Two-stage voltage regulation in power distribution system using graph convolutional network-based deep reinforcement learning in real time
•A two-stage voltage regulation framework is proposed to alleviate voltage violations.•A mixed-integer second order cone optimization programming (MISOCP) model is proposed for day-head hourly voltage regulation.•A graph reinforcement learning (GRL) method is novelty proposed for intraday voltage re...
Uložené v:
| Vydané v: | International journal of electrical power & energy systems Ročník 151; s. 109158 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.09.2023
|
| Predmet: | |
| ISSN: | 0142-0615, 1879-3517 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •A two-stage voltage regulation framework is proposed to alleviate voltage violations.•A mixed-integer second order cone optimization programming (MISOCP) model is proposed for day-head hourly voltage regulation.•A graph reinforcement learning (GRL) method is novelty proposed for intraday voltage regulation by dispatching reactive power from the PV system smart inverters.•The graph convolutional network coordinated deep deterministic policy gradient (Graph-DDPG) is innovatively proposed to learn the high-efficiency voltage regulation strategy.
The model-based voltage control is widely used to mitigate quick voltage fluctuations caused by renewable energy uncertainties. However, the accurate and complete parameters of the distribution system are rarely available in practice. A two-stage voltage regulation framework based on a mixed-integer second order cone optimization programming (MISOCP) model and graph convolutional network-based deep reinforcement learning (GCN-DRL) is proposed for active distribution system voltage regulation. Specifically, in the day-ahead stage, a MISOCP is proposed for hourly voltage regulation optimization with capacitor banks (CBs), on-load tap changers (OLTC), and energy storage systems (ESS). Then, a GCN-DRL method is proposed in the real-time stage for dispatching reactive power from the intelligent inverters connected to the photovoltaic systems to alleviate the voltage fluctuations. The proposed grid topological graph convolutional network (GTGCN) leverages the distribution system’s graph structure information and the convolutional operation to capture and embed the graphical features among nodal measurements. Then, the deep deterministic policy gradient (DDPG) is innovatively proposed for GCN-DRL to learn the high-efficiency voltage regulation policies, which can be implemented in a real-time manner in practice. The proposed voltage regulation model is investigated on a modified IEEE 33-node distribution system and a 25-node unbalanced distribution system. The numerical results illustrate the high effectiveness and efficiency of the proposed adaptive robust operating model. |
|---|---|
| AbstractList | •A two-stage voltage regulation framework is proposed to alleviate voltage violations.•A mixed-integer second order cone optimization programming (MISOCP) model is proposed for day-head hourly voltage regulation.•A graph reinforcement learning (GRL) method is novelty proposed for intraday voltage regulation by dispatching reactive power from the PV system smart inverters.•The graph convolutional network coordinated deep deterministic policy gradient (Graph-DDPG) is innovatively proposed to learn the high-efficiency voltage regulation strategy.
The model-based voltage control is widely used to mitigate quick voltage fluctuations caused by renewable energy uncertainties. However, the accurate and complete parameters of the distribution system are rarely available in practice. A two-stage voltage regulation framework based on a mixed-integer second order cone optimization programming (MISOCP) model and graph convolutional network-based deep reinforcement learning (GCN-DRL) is proposed for active distribution system voltage regulation. Specifically, in the day-ahead stage, a MISOCP is proposed for hourly voltage regulation optimization with capacitor banks (CBs), on-load tap changers (OLTC), and energy storage systems (ESS). Then, a GCN-DRL method is proposed in the real-time stage for dispatching reactive power from the intelligent inverters connected to the photovoltaic systems to alleviate the voltage fluctuations. The proposed grid topological graph convolutional network (GTGCN) leverages the distribution system’s graph structure information and the convolutional operation to capture and embed the graphical features among nodal measurements. Then, the deep deterministic policy gradient (DDPG) is innovatively proposed for GCN-DRL to learn the high-efficiency voltage regulation policies, which can be implemented in a real-time manner in practice. The proposed voltage regulation model is investigated on a modified IEEE 33-node distribution system and a 25-node unbalanced distribution system. The numerical results illustrate the high effectiveness and efficiency of the proposed adaptive robust operating model. |
| ArticleNumber | 109158 |
| Author | Xu, Xu Zhao, Jian Wang, Minghao Xu, Zhao Wu, Huayi |
| Author_xml | – sequence: 1 givenname: Huayi surname: Wu fullname: Wu, Huayi organization: Research Institute for Smart Energy (RISE), and Department of Electrical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region, China – sequence: 2 givenname: Zhao surname: Xu fullname: Xu, Zhao email: eezhaoxu@polyu.edu.hk organization: Research Institute for Smart Energy (RISE), and Department of Electrical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region, China – sequence: 3 givenname: Minghao surname: Wang fullname: Wang, Minghao organization: Research Institute for Smart Energy (RISE), and Department of Electrical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region, China – sequence: 4 givenname: Jian surname: Zhao fullname: Zhao, Jian organization: College of Electric Engineering, Shanghai University of Electric Power, Shanghai 200000, China – sequence: 5 givenname: Xu surname: Xu fullname: Xu, Xu organization: Research Institute for Smart Energy (RISE), and Department of Electrical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region, China |
| BookMark | eNqFkMtOwzAQRS1UJNrCH7DwD6T4lRcLJFTxkpDYlLXlOJPikNqR7bbqL_DVpA0rFrAa6Y7OHc2ZoYl1FhC6pmRBCc1u2oVpoYewYITxISppWpyhKS3yMuEpzSdoSqhgCcloeoFmIbSEkLwUbIq-VnuXhKjWgHeuO00P622nonEWG4t7twePaxOiN9X2lIZDiLDB22DsGq-96j-wdnbAT2vVYQtx7_xnUqkANa4B-qHU2MZ5DRuwEXegvD3SwwEPAxHNBi7ReaO6AFc_c47eHx9Wy-fk9e3pZXn_mmhOspjkWjPOK17UVabTgpdVI0ouOClrVtCGUg0sLUUjWMY0QJ5ljBAQGauJYFqVfI7E2Ku9C8FDI3tvNsofJCXy6FO2cvQpjz7l6HPAbn9h2sSTpuiV6f6D70YYhsd2BrwM2oDVUBsPOsramb8LvgE_75mA |
| CitedBy_id | crossref_primary_10_1016_j_epsr_2025_111618 crossref_primary_10_1016_j_ress_2025_111599 crossref_primary_10_1109_ACCESS_2024_3403035 crossref_primary_10_1016_j_egyai_2025_100486 crossref_primary_10_1109_TSG_2023_3333789 crossref_primary_10_1109_TSTE_2024_3454080 crossref_primary_10_1142_S0218126625501427 crossref_primary_10_1016_j_segan_2025_101896 crossref_primary_10_1016_j_ijepes_2024_110166 crossref_primary_10_1016_j_ijepes_2024_110376 crossref_primary_10_1109_TSTE_2024_3376369 crossref_primary_10_1016_j_ijepes_2024_110423 crossref_primary_10_1016_j_ress_2025_110804 |
| Cites_doi | 10.1016/j.ijepes.2022.108624 10.1109/TSG.2017.2752234 10.1109/TPWRS.2017.2732443 10.1109/TSG.2020.2968394 10.1109/TSG.2018.2880419 10.1109/TII.2021.3050039 10.1016/j.ijepes.2019.105715 10.1109/TPWRS.2019.2926317 10.1109/TSTE.2015.2494587 10.1109/TSTE.2021.3092961 10.1016/j.ijepes.2019.105749 10.1016/j.ijepes.2021.107936 10.1109/TSG.2020.3000726 10.1016/j.ijepes.2020.106047 10.1109/TSG.2021.3088010 10.1109/TIA.2021.3089446 10.1109/TSG.2019.2962625 10.1016/j.ijepes.2019.06.030 10.1109/TSTE.2022.3211706 10.1109/TII.2018.2856826 10.1049/iet-rpg.2017.0696 10.1109/TIA.2022.3202159 10.1109/TII.2018.2871551 10.1016/j.energy.2022.123223 10.1109/TNNLS.2020.2978386 10.1016/j.apenergy.2019.114331 |
| ContentType | Journal Article |
| Copyright | 2023 |
| Copyright_xml | – notice: 2023 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ijepes.2023.109158 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-3517 |
| ExternalDocumentID | 10_1016_j_ijepes_2023_109158 S0142061523002156 |
| GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHZHX AI. AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSR SST SSV SSZ T5K VH1 WUQ ZMT ZY4 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS GROUPED_DOAJ ~HD |
| ID | FETCH-LOGICAL-c306t-7cc233b38db6c5839bf4934309d281f11ce2594f4262cee766200e462d042ca93 |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000990889800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0142-0615 |
| IngestDate | Sat Nov 29 07:24:44 EST 2025 Tue Nov 18 22:31:42 EST 2025 Fri Feb 23 02:37:29 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep deterministic policy gradient Graph convolutional network Renewable energy Voltage regulation Reinforcement learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-7cc233b38db6c5839bf4934309d281f11ce2594f4262cee766200e462d042ca93 |
| ParticipantIDs | crossref_primary_10_1016_j_ijepes_2023_109158 crossref_citationtrail_10_1016_j_ijepes_2023_109158 elsevier_sciencedirect_doi_10_1016_j_ijepes_2023_109158 |
| PublicationCentury | 2000 |
| PublicationDate | September 2023 2023-09-00 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: September 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of electrical power & energy systems |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Wu Z, Pan S, Chen F et al. A comprehensive survey on graph neural networks. IEEE Trans Neural Netw Learn Syst, Mar 24 2020. Zhang, Guo, Wang (b0065) 2021; 12 Zhang, Xu, Dong (b0125) 2020; 11 Xie, Liu, Wu (b0050) 2020; 118 Wu, Dong, Liu (b0005) 2018; 12 Sun, Qiu (b0090) 2021; 17 Rigo-Mariani, Vai (b0135) 2022; 138 Zhang, Dehghanpour, Wang (b0025) 2018; 10 Song, Zheng, Liu (b0130) 2020; 35 Wang, Du, Fan (b0085) 2021; 12 Zhang, Ochoa, Valverde (b0070) 2018; 33 Zhang, Xu, Dong (b0055) 2019; 10 Zhang, Chen, He (b0080) 2019; 15 Cao, Zhao, Hu (b0095) 2021 Zhang, Xu (b0120) 2020; 11 Wu, Xu, Wang (b0115) 2023; 14 Liu, Li, Rehtanz (b0020) 2019; 113 Wu, Xu, Zhao (b0105) 2022 Ahmadi, Sadeghi, Marzband (b0040) 2022; 245 Wu, Dong, Liu (b0150) 2020; 16 Wu, Ji, Wang (b0060) 2022; 58 Mak, Choeum, Choi (b0015) 2020; 261 Wu, Wang, Xu (b0110) 2022; 58 Ding, Liu, Yuan (b0035) 2016; 7 WM Kipf T N. Semi-Supervised Classification with Graph Convolutional Networks. International Conference on Learning Representations (ICLR); 2017. Tang, Hill, Liu (b0010) 2020; 117 Wang, Song (b0045) 2023; 145 Wang, Yu, Gao (b0100) 2020; 11 Huo, Li, Ji (b0075) 2021 Sheidaei, Ahmarinejad (b0030) 2020; 120 Zhang (10.1016/j.ijepes.2023.109158_b0025) 2018; 10 Wu (10.1016/j.ijepes.2023.109158_b0150) 2020; 16 Ding (10.1016/j.ijepes.2023.109158_b0035) 2016; 7 Zhang (10.1016/j.ijepes.2023.109158_b0065) 2021; 12 Wang (10.1016/j.ijepes.2023.109158_b0045) 2023; 145 Wu (10.1016/j.ijepes.2023.109158_b0115) 2023; 14 Liu (10.1016/j.ijepes.2023.109158_b0020) 2019; 113 Wu (10.1016/j.ijepes.2023.109158_b0060) 2022; 58 Zhang (10.1016/j.ijepes.2023.109158_b0080) 2019; 15 Mak (10.1016/j.ijepes.2023.109158_b0015) 2020; 261 Sheidaei (10.1016/j.ijepes.2023.109158_b0030) 2020; 120 Ahmadi (10.1016/j.ijepes.2023.109158_b0040) 2022; 245 Zhang (10.1016/j.ijepes.2023.109158_b0055) 2019; 10 Wang (10.1016/j.ijepes.2023.109158_b0085) 2021; 12 Huo (10.1016/j.ijepes.2023.109158_b0075) 2021 Song (10.1016/j.ijepes.2023.109158_b0130) 2020; 35 Wu (10.1016/j.ijepes.2023.109158_b0005) 2018; 12 Sun (10.1016/j.ijepes.2023.109158_b0090) 2021; 17 10.1016/j.ijepes.2023.109158_b0145 Wang (10.1016/j.ijepes.2023.109158_b0100) 2020; 11 Wu (10.1016/j.ijepes.2023.109158_b0105) 2022 Zhang (10.1016/j.ijepes.2023.109158_b0070) 2018; 33 Wu (10.1016/j.ijepes.2023.109158_b0110) 2022; 58 Tang (10.1016/j.ijepes.2023.109158_b0010) 2020; 117 Cao (10.1016/j.ijepes.2023.109158_b0095) 2021 Zhang (10.1016/j.ijepes.2023.109158_b0120) 2020; 11 Xie (10.1016/j.ijepes.2023.109158_b0050) 2020; 118 Zhang (10.1016/j.ijepes.2023.109158_b0125) 2020; 11 Rigo-Mariani (10.1016/j.ijepes.2023.109158_b0135) 2022; 138 10.1016/j.ijepes.2023.109158_b0140 |
| References_xml | – volume: 35 start-page: 496 year: 2020 end-page: 507 ident: b0130 article-title: A new formulation of distribution network reconfiguration for reducing the voltage volatility induced by distributed generation publication-title: IEEE Trans Power Syst – volume: 16 start-page: 5655 year: 2020 end-page: 5666 ident: b0150 article-title: Distribution network reconfiguration for loss reduction and voltage stability with random fuzzy uncertainties of renewable energy generation and load publication-title: IEEE Trans Ind Inf – volume: 120 year: 2020 ident: b0030 article-title: Multi-stage stochastic framework for energy management of virtual power plants considering electric vehicles and demand response programs publication-title: Int J Electr Power Energy Syst – volume: 33 start-page: 1566 year: 2018 end-page: 1576 ident: b0070 article-title: A novel voltage sensitivity approach for the decentralized control of DG plants publication-title: IEEE Trans Power Syst – volume: 138 year: 2022 ident: b0135 article-title: An iterative linear DistFLow for dynamic optimization in distributed generation planning studies publication-title: Int J Electr Power Energy Syst – start-page: 1 year: 2021 ident: b0095 article-title: Deep reinforcement learning enabled physical-model-free two-timescale voltage control method for active distribution systems publication-title: IEEE Trans Smart Grid – volume: 17 start-page: 6852 year: 2021 end-page: 6863 ident: b0090 article-title: A Customized voltage control strategy for electric vehicles in distribution networks with reinforcement learning method publication-title: IEEE Trans Ind Inf – volume: 11 start-page: 3008 year: 2020 end-page: 3018 ident: b0100 article-title: Safe off-policy deep reinforcement learning algorithm for volt-VAR control in power distribution systems publication-title: IEEE Trans Smart Grid – volume: 11 start-page: 2942 year: 2020 end-page: 2953 ident: b0120 article-title: Hierarchically-coordinated voltage/VAR control of distribution networks using PV inverters publication-title: IEEE Trans Smart Grid – volume: 117 year: 2020 ident: b0010 article-title: Distributed control of active distribution networks to support voltage control in subtransmission networks publication-title: Int J Electr Power Energy Syst – volume: 113 start-page: 991 year: 2019 end-page: 1001 ident: b0020 article-title: An OLTC-inverter coordinated voltage regulation method for distribution network with high penetration of PV generations publication-title: Int J Electr Power Energy Syst – volume: 118 year: 2020 ident: b0050 article-title: Robust model predictive control based voltage regulation method for a distribution system with renewable energy sources and energy storage systems publication-title: Int J Electr Power Energy Syst – volume: 145 year: 2023 ident: b0045 article-title: Distributionally robust OPF in distribution network considering CVaR-averse voltage security publication-title: Int J Electr Power Energy Syst – volume: 11 start-page: 5288 year: 2020 end-page: 5300 ident: b0125 article-title: Multi-objective adaptive robust voltage/VAR control for High-PV penetrated distribution networks publication-title: IEEE Trans Smart Grid – volume: 12 start-page: 3889 year: 2021 end-page: 3900 ident: b0065 article-title: Distributed optimal conservation voltage reduction in integrated primary-secondary distribution systems publication-title: IEEE Trans Smart Grid – volume: 58 start-page: 2718 year: 2022 end-page: 2727 ident: b0060 article-title: Hydrogen energy storage system for demand forecast error mitigation and voltage stabilization in a fast-charging station publication-title: IEEE Trans Ind Appl – volume: 7 start-page: 301 year: 2016 end-page: 311 ident: b0035 article-title: A two-stage robust reactive power optimization considering uncertain wind power integration in active distribution networks publication-title: IEEE Trans Sustainable Energy – volume: 58 start-page: 7068 year: 2022 end-page: 7078 ident: b0110 article-title: Graph attention enabled convolutional network for distribution system probabilistic power flow publication-title: IEEE Trans Ind Appl – volume: 12 start-page: 2342 year: 2021 end-page: 2352 ident: b0085 article-title: Deep reinforcement scheduling of energy storage systems for real-time voltage regulation in unbalanced LV networks with high PV penetration publication-title: IEEE Trans Sustainable Energy – volume: 10 start-page: 5308 year: 2018 end-page: 5319 ident: b0025 article-title: Distributed CVR in unbalanced distribution systems with PV penetration publication-title: IEEE Trans Smart Grid – volume: 261 year: 2020 ident: b0015 article-title: Sensitivity analysis of volt-VAR optimization to data changes in distribution networks with distributed energy resources publication-title: Appl Energy – reference: WM Kipf T N. Semi-Supervised Classification with Graph Convolutional Networks. International Conference on Learning Representations (ICLR); 2017. – volume: 15 start-page: 2136 year: 2019 end-page: 2145 ident: b0080 article-title: Data-driven-based optimization for power system var-voltage sequential control publication-title: IEEE Trans Ind Inf – start-page: 1 year: 2022 ident: b0105 article-title: Gridtopo-GAN for distribution system topology identification publication-title: IEEE Trans Ind Inf – reference: Wu Z, Pan S, Chen F et al. A comprehensive survey on graph neural networks. IEEE Trans Neural Netw Learn Syst, Mar 24 2020. – start-page: 1 year: 2021 ident: b0075 article-title: Data-driven adaptive operation of soft open points in active distribution networks publication-title: IEEE Trans Ind Inf – volume: 12 start-page: 1180 year: 2018 end-page: 1188 ident: b0005 article-title: Random fuzzy power flow of distribution network with uncertain wind turbine, PV generation, and load based on random fuzzy theory publication-title: IET Renew Power Gener – volume: 10 start-page: 782 year: 2019 end-page: 793 ident: b0055 article-title: Three-Stage robust inverter-based voltage/var control for distribution networks with high-level PV publication-title: IEEE Trans Smart Grid – volume: 245 year: 2022 ident: b0040 article-title: Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies publication-title: Energy – volume: 14 start-page: 297 year: 2023 end-page: 308 ident: b0115 article-title: Unrolled spatiotemporal graph convolutional network for distribution system state estimation and forecasting publication-title: IEEE Trans Sustainable Energy – volume: 145 year: 2023 ident: 10.1016/j.ijepes.2023.109158_b0045 article-title: Distributionally robust OPF in distribution network considering CVaR-averse voltage security publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2022.108624 – volume: 10 start-page: 782 issue: 1 year: 2019 ident: 10.1016/j.ijepes.2023.109158_b0055 article-title: Three-Stage robust inverter-based voltage/var control for distribution networks with high-level PV publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2017.2752234 – volume: 33 start-page: 1566 issue: 2 year: 2018 ident: 10.1016/j.ijepes.2023.109158_b0070 article-title: A novel voltage sensitivity approach for the decentralized control of DG plants publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2017.2732443 – volume: 11 start-page: 2942 issue: 4 year: 2020 ident: 10.1016/j.ijepes.2023.109158_b0120 article-title: Hierarchically-coordinated voltage/VAR control of distribution networks using PV inverters publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2020.2968394 – volume: 10 start-page: 5308 issue: 5 year: 2018 ident: 10.1016/j.ijepes.2023.109158_b0025 article-title: Distributed CVR in unbalanced distribution systems with PV penetration publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2018.2880419 – volume: 17 start-page: 6852 issue: 10 year: 2021 ident: 10.1016/j.ijepes.2023.109158_b0090 article-title: A Customized voltage control strategy for electric vehicles in distribution networks with reinforcement learning method publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2021.3050039 – volume: 117 year: 2020 ident: 10.1016/j.ijepes.2023.109158_b0010 article-title: Distributed control of active distribution networks to support voltage control in subtransmission networks publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2019.105715 – volume: 35 start-page: 496 issue: 1 year: 2020 ident: 10.1016/j.ijepes.2023.109158_b0130 article-title: A new formulation of distribution network reconfiguration for reducing the voltage volatility induced by distributed generation publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2019.2926317 – volume: 7 start-page: 301 issue: 1 year: 2016 ident: 10.1016/j.ijepes.2023.109158_b0035 article-title: A two-stage robust reactive power optimization considering uncertain wind power integration in active distribution networks publication-title: IEEE Trans Sustainable Energy doi: 10.1109/TSTE.2015.2494587 – volume: 12 start-page: 2342 issue: 4 year: 2021 ident: 10.1016/j.ijepes.2023.109158_b0085 article-title: Deep reinforcement scheduling of energy storage systems for real-time voltage regulation in unbalanced LV networks with high PV penetration publication-title: IEEE Trans Sustainable Energy doi: 10.1109/TSTE.2021.3092961 – ident: 10.1016/j.ijepes.2023.109158_b0145 – volume: 118 year: 2020 ident: 10.1016/j.ijepes.2023.109158_b0050 article-title: Robust model predictive control based voltage regulation method for a distribution system with renewable energy sources and energy storage systems publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2019.105749 – volume: 138 year: 2022 ident: 10.1016/j.ijepes.2023.109158_b0135 article-title: An iterative linear DistFLow for dynamic optimization in distributed generation planning studies publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2021.107936 – start-page: 1 year: 2021 ident: 10.1016/j.ijepes.2023.109158_b0075 article-title: Data-driven adaptive operation of soft open points in active distribution networks publication-title: IEEE Trans Ind Inf – volume: 11 start-page: 5288 issue: 6 year: 2020 ident: 10.1016/j.ijepes.2023.109158_b0125 article-title: Multi-objective adaptive robust voltage/VAR control for High-PV penetrated distribution networks publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2020.3000726 – volume: 120 year: 2020 ident: 10.1016/j.ijepes.2023.109158_b0030 article-title: Multi-stage stochastic framework for energy management of virtual power plants considering electric vehicles and demand response programs publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2020.106047 – start-page: 1 year: 2021 ident: 10.1016/j.ijepes.2023.109158_b0095 article-title: Deep reinforcement learning enabled physical-model-free two-timescale voltage control method for active distribution systems publication-title: IEEE Trans Smart Grid – volume: 12 start-page: 3889 issue: 5 year: 2021 ident: 10.1016/j.ijepes.2023.109158_b0065 article-title: Distributed optimal conservation voltage reduction in integrated primary-secondary distribution systems publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2021.3088010 – volume: 58 start-page: 2718 issue: 2 year: 2022 ident: 10.1016/j.ijepes.2023.109158_b0060 article-title: Hydrogen energy storage system for demand forecast error mitigation and voltage stabilization in a fast-charging station publication-title: IEEE Trans Ind Appl doi: 10.1109/TIA.2021.3089446 – volume: 11 start-page: 3008 issue: 4 year: 2020 ident: 10.1016/j.ijepes.2023.109158_b0100 article-title: Safe off-policy deep reinforcement learning algorithm for volt-VAR control in power distribution systems publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2019.2962625 – volume: 113 start-page: 991 year: 2019 ident: 10.1016/j.ijepes.2023.109158_b0020 article-title: An OLTC-inverter coordinated voltage regulation method for distribution network with high penetration of PV generations publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2019.06.030 – start-page: 1 year: 2022 ident: 10.1016/j.ijepes.2023.109158_b0105 article-title: Gridtopo-GAN for distribution system topology identification publication-title: IEEE Trans Ind Inf – volume: 14 start-page: 297 issue: 1 year: 2023 ident: 10.1016/j.ijepes.2023.109158_b0115 article-title: Unrolled spatiotemporal graph convolutional network for distribution system state estimation and forecasting publication-title: IEEE Trans Sustainable Energy doi: 10.1109/TSTE.2022.3211706 – volume: 15 start-page: 2136 issue: 4 year: 2019 ident: 10.1016/j.ijepes.2023.109158_b0080 article-title: Data-driven-based optimization for power system var-voltage sequential control publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2018.2856826 – volume: 12 start-page: 1180 issue: 10 year: 2018 ident: 10.1016/j.ijepes.2023.109158_b0005 article-title: Random fuzzy power flow of distribution network with uncertain wind turbine, PV generation, and load based on random fuzzy theory publication-title: IET Renew Power Gener doi: 10.1049/iet-rpg.2017.0696 – volume: 58 start-page: 7068 issue: 6 year: 2022 ident: 10.1016/j.ijepes.2023.109158_b0110 article-title: Graph attention enabled convolutional network for distribution system probabilistic power flow publication-title: IEEE Trans Ind Appl doi: 10.1109/TIA.2022.3202159 – volume: 16 start-page: 5655 issue: 9 year: 2020 ident: 10.1016/j.ijepes.2023.109158_b0150 article-title: Distribution network reconfiguration for loss reduction and voltage stability with random fuzzy uncertainties of renewable energy generation and load publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2018.2871551 – volume: 245 year: 2022 ident: 10.1016/j.ijepes.2023.109158_b0040 article-title: Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies publication-title: Energy doi: 10.1016/j.energy.2022.123223 – ident: 10.1016/j.ijepes.2023.109158_b0140 doi: 10.1109/TNNLS.2020.2978386 – volume: 261 year: 2020 ident: 10.1016/j.ijepes.2023.109158_b0015 article-title: Sensitivity analysis of volt-VAR optimization to data changes in distribution networks with distributed energy resources publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.114331 |
| SSID | ssj0007942 |
| Score | 2.4876988 |
| Snippet | •A two-stage voltage regulation framework is proposed to alleviate voltage violations.•A mixed-integer second order cone optimization programming (MISOCP)... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 109158 |
| SubjectTerms | Deep deterministic policy gradient Graph convolutional network Reinforcement learning Renewable energy Voltage regulation |
| Title | Two-stage voltage regulation in power distribution system using graph convolutional network-based deep reinforcement learning in real time |
| URI | https://dx.doi.org/10.1016/j.ijepes.2023.109158 |
| Volume | 151 |
| WOSCitedRecordID | wos000990889800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-3517 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007942 issn: 0142-0615 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE-1vOQDt5WrjZ3E8bFCRYBExaFIKy5R_AjsqspG293S_oX-LH4Z41ceFBV64JJdWY5jZT57xpOZbxB6w7UxuaoUEcLUJDV5Qoq8ykiWSSlkNasLKV2xCX58XMzn4vNk8jPmwpyf8qYpLi5E-19FDW0gbJs6ewtxd4NCA_wHocMVxA7XfxP8jxUBk--bmcLO437Xvt58iGpsbV00-2Gmq3UV6JynW-c3cBTWLho9TBOE2PhgcWJ1np7Ci29hUMe5qpx7MRafCOkxLhVlzIIw9jwO-Cp8HR4HFT8zi0XjMxLPBnTqVnFsnaLcVpeL2DR3TV-_V6v-y4DfvT7BbAbNtotDbFwOwdNBWRfK1Ts_qa1EkY1278BX6_dfS3PqqeCvqQbvpVgeLJamNZaonbKDvvuYifs3DdnFLcaQuGXpRyntKKUf5Q7apTwToBx2Dz8czT929gDseNQH0vrZxwROF2V4fTZ_NpAGRs_JQ_QgnFbwoUfZIzQxzWN0f8Bh-QRddXjDAW-4xxteNNhJFQ_xhr1cscMbdnjDI7zhEd6wxRse4Q1HvNkHWLxhi7en6Mu7o5O370ko8EEUnFQ3hCtFGZOs0DJXGZjqsk4FS9lMaFokdZIoA6fztLZVE8CY43kOC92kOdWgalQl2DO006was4ew1mDoGhijpjwVMyNkwiUTutA6KYSu9xGLb7VUgf3eFmE5LW-S6T4i3V2tZ3_5S38eBVYGC9ZbpiWg8MY7n9_ySS_QvX6JvEQ7m_XWvEJ31flmcbZ-HSD4Cx5ryGQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-stage+voltage+regulation+in+power+distribution+system+using+graph+convolutional+network-based+deep+reinforcement+learning+in+real+time&rft.jtitle=International+journal+of+electrical+power+%26+energy+systems&rft.au=Wu%2C+Huayi&rft.au=Xu%2C+Zhao&rft.au=Wang%2C+Minghao&rft.au=Zhao%2C+Jian&rft.date=2023-09-01&rft.issn=0142-0615&rft.volume=151&rft.spage=109158&rft_id=info:doi/10.1016%2Fj.ijepes.2023.109158&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijepes_2023_109158 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-0615&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-0615&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-0615&client=summon |