Improving person re-identification by attribute and identity learning
•We annotate attribute labels on two large-scale person re-identification datasets.•We propose APR to improve re-ID by exploiting global and detailed information.•We introduce a module to leverage the correlation between attributes.•We speed-up the retrieval of re-ID by ten times with only a 2.92% a...
Uložené v:
| Vydané v: | Pattern recognition Ročník 95; s. 151 - 161 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.11.2019
|
| Predmet: | |
| ISSN: | 0031-3203, 1873-5142 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •We annotate attribute labels on two large-scale person re-identification datasets.•We propose APR to improve re-ID by exploiting global and detailed information.•We introduce a module to leverage the correlation between attributes.•We speed-up the retrieval of re-ID by ten times with only a 2.92% accuracy drop.•We achieve competitive re-ID performance with the state-of-the-art methods.
Person re-identification (re-ID) and attribute recognition share a common target at learning pedestrian descriptions. Their difference consists in the granularity. Most existing re-ID methods only take identity labels of pedestrians into consideration. However, we find the attributes, containing detailed local descriptions, are beneficial in allowing the re-ID model to learn more discriminative feature representations. In this paper, based on the complementarity of attribute labels and ID labels, we propose an attribute-person recognition (APR) network, a multi-task network which learns a re-ID embedding and at the same time predicts pedestrian attributes. We manually annotate attribute labels for two large-scale re-ID datasets, and systematically investigate how person re-ID and attribute recognition benefit from each other. In addition, we re-weight the attribute predictions considering the dependencies and correlations among the attributes. The experimental results on two large-scale re-ID benchmarks demonstrate that by learning a more discriminative representation, APR achieves competitive re-ID performance compared with the state-of-the-art methods. We use APR to speed up the retrieval process by ten times with a minor accuracy drop of 2.92% on Market-1501. Besides, we also apply APR on the attribute recognition task and demonstrate improvement over the baselines. |
|---|---|
| AbstractList | •We annotate attribute labels on two large-scale person re-identification datasets.•We propose APR to improve re-ID by exploiting global and detailed information.•We introduce a module to leverage the correlation between attributes.•We speed-up the retrieval of re-ID by ten times with only a 2.92% accuracy drop.•We achieve competitive re-ID performance with the state-of-the-art methods.
Person re-identification (re-ID) and attribute recognition share a common target at learning pedestrian descriptions. Their difference consists in the granularity. Most existing re-ID methods only take identity labels of pedestrians into consideration. However, we find the attributes, containing detailed local descriptions, are beneficial in allowing the re-ID model to learn more discriminative feature representations. In this paper, based on the complementarity of attribute labels and ID labels, we propose an attribute-person recognition (APR) network, a multi-task network which learns a re-ID embedding and at the same time predicts pedestrian attributes. We manually annotate attribute labels for two large-scale re-ID datasets, and systematically investigate how person re-ID and attribute recognition benefit from each other. In addition, we re-weight the attribute predictions considering the dependencies and correlations among the attributes. The experimental results on two large-scale re-ID benchmarks demonstrate that by learning a more discriminative representation, APR achieves competitive re-ID performance compared with the state-of-the-art methods. We use APR to speed up the retrieval process by ten times with a minor accuracy drop of 2.92% on Market-1501. Besides, we also apply APR on the attribute recognition task and demonstrate improvement over the baselines. |
| Author | Wu, Yu Hu, Zhilan Yan, Chenggang Zheng, Zhedong Zheng, Liang Lin, Yutian Yang, Yi |
| Author_xml | – sequence: 1 givenname: Yutian surname: Lin fullname: Lin, Yutian organization: Center for Artificial Intelligence, University of Technology Sydney, Australia – sequence: 2 givenname: Liang orcidid: 0000-0002-1109-3893 surname: Zheng fullname: Zheng, Liang organization: Australian National University, Australia – sequence: 3 givenname: Zhedong surname: Zheng fullname: Zheng, Zhedong organization: Center for Artificial Intelligence, University of Technology Sydney, Australia – sequence: 4 givenname: Yu surname: Wu fullname: Wu, Yu organization: Center for Artificial Intelligence, University of Technology Sydney, Australia – sequence: 5 givenname: Zhilan surname: Hu fullname: Hu, Zhilan organization: Center for Artificial Intelligence, University of Technology Sydney, Australia – sequence: 6 givenname: Chenggang surname: Yan fullname: Yan, Chenggang organization: Hangzhou Dianzi University, China – sequence: 7 givenname: Yi surname: Yang fullname: Yang, Yi email: yi.yang@uts.edu.au organization: Center for Artificial Intelligence, University of Technology Sydney, Australia |
| BookMark | eNqFkE1Lw0AQhhepYFv9Bx7yBxJnP7JJPQhSai0UvOh52ezOli3tJmzWQv-9qfHkQU8D8_K8zDwzMgltQELuKRQUqHzYF51Opt0VDOiiAFkAyCsypXXF85IKNiFTAE5zzoDfkFnf7wFoNQRTstocu9iefNhlHca-DVnE3FsMyTtvdPLDpjlnOqXom8-EmQ42G_N0zg6oYxjYW3Lt9KHHu585Jx8vq_fla759W2-Wz9vccJAprwGYaLTEUlTCMV3yCmuDYC2tS2z0QpaOGmCls7VFh4IxgbUQ6HhjTYN8Th7HXhPbvo_olPHp-8gUtT8oCuoiRO3VKERdhCiQahAywOIX3EV_1PH8H_Y0Yjg8dvIYVW88BoPWRzRJ2db_XfAFy52A5A |
| CitedBy_id | crossref_primary_10_1007_s11042_020_08972_w crossref_primary_10_1016_j_knosys_2020_106154 crossref_primary_10_1007_s10489_021_02450_y crossref_primary_10_1155_2022_4330804 crossref_primary_10_1007_s00530_022_01024_3 crossref_primary_10_1007_s10489_020_01907_w crossref_primary_10_1007_s11760_023_02530_1 crossref_primary_10_1016_j_displa_2025_103189 crossref_primary_10_1109_TIFS_2023_3311584 crossref_primary_10_1016_j_displa_2025_103187 crossref_primary_10_1109_JIOT_2020_2963996 crossref_primary_10_1016_j_patcog_2020_107480 crossref_primary_10_1145_3487044 crossref_primary_10_1016_j_neunet_2022_06_017 crossref_primary_10_1016_j_jvcir_2021_103418 crossref_primary_10_1109_TMM_2023_3251097 crossref_primary_10_3390_rs16071216 crossref_primary_10_1007_s11042_020_09987_z crossref_primary_10_1007_s11063_022_10946_y crossref_primary_10_1016_j_imavis_2024_105038 crossref_primary_10_1109_TNNLS_2022_3214834 crossref_primary_10_1109_TIP_2024_3372832 crossref_primary_10_1109_TMM_2020_2972125 crossref_primary_10_1007_s00138_021_01239_w crossref_primary_10_1007_s11063_021_10736_y crossref_primary_10_3390_math12162495 crossref_primary_10_1007_s11042_021_11420_y crossref_primary_10_1007_s11042_023_15303_2 crossref_primary_10_1016_j_neunet_2025_107463 crossref_primary_10_1007_s00530_024_01530_6 crossref_primary_10_1117_1_JEI_34_2_023056 crossref_primary_10_1109_JIOT_2024_3354822 crossref_primary_10_1109_JSEN_2019_2936916 crossref_primary_10_1016_j_heliyon_2022_e12086 crossref_primary_10_1109_TCSVT_2021_3137216 crossref_primary_10_1109_TIFS_2020_3036800 crossref_primary_10_1007_s00521_021_05936_5 crossref_primary_10_1145_3383184 crossref_primary_10_1007_s11042_022_12124_7 crossref_primary_10_1109_ACCESS_2023_3274473 crossref_primary_10_1109_TIFS_2022_3208811 crossref_primary_10_3390_app11052010 crossref_primary_10_1007_s40747_024_01565_2 crossref_primary_10_3390_ijgi10080561 crossref_primary_10_1016_j_jvcir_2021_103302 crossref_primary_10_1109_TETCI_2018_2876556 crossref_primary_10_1016_j_ins_2025_122012 crossref_primary_10_1109_TCSS_2024_3403691 crossref_primary_10_1016_j_neucom_2021_11_016 crossref_primary_10_1016_j_knosys_2023_111224 crossref_primary_10_1109_TITS_2025_3553838 crossref_primary_10_1007_s11042_020_08944_0 crossref_primary_10_1016_j_neucom_2021_11_013 crossref_primary_10_1016_j_patcog_2025_111489 crossref_primary_10_1016_j_patcog_2025_111486 crossref_primary_10_1186_s13634_021_00747_1 crossref_primary_10_1016_j_patcog_2023_109369 crossref_primary_10_1007_s12652_020_02312_4 crossref_primary_10_1007_s10489_020_01752_x crossref_primary_10_1109_ACCESS_2024_3511034 crossref_primary_10_1109_ACCESS_2019_2957336 crossref_primary_10_1016_j_neucom_2021_12_047 crossref_primary_10_1007_s00530_022_00893_y crossref_primary_10_1109_TCSVT_2021_3073718 crossref_primary_10_1007_s11760_024_03257_3 crossref_primary_10_1007_s10044_025_01482_1 crossref_primary_10_1007_s10044_025_01421_0 crossref_primary_10_1145_3454130 crossref_primary_10_1007_s00521_022_07300_7 crossref_primary_10_1109_TIP_2023_3270741 crossref_primary_10_1007_s11042_023_15473_z crossref_primary_10_1016_j_neucom_2022_05_028 crossref_primary_10_1016_j_patcog_2020_107352 crossref_primary_10_1016_j_comnet_2020_107779 crossref_primary_10_1109_TNNLS_2021_3059515 crossref_primary_10_1016_j_neucom_2023_02_019 crossref_primary_10_1016_j_patrec_2020_08_012 crossref_primary_10_1016_j_neucom_2022_01_043 crossref_primary_10_1016_j_patcog_2021_108503 crossref_primary_10_1109_ACCESS_2019_2937509 crossref_primary_10_1016_j_knosys_2025_114193 crossref_primary_10_3390_fi17080371 crossref_primary_10_1109_TMM_2020_3014488 crossref_primary_10_1109_ACCESS_2020_3029180 crossref_primary_10_1016_j_cviu_2023_103813 crossref_primary_10_1016_j_neucom_2019_04_098 crossref_primary_10_1016_j_ipm_2023_103295 crossref_primary_10_1109_TCSVT_2022_3189027 crossref_primary_10_1007_s10489_021_02896_0 crossref_primary_10_1109_TITS_2024_3490582 crossref_primary_10_1109_TMM_2024_3521677 crossref_primary_10_1109_TMM_2020_3009476 crossref_primary_10_1109_TPAMI_2025_3526930 crossref_primary_10_1109_TMM_2020_3023784 crossref_primary_10_1007_s11263_023_01841_7 crossref_primary_10_1007_s11263_022_01591_y crossref_primary_10_1109_TMM_2020_3042068 crossref_primary_10_1109_ACCESS_2019_2958126 crossref_primary_10_1007_s11760_021_02056_4 crossref_primary_10_1177_27527263221129366 crossref_primary_10_1109_TIP_2020_3036762 crossref_primary_10_1007_s11760_024_03674_4 crossref_primary_10_1007_s11042_023_17309_2 crossref_primary_10_1007_s11063_021_10540_8 crossref_primary_10_1016_j_jobe_2023_108126 crossref_primary_10_1016_j_neucom_2020_03_057 crossref_primary_10_1109_TCSVT_2022_3178144 crossref_primary_10_1109_TPAMI_2021_3054775 crossref_primary_10_1109_ACCESS_2025_3561201 crossref_primary_10_1088_1757_899X_1077_1_012046 crossref_primary_10_3390_s25061819 crossref_primary_10_26634_jit_10_2_18432 crossref_primary_10_1007_s00371_024_03738_z crossref_primary_10_1109_TMM_2021_3103605 crossref_primary_10_1155_2021_7557361 crossref_primary_10_1007_s10489_021_02885_3 crossref_primary_10_1016_j_jvcir_2020_102753 crossref_primary_10_1109_TIFS_2024_3353078 crossref_primary_10_1109_TIP_2020_3004267 crossref_primary_10_1155_2021_2891303 crossref_primary_10_4018_IJSKD_299050 crossref_primary_10_1109_TNNLS_2024_3384446 crossref_primary_10_1145_3467889 crossref_primary_10_1109_TMM_2023_3312939 crossref_primary_10_1109_JSTSP_2023_3260627 crossref_primary_10_1007_s11633_022_1321_8 crossref_primary_10_1016_j_patcog_2022_108708 crossref_primary_10_1177_23780231221100392 crossref_primary_10_1016_j_patcog_2023_109682 crossref_primary_10_1109_JIOT_2022_3203559 crossref_primary_10_1109_ACCESS_2020_2991838 crossref_primary_10_1109_TIP_2023_3247159 crossref_primary_10_1016_j_neucom_2021_05_059 crossref_primary_10_1016_j_patcog_2022_109246 crossref_primary_10_1080_02564602_2024_2327566 crossref_primary_10_7717_peerj_cs_447 crossref_primary_10_1109_TCSS_2024_3398696 crossref_primary_10_1007_s11263_025_02405_7 crossref_primary_10_1080_17517575_2021_1941274 crossref_primary_10_1109_TMM_2023_3297391 crossref_primary_10_1145_3506708 crossref_primary_10_1155_2022_3852243 crossref_primary_10_1002_cav_1964 crossref_primary_10_3390_fractalfract8100551 crossref_primary_10_1016_j_imavis_2022_104401 crossref_primary_10_3390_math10101654 crossref_primary_10_1109_ACCESS_2025_3582382 crossref_primary_10_1007_s00530_021_00752_2 crossref_primary_10_1109_TIM_2021_3120799 crossref_primary_10_1109_TIFS_2020_2970590 crossref_primary_10_3390_s24020616 crossref_primary_10_1016_j_neucom_2019_12_120 crossref_primary_10_1016_j_patcog_2019_107074 crossref_primary_10_1007_s00530_025_01748_y crossref_primary_10_1016_j_neucom_2019_06_013 crossref_primary_10_1016_j_cviu_2024_104092 crossref_primary_10_1109_ACCESS_2019_2951164 crossref_primary_10_1007_s11431_021_1903_4 crossref_primary_10_3390_electronics12244950 crossref_primary_10_1109_TCSVT_2023_3328712 crossref_primary_10_1007_s10489_020_01880_4 crossref_primary_10_1007_s11042_021_11292_2 crossref_primary_10_1007_s11042_023_15719_w crossref_primary_10_1007_s00138_023_01473_4 crossref_primary_10_1016_j_neucom_2021_08_126 crossref_primary_10_1177_03611981231187643 crossref_primary_10_1145_3632624 crossref_primary_10_1016_j_knosys_2020_106554 crossref_primary_10_1109_TCYB_2022_3173356 crossref_primary_10_1007_s40747_022_00699_5 crossref_primary_10_1016_j_patrec_2021_08_007 crossref_primary_10_1016_j_neucom_2021_09_054 crossref_primary_10_1109_JIOT_2022_3233183 crossref_primary_10_1016_j_patcog_2022_108615 crossref_primary_10_3390_app13095576 crossref_primary_10_1007_s10044_022_01123_x crossref_primary_10_3390_bdcc6040108 crossref_primary_10_1109_TIP_2023_3341762 crossref_primary_10_1049_ipr2_12688 crossref_primary_10_1109_TETCI_2021_3127906 crossref_primary_10_3724_SP_J_1089_2022_18927 crossref_primary_10_1109_TITS_2021_3107587 crossref_primary_10_1016_j_patcog_2022_109151 crossref_primary_10_1109_ACCESS_2023_3243553 crossref_primary_10_1049_ipr2_12465 crossref_primary_10_1016_j_patrec_2022_03_020 crossref_primary_10_1088_1742_6596_1576_1_012007 crossref_primary_10_3390_s20164431 crossref_primary_10_1016_j_patcog_2019_107173 crossref_primary_10_1109_TCSVT_2021_3061412 crossref_primary_10_1007_s42690_025_01560_1 crossref_primary_10_3390_app11041775 crossref_primary_10_1016_j_image_2022_116744 crossref_primary_10_1049_cvi2_12309 crossref_primary_10_1016_j_patcog_2020_107414 crossref_primary_10_1109_ACCESS_2025_3548321 crossref_primary_10_1007_s11227_025_07192_z crossref_primary_10_1016_j_imavis_2025_105602 crossref_primary_10_1109_TITS_2022_3190959 crossref_primary_10_1155_2022_3490919 crossref_primary_10_1016_j_patcog_2022_108865 crossref_primary_10_1007_s40747_022_00709_6 crossref_primary_10_1016_j_neucom_2025_129587 crossref_primary_10_1109_TNNLS_2023_3329384 crossref_primary_10_1016_j_inffus_2024_102879 crossref_primary_10_1109_ACCESS_2022_3223426 crossref_primary_10_3390_math10193503 crossref_primary_10_1109_ACCESS_2019_2939071 crossref_primary_10_3390_electronics12102266 crossref_primary_10_1016_j_knosys_2020_106691 crossref_primary_10_1016_j_patcog_2019_106995 crossref_primary_10_1007_s10489_021_02959_2 crossref_primary_10_1080_08839514_2022_2031818 crossref_primary_10_1016_j_patrec_2022_10_003 crossref_primary_10_1016_j_future_2020_02_028 crossref_primary_10_1109_ACCESS_2021_3069915 crossref_primary_10_1109_ACCESS_2022_3159102 crossref_primary_10_1016_j_imavis_2024_104917 crossref_primary_10_1016_j_patcog_2019_106991 crossref_primary_10_1016_j_jvcir_2023_103849 crossref_primary_10_1016_j_iot_2023_100793 crossref_primary_10_1109_TPAMI_2019_2954313 crossref_primary_10_1016_j_patcog_2021_108239 crossref_primary_10_1109_TIP_2019_2946975 crossref_primary_10_1016_j_imavis_2020_104000 crossref_primary_10_1145_3628452 crossref_primary_10_1016_j_ins_2021_03_028 crossref_primary_10_1016_j_knosys_2024_111455 crossref_primary_10_3390_s20123419 crossref_primary_10_1007_s00521_021_06734_9 crossref_primary_10_1016_j_patcog_2021_107827 crossref_primary_10_1016_j_patcog_2023_110194 crossref_primary_10_1049_ipr2_12468 crossref_primary_10_1109_TBIOM_2024_3520030 crossref_primary_10_3390_bdcc6010020 crossref_primary_10_1007_s10489_021_03097_5 crossref_primary_10_3390_s20030811 crossref_primary_10_1016_j_patcog_2024_110363 crossref_primary_10_1007_s00371_022_02398_1 crossref_primary_10_1007_s11042_022_12581_0 crossref_primary_10_1016_j_patcog_2025_111510 crossref_primary_10_1007_s00371_023_02914_x crossref_primary_10_1016_j_patcog_2022_108763 crossref_primary_10_1007_s10489_021_02198_5 crossref_primary_10_3390_drones7090590 crossref_primary_10_1016_j_neucom_2020_05_106 crossref_primary_10_1016_j_patcog_2021_108220 crossref_primary_10_1016_j_knosys_2022_109354 crossref_primary_10_1016_j_engappai_2025_110376 crossref_primary_10_1109_ACCESS_2022_3157857 crossref_primary_10_1109_TIM_2022_3158998 crossref_primary_10_1109_TIP_2022_3202370 crossref_primary_10_1016_j_patcog_2021_107937 crossref_primary_10_1109_LSP_2023_3313088 crossref_primary_10_3390_jimaging7120264 crossref_primary_10_3390_e26060436 crossref_primary_10_1049_cvi2_12215 crossref_primary_10_1016_j_imavis_2023_104658 crossref_primary_10_1109_TCSVT_2024_3408645 crossref_primary_10_1016_j_patcog_2019_107143 crossref_primary_10_1016_j_eng_2025_07_022 crossref_primary_10_1109_TCSVT_2025_3545859 crossref_primary_10_1155_2021_9463092 crossref_primary_10_1016_j_patcog_2022_109068 crossref_primary_10_1145_3743680 crossref_primary_10_1016_j_neucom_2020_03_109 crossref_primary_10_1109_TIP_2023_3272173 crossref_primary_10_1016_j_image_2021_116558 crossref_primary_10_1007_s10489_021_02820_6 crossref_primary_10_1007_s11263_024_02124_5 crossref_primary_10_1109_ACCESS_2023_3260149 crossref_primary_10_1108_LODJ_05_2023_0215 crossref_primary_10_3390_electronics11030454 crossref_primary_10_1016_j_ins_2021_03_048 crossref_primary_10_1109_TIP_2020_2986878 crossref_primary_10_1007_s11042_021_10983_0 crossref_primary_10_3390_electronics10182264 crossref_primary_10_3390_s20185279 crossref_primary_10_1016_j_patcog_2023_109973 crossref_primary_10_1016_j_patcog_2023_110169 crossref_primary_10_1117_1_JEI_33_4_043020 crossref_primary_10_1109_TVT_2024_3391834 crossref_primary_10_1109_TCSVT_2020_2982962 crossref_primary_10_1002_cpe_8346 crossref_primary_10_1016_j_patcog_2021_108124 crossref_primary_10_1016_j_jvcir_2020_102914 crossref_primary_10_1109_TIP_2021_3101158 crossref_primary_10_3390_app14188244 crossref_primary_10_1016_j_patcog_2022_109197 crossref_primary_10_1145_3538490 crossref_primary_10_1109_ACCESS_2019_2961933 crossref_primary_10_1016_j_imavis_2024_104930 crossref_primary_10_1109_LSP_2021_3139571 crossref_primary_10_1109_TMM_2024_3521730 crossref_primary_10_1145_3626240 crossref_primary_10_1007_s11042_020_08927_1 crossref_primary_10_1109_ACCESS_2023_3283495 crossref_primary_10_1109_ACCESS_2024_3418348 crossref_primary_10_1109_ACCESS_2023_3241334 crossref_primary_10_3390_s21124127 crossref_primary_10_3390_app14114593 crossref_primary_10_1109_ACCESS_2020_2991440 crossref_primary_10_1007_s00521_022_07071_1 crossref_primary_10_1007_s11227_023_05169_4 crossref_primary_10_1109_TPAMI_2023_3273712 crossref_primary_10_1109_JIOT_2023_3263240 crossref_primary_10_1016_j_patcog_2022_108672 crossref_primary_10_3390_s25010192 crossref_primary_10_1016_j_image_2021_116335 crossref_primary_10_1109_TCSVT_2021_3088446 crossref_primary_10_1109_TCSVT_2019_2939564 crossref_primary_10_1016_j_neucom_2019_11_062 crossref_primary_10_1007_s10489_022_04245_1 crossref_primary_10_3390_electronics14081626 crossref_primary_10_3390_app13179751 crossref_primary_10_1016_j_knosys_2025_113998 crossref_primary_10_1016_j_cscm_2022_e01410 crossref_primary_10_1007_s11633_024_1504_6 crossref_primary_10_1007_s00138_024_01612_5 crossref_primary_10_3390_su142215183 crossref_primary_10_1109_LSP_2020_3016528 crossref_primary_10_1007_s11042_021_10545_4 crossref_primary_10_1109_ACCESS_2022_3140311 crossref_primary_10_1007_s11042_022_12728_z crossref_primary_10_1007_s10044_024_01219_6 crossref_primary_10_1109_JSTSP_2022_3233716 crossref_primary_10_1109_TMM_2024_3459637 crossref_primary_10_3724_SP_J_1089_2022_19218 crossref_primary_10_1016_j_patrec_2020_09_009 crossref_primary_10_1109_ACCESS_2020_2976849 crossref_primary_10_1109_TPAMI_2021_3122444 crossref_primary_10_1109_TIM_2023_3269117 crossref_primary_10_1109_TIFS_2024_3414667 crossref_primary_10_1007_s11263_021_01499_z crossref_primary_10_3390_s20236902 crossref_primary_10_3390_a15040120 crossref_primary_10_25159_2663_659X_11661 crossref_primary_10_1007_s00521_022_07496_8 crossref_primary_10_1016_j_patcog_2022_108568 crossref_primary_10_1016_j_patcog_2022_108567 crossref_primary_10_1109_TMM_2024_3369904 crossref_primary_10_1109_TCSVT_2020_3033165 crossref_primary_10_3390_app10165608 crossref_primary_10_1007_s10489_020_01844_8 crossref_primary_10_3390_ijgi9110687 crossref_primary_10_1016_j_eswa_2024_125320 crossref_primary_10_1016_j_imavis_2021_104298 crossref_primary_10_1109_ACCESS_2020_2978344 crossref_primary_10_1109_TNNLS_2021_3082701 |
| Cites_doi | 10.1016/j.patcog.2012.05.019 10.1016/j.patcog.2016.07.013 10.1016/j.patcog.2015.04.005 10.1007/s11263-015-0816-y 10.1109/TIP.2017.2740564 10.1016/j.patcog.2017.01.006 10.1109/TIP.2014.2331755 10.1016/j.imavis.2016.07.004 10.1109/TMM.2015.2477680 10.1109/TIP.2016.2545929 10.1016/j.patcog.2016.12.022 10.1016/j.patcog.2017.07.005 10.1016/j.patcog.2017.08.029 10.1007/s11263-017-1033-7 10.1016/j.patcog.2017.06.037 10.1109/TPAMI.2017.2679002 10.1109/TIP.2017.2700762 10.1016/j.patcog.2017.10.005 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd |
| Copyright_xml | – notice: 2019 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.patcog.2019.06.006 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-5142 |
| EndPage | 161 |
| ExternalDocumentID | 10_1016_j_patcog_2019_06_006 S0031320319302377 |
| GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c306t-80024ba6e5474f2a537e8ce0dd185eba965f1c025fd8defe4224e844ef3bdcbe3 |
| ISICitedReferencesCount | 564 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000478710600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-3203 |
| IngestDate | Tue Nov 18 22:29:38 EST 2025 Sat Nov 29 07:26:22 EST 2025 Fri Feb 23 02:25:25 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Attribute recognition Person re-identification |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-80024ba6e5474f2a537e8ce0dd185eba965f1c025fd8defe4224e844ef3bdcbe3 |
| ORCID | 0000-0002-1109-3893 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_patcog_2019_06_006 crossref_primary_10_1016_j_patcog_2019_06_006 elsevier_sciencedirect_doi_10_1016_j_patcog_2019_06_006 |
| PublicationCentury | 2000 |
| PublicationDate | November 2019 2019-11-00 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: November 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | Pattern recognition |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zheng, Zheng, Yang (bib0020) 2017; 14 Layne, Hospedales, Gong, Mary (bib0039) 2012; 2 Su, Zhang, Xing, Gao, Tian (bib0014) 2018; 75 Matsukawa, Suzuki (bib0016) 2016 Xu, Zhao, Zhu, Wang, Ouyang (bib0032) 2018 Sudowe, Spitzer, Leibe (bib0056) 2015 He, Zhang, Ren, Sun (bib0021) 2016 Fan, Zheng, Yan, Yang (bib0022) 2018; 14 Franco, Oliveira (bib0013) 2017; 61 He, Liang, Li, Sun (bib0054) 2018 Deng, Luo, Loy, Tang (bib0006) 2014 D. Li, Z. Zhang, X. Chen, H. Ling, K. Huang, A richly annotated dataset for pedestrian attribute recognition, (2016) arXiv Zhao, Li, Zhuang, Wang (bib0051) 2017 Zhu, Wu, Huang, Zheng (bib0001) 2018; 27 Zhu, Xu, Yang, Hauptmann (bib0026) 2017; 124 Ahmed, Jones, Marks (bib0030) 2015 Wei, Zhang, Gao, Tian (bib0034) 2018 Wu, Lin, Dong, Yan, Bian, Yang (bib0037) 2019 Martinel, Dunnhofer, Foresti, Micheloni (bib0036) 2017 Liao, Hu, Zhu, Li (bib0055) 2015 Chen, Guo, Lai (bib0018) 2016; 25 Wu, Lin, Dong, Yan, Ouyang, Yang (bib0019) 2018 Zhou, Wang, Meng, Xin, Li, Gong, Zheng (bib0025) 2018; 76 . Ristani, Solera, Zou, Cucchiara, Tomasi (bib0044) 2016 Zheng, Zheng, Yang (bib0035) 2017 Li, Zhao, Xiao, Wang (bib0028) 2014 Sun, Zheng, Deng, Wang (bib0052) 2017 Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (bib0046) 2015; 115 Wu, Wang, Gao, Li (bib0031) 2018; 73 Ustinova, Ganin, Lempitsky (bib0047) 2017 Jose, Fleuret (bib0048) 2016 Ma, Yang, Tao (bib0027) 2014; 23 Li, Chen, Zhang, Huang (bib0050) 2017 Lin, Dong, Zheng, Yan, Yang (bib0038) 2019 Peng, Tian, Xiang, Wang, Huang (bib0041) 2016 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib0033) 2014 Ding, Lin, Wang, Chao (bib0029) 2015; 48 Tian, Yi, Li, Li, Zhang, Shi, Yan, Wang (bib0053) 2018 Schumann, Stiefelhagen (bib0015) 2017 Wu, Shen, van den Hengel (bib0003) 2017; 65 Liu, Song, Zhao, Tao, Chen, Bu (bib0040) 2012; 45 Khamis, Kuo, Singh, Shet, Davis (bib0010) 2014 Zhu, Liao, Lei, Li (bib0005) 2017; 58 Su, Zhang, Yang, Zhang, Tian, Gao, Davis (bib0011) 2017; 66 Su, Yang, Zhang, Tian, Davis, Gao (bib0012) 2018; 40 Wang, Zhu, Gong, Li (bib0043) 2018 Xiao, Li, Ouyang, Wang (bib0024) 2016 Jia, Shelhamer, Donahue, Karayev, Long, Girshick, Guadarrama, Darrell (bib0045) 2014 Liu, Feng, Qi, Jiang, Yan (bib0002) 2017; 26 Zheng, Shen, Tian, Wang, Wang, Tian (bib0017) 2015 Ren, Lu, Feng, Zhou (bib0004) 2017; 72 Abdulnabi, Wang, Lu, Jia (bib0007) 2015; 17 Chen, Yuan, Chen, Zheng (bib0049) 2016 Layne, Hospedales, Gong (bib0009) 2014 Yin, Zheng, Wu, Yu, Wan, Guo, Huang, Lai (bib0042) 2018 Varior, Haloi, Wang (bib0023) 2016 Su (10.1016/j.patcog.2019.06.006_bib0014) 2018; 75 Ustinova (10.1016/j.patcog.2019.06.006_bib0047) 2017 Matsukawa (10.1016/j.patcog.2019.06.006_bib0016) 2016 Chen (10.1016/j.patcog.2019.06.006_bib0018) 2016; 25 Sun (10.1016/j.patcog.2019.06.006_bib0052) 2017 Zhou (10.1016/j.patcog.2019.06.006_bib0025) 2018; 76 Zheng (10.1016/j.patcog.2019.06.006_bib0020) 2017; 14 Goodfellow (10.1016/j.patcog.2019.06.006_bib0033) 2014 Franco (10.1016/j.patcog.2019.06.006_bib0013) 2017; 61 Zhu (10.1016/j.patcog.2019.06.006_bib0005) 2017; 58 Jose (10.1016/j.patcog.2019.06.006_bib0048) 2016 Ding (10.1016/j.patcog.2019.06.006_bib0029) 2015; 48 Xiao (10.1016/j.patcog.2019.06.006_bib0024) 2016 Wang (10.1016/j.patcog.2019.06.006_bib0043) 2018 Wu (10.1016/j.patcog.2019.06.006_bib0031) 2018; 73 Liao (10.1016/j.patcog.2019.06.006_bib0055) 2015 Su (10.1016/j.patcog.2019.06.006_bib0012) 2018; 40 Ren (10.1016/j.patcog.2019.06.006_bib0004) 2017; 72 Deng (10.1016/j.patcog.2019.06.006_bib0006) 2014 Russakovsky (10.1016/j.patcog.2019.06.006_bib0046) 2015; 115 Sudowe (10.1016/j.patcog.2019.06.006_bib0056) 2015 Liu (10.1016/j.patcog.2019.06.006_bib0040) 2012; 45 Zhao (10.1016/j.patcog.2019.06.006_bib0051) 2017 Li (10.1016/j.patcog.2019.06.006_bib0050) 2017 Zheng (10.1016/j.patcog.2019.06.006_bib0035) 2017 Xu (10.1016/j.patcog.2019.06.006_bib0032) 2018 Li (10.1016/j.patcog.2019.06.006_bib0028) 2014 Schumann (10.1016/j.patcog.2019.06.006_bib0015) 2017 Wu (10.1016/j.patcog.2019.06.006_bib0019) 2018 Wei (10.1016/j.patcog.2019.06.006_bib0034) 2018 Tian (10.1016/j.patcog.2019.06.006_bib0053) 2018 Khamis (10.1016/j.patcog.2019.06.006_bib0010) 2014 Chen (10.1016/j.patcog.2019.06.006_bib0049) 2016 Varior (10.1016/j.patcog.2019.06.006_bib0023) 2016 Martinel (10.1016/j.patcog.2019.06.006_bib0036) 2017 Wu (10.1016/j.patcog.2019.06.006_sbref0036) 2019 Abdulnabi (10.1016/j.patcog.2019.06.006_bib0007) 2015; 17 10.1016/j.patcog.2019.06.006_bib0008 Layne (10.1016/j.patcog.2019.06.006_bib0009) 2014 Yin (10.1016/j.patcog.2019.06.006_bib0042) 2018 Ma (10.1016/j.patcog.2019.06.006_bib0027) 2014; 23 Zhu (10.1016/j.patcog.2019.06.006_bib0001) 2018; 27 Wu (10.1016/j.patcog.2019.06.006_bib0003) 2017; 65 Peng (10.1016/j.patcog.2019.06.006_bib0041) 2016 Jia (10.1016/j.patcog.2019.06.006_bib0045) 2014 Ahmed (10.1016/j.patcog.2019.06.006_bib0030) 2015 Layne (10.1016/j.patcog.2019.06.006_bib0039) 2012; 2 Lin (10.1016/j.patcog.2019.06.006_bib0038) 2019 He (10.1016/j.patcog.2019.06.006_bib0021) 2016 Zheng (10.1016/j.patcog.2019.06.006_bib0017) 2015 Liu (10.1016/j.patcog.2019.06.006_bib0002) 2017; 26 Fan (10.1016/j.patcog.2019.06.006_bib0022) 2018; 14 Ristani (10.1016/j.patcog.2019.06.006_bib0044) 2016 Su (10.1016/j.patcog.2019.06.006_bib0011) 2017; 66 He (10.1016/j.patcog.2019.06.006_bib0054) 2018 Zhu (10.1016/j.patcog.2019.06.006_bib0026) 2017; 124 |
| References_xml | – year: 2019 ident: bib0037 article-title: Progressive learning for person re-identification with one example publication-title: IEEE Trans. Image Process. – volume: 124 start-page: 409 year: 2017 end-page: 421 ident: bib0026 article-title: Uncovering the temporal context for video question answering publication-title: Int. J. Comput. Vis. – volume: 2 start-page: 8 year: 2012 ident: bib0039 article-title: Person re-identification by attributes publication-title: The British Machine Vision Conference – start-page: 2428 year: 2016 end-page: 2433 ident: bib0016 article-title: Person re-identification using CNN features learned from combination of attributes publication-title: The IEEE International Conference on Pattern Recognition – start-page: 789 year: 2014 end-page: 792 ident: bib0006 article-title: Pedestrian attribute recognition at far distance publication-title: Proceedings of the ACM international conference on Multimedia – year: 2018 ident: bib0053 article-title: Eliminating background-bias for robust person re-identification publication-title: The IEEE Conference on Computer Vision and Pattern Recognition – volume: 14 start-page: 13 year: 2017 ident: bib0020 article-title: A discriminatively learned CNN embedding for person reidentification publication-title: ACM Trans. Multim. Comput.Commun. Appl. – start-page: 1116 year: 2015 end-page: 1124 ident: bib0017 article-title: Scalable person re-identification: a benchmark publication-title: The IEEE International Conference on Computer Vision – year: 2018 ident: bib0054 article-title: Deep spatial feature reconstruction for partial person re-identification: alignment-free approach publication-title: The IEEE Conference on Computer Vision and Pattern Recognition – volume: 65 start-page: 238 year: 2017 end-page: 250 ident: bib0003 article-title: Deep linear discriminant analysis on fisher networks: a hybrid architecture for person re-identification publication-title: Pattern Recognit. – start-page: 7398 year: 2017 end-page: 7407 ident: bib0050 article-title: Learning deep context-aware features over body and latent parts for person re-identification publication-title: The IEEE Conference on Computer Vision and Pattern Recognition – volume: 75 start-page: 77 year: 2018 end-page: 89 ident: bib0014 article-title: Multi-type attributes driven multi-camera person re-identification publication-title: Pattern Recognit. – volume: 58 start-page: 224 year: 2017 end-page: 229 ident: bib0005 article-title: Multi-label convolutional neural network based pedestrian attribute classification publication-title: Image Vis. Comput. – start-page: 1435 year: 2017 end-page: 1443 ident: bib0015 article-title: Person re-identification by deep learning attribute-complementary information publication-title: The IEEE Conference on Computer Vision and Pattern Recognition Workshops – start-page: 791 year: 2016 end-page: 808 ident: bib0023 article-title: Gated siamese convolutional neural network architecture for human re-identification publication-title: European Conference on Computer Vision – start-page: 770 year: 2016 end-page: 778 ident: bib0021 article-title: Deep residual learning for image recognition publication-title: Conference on Computer Vision and Pattern Recognition – year: 2014 ident: bib0009 article-title: Re-id: hunting attributes in the wild publication-title: The British Machine Vision Conference – volume: 14 year: 2018 ident: bib0022 article-title: Unsupervised person re-identification: clustering and fine-tuning publication-title: ACM Trans. Multim. Comput. Commun. Appl. TOMCCAP – volume: 25 start-page: 2353 year: 2016 end-page: 2367 ident: bib0018 article-title: Deep ranking for person re-identification via joint representation learning publication-title: IEEE Trans. Image Process. – start-page: 2672 year: 2014 end-page: 2680 ident: bib0033 article-title: Generative adversarial nets publication-title: Advances in neural information processing systems – start-page: 3239 year: 2017 end-page: 3248 ident: bib0051 article-title: Deeply-learned part-aligned representations for person re-identification publication-title: The IEEE International Conference on Computer Vision – reference: D. Li, Z. Zhang, X. Chen, H. Ling, K. Huang, A richly annotated dataset for pedestrian attribute recognition, (2016) arXiv: – start-page: 3908 year: 2015 end-page: 3916 ident: bib0030 article-title: An improved deep learning architecture for person re-identification publication-title: The IEEE Conference on Computer Vision and Pattern Recognition – start-page: 3774 year: 2017 end-page: 3782 ident: bib0035 article-title: Unlabeled samples generated by gan improve the person re-identification baseline in vitro publication-title: The IEEE International Conference on Computer Vision – start-page: 1 year: 2017 end-page: 6 ident: bib0047 article-title: Multi-region bilinear convolutional neural networks for person re-identification publication-title: The IEEE International Conference on Advanced Video and Signal Based Surveillance – start-page: 3820 year: 2017 end-page: 3828 ident: bib0052 article-title: Svdnet for pedestrian retrieval publication-title: The IEEE International Conference on Computer Vision – volume: 27 start-page: 2286 year: 2018 end-page: 2300 ident: bib0001 article-title: Fast open-world person re-identification publication-title: IEEE Trans. Image Process. – volume: 76 start-page: 739 year: 2018 end-page: 751 ident: bib0025 article-title: Deep self-paced learning for person re-identification publication-title: Pattern Recognit. – volume: 40 start-page: 1167 year: 2018 end-page: 1181 ident: bib0012 article-title: Multi-task learning with low rank attribute embedding for multi-camera person re-identification publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 151 year: 2017 end-page: 156 ident: bib0036 article-title: Person re-identification via unsupervised transfer of learned visual representations publication-title: Proceedings of the 11th International Conference on Distributed Smart Cameras – year: 2018 ident: bib0032 article-title: Attention-aware compositional network for person re-identification publication-title: The IEEE Conference on Computer Vision and Pattern Recognition – start-page: 875 year: 2016 end-page: 890 ident: bib0048 article-title: Scalable metric learning via weighted approximate rank component analysis publication-title: European Conference on Computer Vision – year: 2018 ident: bib0034 article-title: Person transfer gan to bridge domain gap for person re-identification publication-title: The IEEE Conference on Computer Vision and Pattern Recognition – volume: 45 start-page: 4204 year: 2012 end-page: 4213 ident: bib0040 article-title: Attribute-restricted latent topic model for person re-identification publication-title: Pattern Recognit. – start-page: 134 year: 2014 end-page: 146 ident: bib0010 article-title: Joint learning for attribute-consistent person re-identification publication-title: European Conference on Computer Vision – start-page: 1268 year: 2016 end-page: 1277 ident: bib0049 article-title: Similarity learning with spatial constraints for person re-identification publication-title: The IEEE Conference on Computer Vision and Pattern Recognition – start-page: 1100 year: 2018 end-page: 1106 ident: bib0042 article-title: Adversarial attribute-image person re-identification publication-title: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence – start-page: 152 year: 2014 end-page: 159 ident: bib0028 article-title: Deepreid: Deep filter pairing neural network for person re-identification publication-title: The IEEE Conference on Computer Vision and Pattern Recognition – start-page: 17 year: 2016 end-page: 35 ident: bib0044 article-title: Performance measures and a data set for multi-target, multi-camera tracking publication-title: European Conference on Computer Vision – start-page: 1249 year: 2016 end-page: 1258 ident: bib0024 article-title: Learning deep feature representations with domain guided dropout for person re-identification publication-title: The IEEE Conference on Computer Vision and Pattern Recognition – volume: 72 start-page: 446 year: 2017 end-page: 457 ident: bib0004 article-title: Multi-modal uniform deep learning for RGB-D person re-identification publication-title: Pattern Recognit. – volume: 48 start-page: 2993 year: 2015 end-page: 3003 ident: bib0029 article-title: Deep feature learning with relative distance comparison for person re-identification publication-title: Pattern Recognit. – year: 2018 ident: bib0019 article-title: Exploit the unknown gradually: one-shot video-based person re-identification by stepwise learning publication-title: The IEEE Conference on Computer Vision and Pattern Recognition – volume: 115 start-page: 211 year: 2015 end-page: 252 ident: bib0046 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. – start-page: 87 year: 2015 end-page: 95 ident: bib0056 article-title: Person attribute recognition with a jointly-trained holistic CNN model publication-title: The IEEE International Conference on Computer Vision Workshops – volume: 66 start-page: 4 year: 2017 end-page: 15 ident: bib0011 article-title: Attributes driven tracklet-to-tracklet person re-identification using latent prototypes space mapping publication-title: Pattern Recognit. – volume: 23 start-page: 3656 year: 2014 end-page: 3670 ident: bib0027 article-title: Person re-identification over camera networks using multi-task distance metric learning publication-title: IEEE Trans. Image Process. – reference: . – volume: 61 start-page: 593 year: 2017 end-page: 609 ident: bib0013 article-title: Convolutional covariance features: conception, integration and performance in person re-identification publication-title: Pattern Recognit. – volume: 17 start-page: 1949 year: 2015 end-page: 1959 ident: bib0007 article-title: Multi-task CNN model for attribute prediction publication-title: IEEE Trans. Multim. – volume: 73 start-page: 275 year: 2018 end-page: 288 ident: bib0031 article-title: Deep adaptive feature embedding with local sample distributions for person re-identification publication-title: Pattern Recognit. – year: 2019 ident: bib0038 article-title: A bottom-up clustering approach to unsupervised person re-identification publication-title: AAAI Conference on Artificial Intelligence – volume: 26 start-page: 3492 year: 2017 end-page: 3506 ident: bib0002 article-title: End-to-end comparative attention networks for person re-identification publication-title: IEEE Trans. Image Process. – start-page: 2197 year: 2015 end-page: 2206 ident: bib0055 article-title: Person re-identification by local maximal occurrence representation and metric learning publication-title: The IEEE Conference on Computer Vision and Pattern Recognition – start-page: 675 year: 2014 end-page: 678 ident: bib0045 article-title: Caffe: convolutional architecture for fast feature embedding publication-title: Proceedings of the 22nd ACM international conference on Multimedia – year: 2018 ident: bib0043 article-title: Transferable joint attribute-identity deep learning for unsupervised person re-identification publication-title: The IEEE Conference on Computer Vision and Pattern Recognition – start-page: 336 year: 2016 end-page: 353 ident: bib0041 article-title: Joint learning of semantic and latent attributes publication-title: European Conference on Computer Vision – start-page: 151 year: 2017 ident: 10.1016/j.patcog.2019.06.006_bib0036 article-title: Person re-identification via unsupervised transfer of learned visual representations – volume: 45 start-page: 4204 issue: 12 year: 2012 ident: 10.1016/j.patcog.2019.06.006_bib0040 article-title: Attribute-restricted latent topic model for person re-identification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2012.05.019 – volume: 61 start-page: 593 year: 2017 ident: 10.1016/j.patcog.2019.06.006_bib0013 article-title: Convolutional covariance features: conception, integration and performance in person re-identification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.07.013 – start-page: 3774 year: 2017 ident: 10.1016/j.patcog.2019.06.006_bib0035 article-title: Unlabeled samples generated by gan improve the person re-identification baseline in vitro – start-page: 3820 year: 2017 ident: 10.1016/j.patcog.2019.06.006_bib0052 article-title: Svdnet for pedestrian retrieval – start-page: 2428 year: 2016 ident: 10.1016/j.patcog.2019.06.006_bib0016 article-title: Person re-identification using CNN features learned from combination of attributes – volume: 48 start-page: 2993 issue: 10 year: 2015 ident: 10.1016/j.patcog.2019.06.006_bib0029 article-title: Deep feature learning with relative distance comparison for person re-identification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2015.04.005 – volume: 115 start-page: 211 issue: 3 year: 2015 ident: 10.1016/j.patcog.2019.06.006_bib0046 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – volume: 27 start-page: 2286 issue: 5 year: 2018 ident: 10.1016/j.patcog.2019.06.006_bib0001 article-title: Fast open-world person re-identification publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2740564 – volume: 66 start-page: 4 year: 2017 ident: 10.1016/j.patcog.2019.06.006_bib0011 article-title: Attributes driven tracklet-to-tracklet person re-identification using latent prototypes space mapping publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.01.006 – start-page: 17 year: 2016 ident: 10.1016/j.patcog.2019.06.006_bib0044 article-title: Performance measures and a data set for multi-target, multi-camera tracking – start-page: 875 year: 2016 ident: 10.1016/j.patcog.2019.06.006_bib0048 article-title: Scalable metric learning via weighted approximate rank component analysis – year: 2019 ident: 10.1016/j.patcog.2019.06.006_bib0038 article-title: A bottom-up clustering approach to unsupervised person re-identification – start-page: 789 year: 2014 ident: 10.1016/j.patcog.2019.06.006_bib0006 article-title: Pedestrian attribute recognition at far distance – start-page: 87 year: 2015 ident: 10.1016/j.patcog.2019.06.006_bib0056 article-title: Person attribute recognition with a jointly-trained holistic CNN model – start-page: 336 year: 2016 ident: 10.1016/j.patcog.2019.06.006_bib0041 article-title: Joint learning of semantic and latent attributes – volume: 23 start-page: 3656 issue: 8 year: 2014 ident: 10.1016/j.patcog.2019.06.006_bib0027 article-title: Person re-identification over camera networks using multi-task distance metric learning publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2014.2331755 – start-page: 675 year: 2014 ident: 10.1016/j.patcog.2019.06.006_bib0045 article-title: Caffe: convolutional architecture for fast feature embedding – start-page: 1249 year: 2016 ident: 10.1016/j.patcog.2019.06.006_bib0024 article-title: Learning deep feature representations with domain guided dropout for person re-identification – volume: 58 start-page: 224 year: 2017 ident: 10.1016/j.patcog.2019.06.006_bib0005 article-title: Multi-label convolutional neural network based pedestrian attribute classification publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2016.07.004 – start-page: 1268 year: 2016 ident: 10.1016/j.patcog.2019.06.006_bib0049 article-title: Similarity learning with spatial constraints for person re-identification – year: 2018 ident: 10.1016/j.patcog.2019.06.006_bib0019 article-title: Exploit the unknown gradually: one-shot video-based person re-identification by stepwise learning – year: 2018 ident: 10.1016/j.patcog.2019.06.006_bib0054 article-title: Deep spatial feature reconstruction for partial person re-identification: alignment-free approach – year: 2014 ident: 10.1016/j.patcog.2019.06.006_bib0009 article-title: Re-id: hunting attributes in the wild – year: 2018 ident: 10.1016/j.patcog.2019.06.006_bib0032 article-title: Attention-aware compositional network for person re-identification – volume: 17 start-page: 1949 issue: 11 year: 2015 ident: 10.1016/j.patcog.2019.06.006_bib0007 article-title: Multi-task CNN model for attribute prediction publication-title: IEEE Trans. Multim. doi: 10.1109/TMM.2015.2477680 – volume: 25 start-page: 2353 issue: 5 year: 2016 ident: 10.1016/j.patcog.2019.06.006_bib0018 article-title: Deep ranking for person re-identification via joint representation learning publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2545929 – start-page: 1116 year: 2015 ident: 10.1016/j.patcog.2019.06.006_bib0017 article-title: Scalable person re-identification: a benchmark – year: 2019 ident: 10.1016/j.patcog.2019.06.006_sbref0036 article-title: Progressive learning for person re-identification with one example publication-title: IEEE Trans. Image Process. – year: 2018 ident: 10.1016/j.patcog.2019.06.006_bib0053 article-title: Eliminating background-bias for robust person re-identification – start-page: 1100 year: 2018 ident: 10.1016/j.patcog.2019.06.006_bib0042 article-title: Adversarial attribute-image person re-identification – volume: 65 start-page: 238 year: 2017 ident: 10.1016/j.patcog.2019.06.006_bib0003 article-title: Deep linear discriminant analysis on fisher networks: a hybrid architecture for person re-identification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.12.022 – volume: 14 issue: 4 year: 2018 ident: 10.1016/j.patcog.2019.06.006_bib0022 article-title: Unsupervised person re-identification: clustering and fine-tuning publication-title: ACM Trans. Multim. Comput. Commun. Appl. TOMCCAP – start-page: 1 year: 2017 ident: 10.1016/j.patcog.2019.06.006_bib0047 article-title: Multi-region bilinear convolutional neural networks for person re-identification – volume: 75 start-page: 77 year: 2018 ident: 10.1016/j.patcog.2019.06.006_bib0014 article-title: Multi-type attributes driven multi-camera person re-identification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.07.005 – volume: 14 start-page: 13 issue: 1 year: 2017 ident: 10.1016/j.patcog.2019.06.006_bib0020 article-title: A discriminatively learned CNN embedding for person reidentification publication-title: ACM Trans. Multim. Comput.Commun. Appl. – ident: 10.1016/j.patcog.2019.06.006_bib0008 – start-page: 1435 year: 2017 ident: 10.1016/j.patcog.2019.06.006_bib0015 article-title: Person re-identification by deep learning attribute-complementary information – start-page: 770 year: 2016 ident: 10.1016/j.patcog.2019.06.006_bib0021 article-title: Deep residual learning for image recognition – start-page: 2672 year: 2014 ident: 10.1016/j.patcog.2019.06.006_bib0033 article-title: Generative adversarial nets – volume: 73 start-page: 275 year: 2018 ident: 10.1016/j.patcog.2019.06.006_bib0031 article-title: Deep adaptive feature embedding with local sample distributions for person re-identification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.08.029 – year: 2018 ident: 10.1016/j.patcog.2019.06.006_bib0043 article-title: Transferable joint attribute-identity deep learning for unsupervised person re-identification – start-page: 134 year: 2014 ident: 10.1016/j.patcog.2019.06.006_bib0010 article-title: Joint learning for attribute-consistent person re-identification – volume: 124 start-page: 409 issue: 3 year: 2017 ident: 10.1016/j.patcog.2019.06.006_bib0026 article-title: Uncovering the temporal context for video question answering publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-017-1033-7 – year: 2018 ident: 10.1016/j.patcog.2019.06.006_bib0034 article-title: Person transfer gan to bridge domain gap for person re-identification – volume: 2 start-page: 8 year: 2012 ident: 10.1016/j.patcog.2019.06.006_bib0039 article-title: Person re-identification by attributes – volume: 72 start-page: 446 year: 2017 ident: 10.1016/j.patcog.2019.06.006_bib0004 article-title: Multi-modal uniform deep learning for RGB-D person re-identification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.06.037 – volume: 40 start-page: 1167 issue: 5 year: 2018 ident: 10.1016/j.patcog.2019.06.006_bib0012 article-title: Multi-task learning with low rank attribute embedding for multi-camera person re-identification publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2679002 – start-page: 791 year: 2016 ident: 10.1016/j.patcog.2019.06.006_bib0023 article-title: Gated siamese convolutional neural network architecture for human re-identification – volume: 26 start-page: 3492 issue: 7 year: 2017 ident: 10.1016/j.patcog.2019.06.006_bib0002 article-title: End-to-end comparative attention networks for person re-identification publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2700762 – start-page: 2197 year: 2015 ident: 10.1016/j.patcog.2019.06.006_bib0055 article-title: Person re-identification by local maximal occurrence representation and metric learning – volume: 76 start-page: 739 year: 2018 ident: 10.1016/j.patcog.2019.06.006_bib0025 article-title: Deep self-paced learning for person re-identification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.10.005 – start-page: 7398 year: 2017 ident: 10.1016/j.patcog.2019.06.006_bib0050 article-title: Learning deep context-aware features over body and latent parts for person re-identification – start-page: 3908 year: 2015 ident: 10.1016/j.patcog.2019.06.006_bib0030 article-title: An improved deep learning architecture for person re-identification – start-page: 152 year: 2014 ident: 10.1016/j.patcog.2019.06.006_bib0028 article-title: Deepreid: Deep filter pairing neural network for person re-identification – start-page: 3239 year: 2017 ident: 10.1016/j.patcog.2019.06.006_bib0051 article-title: Deeply-learned part-aligned representations for person re-identification |
| SSID | ssj0017142 |
| Score | 2.7295313 |
| Snippet | •We annotate attribute labels on two large-scale person re-identification datasets.•We propose APR to improve re-ID by exploiting global and detailed... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 151 |
| SubjectTerms | Attribute recognition Person re-identification |
| Title | Improving person re-identification by attribute and identity learning |
| URI | https://dx.doi.org/10.1016/j.patcog.2019.06.006 |
| Volume | 95 |
| WOSCitedRecordID | wos000478710600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5cCFlpcoL_nADRklGydOjhXaCqpVVYkiFi5RHI-XVlV2tc2i8u8Ze5wHLOIlcYkia-2NPJ_G39jjbxh7EZkUWTCA0OjrMECJrEBWb0VWYSwx0RZJhlfXn6mTk3w-L07Dhv6VLyegmia_vi5W_9XU2IbGdldn_8Lc_aDYgO9odHyi2fH5R4YftglWnk2_XIM4NyEpiMyNlLNqqdRVOD2g67p9EYnFmLOeeglON07INRpO7mekQPBx045Q9ukzkAOZYeNiqxVfzHJo_7ChEcbbD3ER7uH1e2LdvZghCcn72SQWySQi1wXkWnOVCKRn3_neIh05zzhIz9I6HJNI-5aLp92Gi1crXKqWC5ecV3gF1ugHRW2_Rr8jbUp3VctVR1LqJtudqLRA_7d7-HY6P-5PnFQsSVk-fHl3zdLnAm7_189pzIianO2zOyGm4IeEhbvsBjT32F5Xr4MH932fTXtocIIG34IG1195Dw2O0OAdNHgHjQfs_dH07PUbEcpoiBrjwVa4kEDqKoNUKmknVZooyGuIjEGuBroqstTGNXJfa3IDFiSyOsilBJtoU2tIHrKdZtnAI8YTG-ussk62zUgt8yq2BgN6wKAihwz0AUu6WSnroDHvSp1cll0y4UVJc1m6uSx9TmV2wETfa0UaK7_5veomvAw8kfhfiRj5Zc_H_9zzCbs9oP8p22nXG3jGbtVf2vOr9fMApm8pfJBY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+person+re-identification+by+attribute+and+identity+learning&rft.jtitle=Pattern+recognition&rft.au=Lin%2C+Yutian&rft.au=Zheng%2C+Liang&rft.au=Zheng%2C+Zhedong&rft.au=Wu%2C+Yu&rft.date=2019-11-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=95&rft.spage=151&rft.epage=161&rft_id=info:doi/10.1016%2Fj.patcog.2019.06.006&rft.externalDocID=S0031320319302377 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |