and it is commonly carried out in computing centres. Since the data transfer rate is a typical limitation when communicating with the ground station, compression is necessary to reduce transmission time. So far, this procedure has been implemented in application-specific hardware, but recent adoption of avionic computational GPUs opened to new high-performance onboard perspectives. Due to the limited availability of avionic GPUs, we focused on parallel performance estimation starting from measures relative to a similar off-the-shelf solution. In this paper, we present a GPU algorithm for raw SAR data compression, which uses 1-dimensional DCT transforms, followed by quantisation and entropy coding. We evaluate results using ENVISAT (Environmental Satellite) ASAR Image Mode level 0 data by measuring compression rates, statistical parameters, and distortion on decompressed and then focused images. Moreover, by evaluating the Algorithmic Overhead induced by the parallelisation strategy, we predict the best thread-block configuration for possible adoption of such a GPU algorithm on one of the most available avionic hardware. •Raw SAR images can be compressed through GPU on-board satellites and aircrafts.•No significant quality degradation is measured when focusing decompressed images.•Algorithm performance on GPU can be predicted by means of algorithmic overhead estimation.
Author Lapegna, Marco
Romano, Diego
Laccetti, Giuliano
Mele, Valeria
Author_xml – sequence: 1
  givenname: Diego
  surname: Romano
  fullname: Romano, Diego
  email: diego.romano@cnr.it
  organization: Institute for High Performance Computing and Networking (ICAR), CNR, Naples, Italy
– sequence: 2
  givenname: Marco
  surname: Lapegna
  fullname: Lapegna, Marco
  email: marco.lapegna@unina.it
  organization: University of Naples Federico II, Naples, Italy
– sequence: 3
  givenname: Valeria
  surname: Mele
  fullname: Mele, Valeria
  email: valeria.mele@unina.it
  organization: University of Naples Federico II, Naples, Italy
– sequence: 4
  givenname: Giuliano
  surname: Laccetti
  fullname: Laccetti, Giuliano
  email: giuliano.laccetti@unina.it
  organization: University of Naples Federico II, Naples, Italy
BookMark eNqFkFFLwzAUhYNMcE7_gQ_5A61J2yXtHoQxdQoDRR34FrL0Zma2TUkyxX9v5sQHH_TpHrjnO9x7jtGgsx0gdEZJSgll55tUb8PWQZqRjKSEpSTjB2hIS54lnNLxAA2jjSc8r56P0LH3G0II5TkdotdL8GbdmW6NJZ7fL5NeOtk00GDZrK0z4aXF2jrs5Dt-nD7gWgaJlW17B94b203wNO7V1mPb4R-2BxehVnYKMPhgWhmi9wQdatl4OP2eI7S8vnqa3SSLu_ntbLpIVE5YSEqixxWDYsV0BZDpQlJa1VVWlDnQmhfFmGnKowBerMpc0joKSmqtGKyyKstHqNjnKme9d6BF7-IJ7kNQInaFiY3YFyZ2hQnCRCwsYpNfmDLh6_DgpGn-gy_2MMTH3gw44ZWB-H9tHKggamv-DvgElCONPw
CitedBy_id crossref_primary_10_3390_electronics12071689
crossref_primary_10_3390_s21165395
crossref_primary_10_1002_cpe_7893
crossref_primary_10_3390_electronics13163138
crossref_primary_10_3390_rs13234756
crossref_primary_10_1049_rsn2_12204
crossref_primary_10_1016_j_asoc_2023_110877
crossref_primary_10_1016_j_future_2025_108000
crossref_primary_10_1016_j_physa_2023_128472
crossref_primary_10_3390_s21175916
Cites_doi 10.1109/MM.2010.41
10.1109/26.216503
10.1177/0309133309350263
10.1007/s10851-017-0739-z
10.1016/j.rse.2017.04.006
10.1109/TPDS.2011.214
10.1109/18.720531
10.1080/00207160.2014.899589
10.1007/s10766-015-0398-x
10.1109/36.469491
10.1007/s10586-013-0341-0
10.1016/j.patcog.2008.10.026
10.1177/1094342018801482
10.1016/0167-8191(89)90003-3
10.1002/cpe.4928
10.1145/214762.214771
10.1109/T-C.1970.222795
10.1109/36.29557
10.1049/iet-rsn.2018.5213
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.future.2020.06.027
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7115
EndPage 708
ExternalDocumentID 10_1016_j_future_2020_06_027
S0167739X19310428
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-80f596e4b6f9ee2f4a119d92483e1d74456f17d74e74b83a1de7410dfc6eb2923
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000567825900016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-739X
IngestDate Tue Nov 18 22:00:25 EST 2025
Sat Nov 29 07:25:31 EST 2025
Fri Feb 23 02:49:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords CUDA
Raw SAR image compression
Parallel performance evaluation
GPU computing
ENVISAT ASAR image mode level 0
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-80f596e4b6f9ee2f4a119d92483e1d74456f17d74e74b83a1de7410dfc6eb2923
PageCount 14
ParticipantIDs crossref_primary_10_1016_j_future_2020_06_027
crossref_citationtrail_10_1016_j_future_2020_06_027
elsevier_sciencedirect_doi_10_1016_j_future_2020_06_027
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationTitle Future generation computer systems
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sandwell, Mellors, Tong, Wei, Wessel (b37) 2011
D’Amore, Romano (b38) 2018; 60
Rane, Boufounos, Vetro, Okada (b2) 2011
Pieterse (b28) 2019; 13
Laccetti, Lapegna, Mele (b39) 2016; 44
Curlander, McDonough (b10) 1991
Witten, Neal, Cleary (b25) 1987; 30
Rott (b1) 2009; 33
Magli, Olmo, Penna (b20) 2002; 2
Mele, Constantinescu, Carracciuolo, D’Amore (b33) 2018; 30
(b4) 2018
NVIDIA Corporation (b9) 2019
Boustani, Brunham, Kinsner (b12) 2001
Gersho, Gray (b13) 2012
Flatt, Kennedy (b34) 1989; 12
Munir, Ranka, Gordon-Ross (b3) 2012; 23
Rea, Perrino, di Bernardo, Marcellino, Romano (b23) 2019; 33
Cover, Thomas (b16) 2012
Benz, Strodl, Moreira (b18) 1995; 33
Montella, Giunta, Laccetti (b22) 2014; 17
Maddalena, Petrosino, Laccetti (b40) 2009; 42
Algra (b15) 2000
D’Amore, Marcellino, Mele, Romano (b36) 2011
Verdu (b29) 1998; 44
Clemente, di Bisceglie, Di Santo, Ranaldo, Spinelli (b5) 2009
Kwok, Johnson (b11) 1989; 27
Martinez, Marchand (b19) 1993; 2
Laccetti, Lapegna, Mele, Romano (b21) 2014
Tjaden, Flynn (b31) 1970; C-19
Mele, Romano, Constantinescu, Carracciuolo, D’Amore (b30) 2019
Nickolls, Dally (b35) 2010; 30
Moreira, Blaser (b17) 1993
Marchese, Bourqui, Turgeon, Harnisch, Suess, Doucet, Turbide, Bergeron (b6) 2012
Franklin (b8) 2013; 15
Peternier, Boncori, Pasquali (b7) 2017; 202
Schättler (b27) 2002
D’Amore, Mele, Laccetti, Murli (b32) 2016
Monet, Dubois (b14) 1993; 41
D’Amore, Laccetti, Romano, Scotti, Murli (b24) 2015; 92
Desnos, Buck, Guijarro, Levrini, Suchail, Torres, Laur, Closa, Rosich (b26) 2000
Benz (10.1016/j.future.2020.06.027_b18) 1995; 33
Desnos (10.1016/j.future.2020.06.027_b26) 2000
Maddalena (10.1016/j.future.2020.06.027_b40) 2009; 42
Sandwell (10.1016/j.future.2020.06.027_b37) 2011
Pieterse (10.1016/j.future.2020.06.027_b28) 2019; 13
Curlander (10.1016/j.future.2020.06.027_b10) 1991
(10.1016/j.future.2020.06.027_b4) 2018
Franklin (10.1016/j.future.2020.06.027_b8) 2013; 15
Mele (10.1016/j.future.2020.06.027_b33) 2018; 30
Kwok (10.1016/j.future.2020.06.027_b11) 1989; 27
Martinez (10.1016/j.future.2020.06.027_b19) 1993; 2
D’Amore (10.1016/j.future.2020.06.027_b36) 2011
NVIDIA Corporation (10.1016/j.future.2020.06.027_b9) 2019
Verdu (10.1016/j.future.2020.06.027_b29) 1998; 44
Munir (10.1016/j.future.2020.06.027_b3) 2012; 23
Peternier (10.1016/j.future.2020.06.027_b7) 2017; 202
Laccetti (10.1016/j.future.2020.06.027_b39) 2016; 44
Marchese (10.1016/j.future.2020.06.027_b6) 2012
Algra (10.1016/j.future.2020.06.027_b15) 2000
Monet (10.1016/j.future.2020.06.027_b14) 1993; 41
Witten (10.1016/j.future.2020.06.027_b25) 1987; 30
Rea (10.1016/j.future.2020.06.027_b23) 2019; 33
Clemente (10.1016/j.future.2020.06.027_b5) 2009
Montella (10.1016/j.future.2020.06.027_b22) 2014; 17
D’Amore (10.1016/j.future.2020.06.027_b32) 2016
Flatt (10.1016/j.future.2020.06.027_b34) 1989; 12
Rott (10.1016/j.future.2020.06.027_b1) 2009; 33
Nickolls (10.1016/j.future.2020.06.027_b35) 2010; 30
Magli (10.1016/j.future.2020.06.027_b20) 2002; 2
Cover (10.1016/j.future.2020.06.027_b16) 2012
Moreira (10.1016/j.future.2020.06.027_b17) 1993
Tjaden (10.1016/j.future.2020.06.027_b31) 1970; C-19
Laccetti (10.1016/j.future.2020.06.027_b21) 2014
D’Amore (10.1016/j.future.2020.06.027_b24) 2015; 92
Gersho (10.1016/j.future.2020.06.027_b13) 2012
Mele (10.1016/j.future.2020.06.027_b30) 2019
Rane (10.1016/j.future.2020.06.027_b2) 2011
D’Amore (10.1016/j.future.2020.06.027_b38) 2018; 60
Schättler (10.1016/j.future.2020.06.027_b27) 2002
Boustani (10.1016/j.future.2020.06.027_b12) 2001
References_xml – volume: 13
  year: 2019
  ident: b28
  article-title: Metrics to evaluate compression algorithms for raw SAR data
  publication-title: IET Radar, Sonar Navig.
– start-page: 1171
  year: 2000
  end-page: 1173 vol.3
  ident: b26
  article-title: The ENVISAT advanced synthetic aperture radar system
  publication-title: IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120), vol. 3
– start-page: 80510W
  year: 2011
  ident: b2
  article-title: Low complexity efficient raw SAR data compression
  publication-title: Algorithms for Synthetic Aperture Radar Imagery XVIII, vol. 8051
– volume: 92
  start-page: 59
  year: 2015
  end-page: 76
  ident: b24
  article-title: Towards a parallel component in a GPU—CUDA environment: A case study with the L–BFGS Harwell routine
  publication-title: Int. J. Comput. Math.
– volume: 17
  start-page: 139
  year: 2014
  end-page: 152
  ident: b22
  article-title: Virtualizing high-end GPGPUs on ARM clusters for the next generation of high performance cloud computing
  publication-title: Cluster Comput.
– year: 2002
  ident: b27
  article-title: ASAR level 0 product analysis for image, wide-swath and wave mode
  publication-title: Proceedings of the Envisat Calibration Review
– year: 1991
  ident: b10
  article-title: Synthetic Aperture Radar, vol. 396
– start-page: 25
  year: 2016
  end-page: 34
  ident: b32
  article-title: Mathematical approach to the performance evaluation of matrix multiply algorithm
  publication-title: Parallel Processing and Applied Mathematics
– start-page: 309
  year: 2009
  end-page: 314
  ident: b5
  article-title: Processing of synthetic Aperture Radar data with GPGPU
  publication-title: 2009 IEEE Workshop on Signal Processing Systems
– volume: 15
  start-page: 16
  year: 2013
  end-page: 20
  ident: b8
  article-title: Exploiting GPGPU RDMA capabilities overcomes performance limits
  publication-title: COTS J.
– volume: 12
  start-page: 1
  year: 1989
  end-page: 20
  ident: b34
  article-title: Performance of parallel processors
  publication-title: Parallel Comput.
– volume: 2
  start-page: 12
  year: 1993
  end-page: 18
  ident: b19
  article-title: SAR image quality assessment
  publication-title: Revista de Teledeteccion
– year: 2012
  ident: b13
  article-title: Vector Quantization and Signal Compression, vol. 159
– volume: 60
  start-page: 18
  year: 2018
  end-page: 32
  ident: b38
  article-title: An objective criterion for stopping light–surface interaction. Numerical validation and quality assessment
  publication-title: J. Math. Imaging Vision
– start-page: 716
  year: 2019
  end-page: 728
  ident: b30
  article-title: Performance evaluation for a PETSc parallel-in-time solver based on the MGRIT algorithm
  publication-title: Euro-Par 2018: Parallel Processing Workshops
– volume: 44
  start-page: 2057
  year: 1998
  end-page: 2078
  ident: b29
  article-title: Fifty years of Shannon theory
  publication-title: IEEE Trans. Inf. Theory
– year: 2018
  ident: b4
  article-title: Gra112 graphics board
  publication-title: Abaco Syst.
– year: 2011
  ident: b37
  article-title: Gmtsar: An insar processing system based on generic mapping tools
– start-page: 1583
  year: 1993
  end-page: 1585
  ident: b17
  article-title: Fusion of block adaptive and vector quantizer for efficient SAR data compression
  publication-title: Geoscience and Remote Sensing Symposium, 1993. IGARSS’93. Better Understanding of Earth Environment., International
– volume: 30
  start-page: 520
  year: 1987
  end-page: 540
  ident: b25
  article-title: Arithmetic coding for data compression
  publication-title: Commun. ACM
– volume: 202
  start-page: 45
  year: 2017
  end-page: 53
  ident: b7
  article-title: Near-real-time focusing of ENVISAT ASAR Stripmap and Sentinel-1 TOPS imagery exploiting OpenCL GPGPU technology
  publication-title: Remote Sens. Environ.
– start-page: 925
  year: 2001
  end-page: 930 vol.2
  ident: b12
  article-title: A review of current raw SAR data compression techniques
  publication-title: Canadian Conference on Electrical and Computer Engineering 2001. Conference Proceedings (Cat. No.01TH8555), vol. 2
– volume: 42
  start-page: 1485
  year: 2009
  end-page: 1495
  ident: b40
  article-title: A fusion-based approach to digital movie restoration
  publication-title: Pattern Recognit.
– volume: 33
  start-page: 1266
  year: 1995
  end-page: 1276
  ident: b18
  article-title: A comparison of several algorithms for SAR raw data compression
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2012
  ident: b16
  article-title: Elements of Information Theory
– start-page: 1
  year: 2012
  end-page: 5
  ident: b6
  article-title: Extended capability overview of real-time optronic SAR processing
  publication-title: IET International Conference on Radar Systems (Radar 2012)
– volume: C-19
  start-page: 889
  year: 1970
  end-page: 895
  ident: b31
  article-title: Detection and parallel execution of independent instructions
  publication-title: IEEE Trans. Comput.
– volume: 30
  year: 2018
  ident: b33
  article-title: A PETSc parallel-in-time solver based on MGRIT algorithm
  publication-title: Concurr. Comput.: Pract. Exper.
– year: 2019
  ident: b9
  article-title: Developing a linux kernel module using RDMA for gpudirect
– volume: 30
  start-page: 56
  year: 2010
  end-page: 69
  ident: b35
  article-title: The GPU computing era
  publication-title: IEEE Micro
– start-page: 690
  year: 2011
  end-page: 699
  ident: b36
  article-title: Deconvolution of 3D fluorescence microscopy images using graphics processing units
  publication-title: International Conference on Parallel Processing and Applied Mathematics
– volume: 2
  start-page: 24
  year: 2002
  end-page: 28
  ident: b20
  article-title: Wavelet-based compression of SAR raw data
  publication-title: IGARSS, Toronto, Canada
– volume: 33
  start-page: 769
  year: 2009
  end-page: 791
  ident: b1
  article-title: Advances in interferometric synthetic aperture radar (InSAR) in earth system science
  publication-title: Prog. Phys. Geogr. Earth Environ.
– volume: 23
  start-page: 684
  year: 2012
  end-page: 700
  ident: b3
  article-title: High-performance energy-efficient multicore embedded computing
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– start-page: 704
  year: 2014
  end-page: 713
  ident: b21
  article-title: A study on adaptive algorithms for numerical quadrature on heterogeneous GPU and multicore based systems
  publication-title: Parallel Processing and Applied Mathematics
– volume: 41
  start-page: 303
  year: 1993
  end-page: 306
  ident: b14
  article-title: Block adaptive quantization of images
  publication-title: IEEE Trans. Commun.
– start-page: 2660
  year: 2000
  end-page: 2662
  ident: b15
  article-title: Compression of raw SAR data using entropy-constrained quantization
  publication-title: Geoscience and Remote Sensing Symposium, 2000. Proceedings. IGARSS 2000. IEEE 2000 International, vol. 6
– volume: 33
  start-page: 651
  year: 2019
  end-page: 659
  ident: b23
  article-title: A GPU algorithm for tracking yeast cells in phase-contrast microscopy images
  publication-title: Int. J. High Perform. Comput. Appl.
– volume: 27
  start-page: 375
  year: 1989
  end-page: 383
  ident: b11
  article-title: Block adaptive quantization of Magellan SAR data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 44
  start-page: 901
  year: 2016
  end-page: 921
  ident: b39
  article-title: A loosely coordinated model for heap-based priority queues in multicore environments
  publication-title: Int. J. Parallel Program.
– volume: 2
  start-page: 12
  year: 1993
  ident: 10.1016/j.future.2020.06.027_b19
  article-title: SAR image quality assessment
  publication-title: Revista de Teledeteccion
– start-page: 690
  year: 2011
  ident: 10.1016/j.future.2020.06.027_b36
  article-title: Deconvolution of 3D fluorescence microscopy images using graphics processing units
– volume: 30
  start-page: 56
  issue: 2
  year: 2010
  ident: 10.1016/j.future.2020.06.027_b35
  article-title: The GPU computing era
  publication-title: IEEE Micro
  doi: 10.1109/MM.2010.41
– volume: 41
  start-page: 303
  issue: 2
  year: 1993
  ident: 10.1016/j.future.2020.06.027_b14
  article-title: Block adaptive quantization of images
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/26.216503
– year: 2002
  ident: 10.1016/j.future.2020.06.027_b27
  article-title: ASAR level 0 product analysis for image, wide-swath and wave mode
– start-page: 704
  year: 2014
  ident: 10.1016/j.future.2020.06.027_b21
  article-title: A study on adaptive algorithms for numerical quadrature on heterogeneous GPU and multicore based systems
– start-page: 309
  year: 2009
  ident: 10.1016/j.future.2020.06.027_b5
  article-title: Processing of synthetic Aperture Radar data with GPGPU
– year: 2019
  ident: 10.1016/j.future.2020.06.027_b9
– volume: 33
  start-page: 769
  issue: 6
  year: 2009
  ident: 10.1016/j.future.2020.06.027_b1
  article-title: Advances in interferometric synthetic aperture radar (InSAR) in earth system science
  publication-title: Prog. Phys. Geogr. Earth Environ.
  doi: 10.1177/0309133309350263
– volume: 60
  start-page: 18
  issue: 1
  year: 2018
  ident: 10.1016/j.future.2020.06.027_b38
  article-title: An objective criterion for stopping light–surface interaction. Numerical validation and quality assessment
  publication-title: J. Math. Imaging Vision
  doi: 10.1007/s10851-017-0739-z
– volume: 202
  start-page: 45
  year: 2017
  ident: 10.1016/j.future.2020.06.027_b7
  article-title: Near-real-time focusing of ENVISAT ASAR Stripmap and Sentinel-1 TOPS imagery exploiting OpenCL GPGPU technology
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.04.006
– start-page: 1583
  year: 1993
  ident: 10.1016/j.future.2020.06.027_b17
  article-title: Fusion of block adaptive and vector quantizer for efficient SAR data compression
– volume: 23
  start-page: 684
  issue: 4
  year: 2012
  ident: 10.1016/j.future.2020.06.027_b3
  article-title: High-performance energy-efficient multicore embedded computing
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2011.214
– start-page: 2660
  year: 2000
  ident: 10.1016/j.future.2020.06.027_b15
  article-title: Compression of raw SAR data using entropy-constrained quantization
– year: 2012
  ident: 10.1016/j.future.2020.06.027_b16
– volume: 44
  start-page: 2057
  issue: 6
  year: 1998
  ident: 10.1016/j.future.2020.06.027_b29
  article-title: Fifty years of Shannon theory
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.720531
– start-page: 925
  year: 2001
  ident: 10.1016/j.future.2020.06.027_b12
  article-title: A review of current raw SAR data compression techniques
– year: 2012
  ident: 10.1016/j.future.2020.06.027_b13
– start-page: 1171
  year: 2000
  ident: 10.1016/j.future.2020.06.027_b26
  article-title: The ENVISAT advanced synthetic aperture radar system
– volume: 92
  start-page: 59
  issue: 1
  year: 2015
  ident: 10.1016/j.future.2020.06.027_b24
  article-title: Towards a parallel component in a GPU—CUDA environment: A case study with the L–BFGS Harwell routine
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160.2014.899589
– start-page: 716
  year: 2019
  ident: 10.1016/j.future.2020.06.027_b30
  article-title: Performance evaluation for a PETSc parallel-in-time solver based on the MGRIT algorithm
– volume: 44
  start-page: 901
  issue: 4
  year: 2016
  ident: 10.1016/j.future.2020.06.027_b39
  article-title: A loosely coordinated model for heap-based priority queues in multicore environments
  publication-title: Int. J. Parallel Program.
  doi: 10.1007/s10766-015-0398-x
– year: 1991
  ident: 10.1016/j.future.2020.06.027_b10
– volume: 33
  start-page: 1266
  issue: 5
  year: 1995
  ident: 10.1016/j.future.2020.06.027_b18
  article-title: A comparison of several algorithms for SAR raw data compression
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.469491
– start-page: 25
  year: 2016
  ident: 10.1016/j.future.2020.06.027_b32
  article-title: Mathematical approach to the performance evaluation of matrix multiply algorithm
– start-page: 80510W
  year: 2011
  ident: 10.1016/j.future.2020.06.027_b2
  article-title: Low complexity efficient raw SAR data compression
– year: 2011
  ident: 10.1016/j.future.2020.06.027_b37
– volume: 17
  start-page: 139
  issue: 1
  year: 2014
  ident: 10.1016/j.future.2020.06.027_b22
  article-title: Virtualizing high-end GPGPUs on ARM clusters for the next generation of high performance cloud computing
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-013-0341-0
– volume: 42
  start-page: 1485
  issue: 7
  year: 2009
  ident: 10.1016/j.future.2020.06.027_b40
  article-title: A fusion-based approach to digital movie restoration
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2008.10.026
– volume: 33
  start-page: 651
  issue: 4
  year: 2019
  ident: 10.1016/j.future.2020.06.027_b23
  article-title: A GPU algorithm for tracking yeast cells in phase-contrast microscopy images
  publication-title: Int. J. High Perform. Comput. Appl.
  doi: 10.1177/1094342018801482
– start-page: 1
  year: 2012
  ident: 10.1016/j.future.2020.06.027_b6
  article-title: Extended capability overview of real-time optronic SAR processing
– year: 2018
  ident: 10.1016/j.future.2020.06.027_b4
  article-title: Gra112 graphics board
  publication-title: Abaco Syst.
– volume: 12
  start-page: 1
  issue: 1
  year: 1989
  ident: 10.1016/j.future.2020.06.027_b34
  article-title: Performance of parallel processors
  publication-title: Parallel Comput.
  doi: 10.1016/0167-8191(89)90003-3
– volume: 30
  issue: 24
  year: 2018
  ident: 10.1016/j.future.2020.06.027_b33
  article-title: A PETSc parallel-in-time solver based on MGRIT algorithm
  publication-title: Concurr. Comput.: Pract. Exper.
  doi: 10.1002/cpe.4928
– volume: 2
  start-page: 24
  year: 2002
  ident: 10.1016/j.future.2020.06.027_b20
  article-title: Wavelet-based compression of SAR raw data
  publication-title: IGARSS, Toronto, Canada
– volume: 30
  start-page: 520
  issue: 6
  year: 1987
  ident: 10.1016/j.future.2020.06.027_b25
  article-title: Arithmetic coding for data compression
  publication-title: Commun. ACM
  doi: 10.1145/214762.214771
– volume: C-19
  start-page: 889
  issue: 10
  year: 1970
  ident: 10.1016/j.future.2020.06.027_b31
  article-title: Detection and parallel execution of independent instructions
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/T-C.1970.222795
– volume: 15
  start-page: 16
  issue: 4
  year: 2013
  ident: 10.1016/j.future.2020.06.027_b8
  article-title: Exploiting GPGPU RDMA capabilities overcomes performance limits
  publication-title: COTS J.
– volume: 27
  start-page: 375
  issue: 4
  year: 1989
  ident: 10.1016/j.future.2020.06.027_b11
  article-title: Block adaptive quantization of Magellan SAR data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.29557
– volume: 13
  year: 2019
  ident: 10.1016/j.future.2020.06.027_b28
  article-title: Metrics to evaluate compression algorithms for raw SAR data
  publication-title: IET Radar, Sonar Navig.
  doi: 10.1049/iet-rsn.2018.5213
SSID ssj0001731
Score 2.3747728
Snippet When a Synthetic Aperture Radar (SAR) acquires raw data using a satellite or airborne platform, it must be transferred to the ground for further processing....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 695
SubjectTerms CUDA
ENVISAT ASAR image mode level 0
GPU computing
Parallel performance evaluation
Raw SAR image compression
Title Designing a GPU-parallel algorithm for raw SAR data compression: A focus on parallel performance estimation
URI https://dx.doi.org/10.1016/j.future.2020.06.027
Volume 112
WOSCitedRecordID wos000567825900016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001731
  issn: 0167-739X
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgOXUl6ivLQHbpGrrL3x2twiWloQrSraotys9Xoc0qZ2FJzSf8VfZPbhjSGIl8TFWlleZ7XzeeeRb2YIeZnngJ_YAIJCgAo46rhAxrkuBClVNJRchmAk_V4cHyfjcXrS631tc2GuZ6KqkpubdP5fRY33UNg6dfYvxO1fijdwjELHK4odr38k-D3DyTC5h_2Dk_NAF_eezUAzkSf1Ytp8ujLUwoX80j8dfehriqghlltCbGVT1ctaLc0fCX72vJNhoCtzXK1E2nb5NOVJdE9mcLBSrmWEqxe9otXX-B4To92bwqT2pCA5h4nNUTtCofj7R2A5zx9RmVlWtHtcKWgsHeFgutTxmrobxECPlX0XxFjPrrHBTjzERWRa7aKusgd0ItAjYDYF1J_gjoltz-DYdu106lyYshHrmsIGLS52bemWXb0oU8jVVir4oQb3qV6KXgmau0x7mbfIZiiGKWqCzdHb_fE7r_yZcC0w3dLbbE1DKVz_rZ9bQx0L52ybbDnXhI4spO6RHlT3yd227Qd1WuABufQIo5J2EUY9wihChSLCKCKMaoTRDsJe0RE1-KJ1Rf3cDr7oCl8Pyfmb_bPXh4Hr2REodD4bNHjKYRoDz-MyBQhLLhlLC3TykwhYITja6yUTOADB8ySSrMABGxSliiEP0dt4RDaquoLHhIqcCzxJco4eNo8BZDoAKKXMi5gXOHGHRO3eZcoVtNd9VWZZy1y8yOyOZ3rHM03gDMUOCfysuS3o8pvnRSuWzBml1tjMEEm_nPnkn2c-JXdWH8kzstEslvCc3FbXzfTz4oWD3DdgCbgg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designing+a+GPU-parallel+algorithm+for+raw+SAR+data+compression%3A+A+focus+on+parallel+performance+estimation&rft.jtitle=Future+generation+computer+systems&rft.au=Romano%2C+Diego&rft.au=Lapegna%2C+Marco&rft.au=Mele%2C+Valeria&rft.au=Laccetti%2C+Giuliano&rft.date=2020-11-01&rft.pub=Elsevier+B.V&rft.issn=0167-739X&rft.eissn=1872-7115&rft.volume=112&rft.spage=695&rft.epage=708&rft_id=info:doi/10.1016%2Fj.future.2020.06.027&rft.externalDocID=S0167739X19310428
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon