Two-stage voltage regulation in power distribution system using graph convolutional network-based deep reinforcement learning in real time

•A two-stage voltage regulation framework is proposed to alleviate voltage violations.•A mixed-integer second order cone optimization programming (MISOCP) model is proposed for day-head hourly voltage regulation.•A graph reinforcement learning (GRL) method is novelty proposed for intraday voltage re...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of electrical power & energy systems Ročník 151; s. 109158
Hlavní autori: Wu, Huayi, Xu, Zhao, Wang, Minghao, Zhao, Jian, Xu, Xu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.09.2023
Predmet:
ISSN:0142-0615, 1879-3517
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •A two-stage voltage regulation framework is proposed to alleviate voltage violations.•A mixed-integer second order cone optimization programming (MISOCP) model is proposed for day-head hourly voltage regulation.•A graph reinforcement learning (GRL) method is novelty proposed for intraday voltage regulation by dispatching reactive power from the PV system smart inverters.•The graph convolutional network coordinated deep deterministic policy gradient (Graph-DDPG) is innovatively proposed to learn the high-efficiency voltage regulation strategy. The model-based voltage control is widely used to mitigate quick voltage fluctuations caused by renewable energy uncertainties. However, the accurate and complete parameters of the distribution system are rarely available in practice. A two-stage voltage regulation framework based on a mixed-integer second order cone optimization programming (MISOCP) model and graph convolutional network-based deep reinforcement learning (GCN-DRL) is proposed for active distribution system voltage regulation. Specifically, in the day-ahead stage, a MISOCP is proposed for hourly voltage regulation optimization with capacitor banks (CBs), on-load tap changers (OLTC), and energy storage systems (ESS). Then, a GCN-DRL method is proposed in the real-time stage for dispatching reactive power from the intelligent inverters connected to the photovoltaic systems to alleviate the voltage fluctuations. The proposed grid topological graph convolutional network (GTGCN) leverages the distribution system’s graph structure information and the convolutional operation to capture and embed the graphical features among nodal measurements. Then, the deep deterministic policy gradient (DDPG) is innovatively proposed for GCN-DRL to learn the high-efficiency voltage regulation policies, which can be implemented in a real-time manner in practice. The proposed voltage regulation model is investigated on a modified IEEE 33-node distribution system and a 25-node unbalanced distribution system. The numerical results illustrate the high effectiveness and efficiency of the proposed adaptive robust operating model.
AbstractList •A two-stage voltage regulation framework is proposed to alleviate voltage violations.•A mixed-integer second order cone optimization programming (MISOCP) model is proposed for day-head hourly voltage regulation.•A graph reinforcement learning (GRL) method is novelty proposed for intraday voltage regulation by dispatching reactive power from the PV system smart inverters.•The graph convolutional network coordinated deep deterministic policy gradient (Graph-DDPG) is innovatively proposed to learn the high-efficiency voltage regulation strategy. The model-based voltage control is widely used to mitigate quick voltage fluctuations caused by renewable energy uncertainties. However, the accurate and complete parameters of the distribution system are rarely available in practice. A two-stage voltage regulation framework based on a mixed-integer second order cone optimization programming (MISOCP) model and graph convolutional network-based deep reinforcement learning (GCN-DRL) is proposed for active distribution system voltage regulation. Specifically, in the day-ahead stage, a MISOCP is proposed for hourly voltage regulation optimization with capacitor banks (CBs), on-load tap changers (OLTC), and energy storage systems (ESS). Then, a GCN-DRL method is proposed in the real-time stage for dispatching reactive power from the intelligent inverters connected to the photovoltaic systems to alleviate the voltage fluctuations. The proposed grid topological graph convolutional network (GTGCN) leverages the distribution system’s graph structure information and the convolutional operation to capture and embed the graphical features among nodal measurements. Then, the deep deterministic policy gradient (DDPG) is innovatively proposed for GCN-DRL to learn the high-efficiency voltage regulation policies, which can be implemented in a real-time manner in practice. The proposed voltage regulation model is investigated on a modified IEEE 33-node distribution system and a 25-node unbalanced distribution system. The numerical results illustrate the high effectiveness and efficiency of the proposed adaptive robust operating model.
ArticleNumber 109158
Author Xu, Xu
Zhao, Jian
Wang, Minghao
Xu, Zhao
Wu, Huayi
Author_xml – sequence: 1
  givenname: Huayi
  surname: Wu
  fullname: Wu, Huayi
  organization: Research Institute for Smart Energy (RISE), and Department of Electrical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region, China
– sequence: 2
  givenname: Zhao
  surname: Xu
  fullname: Xu, Zhao
  email: eezhaoxu@polyu.edu.hk
  organization: Research Institute for Smart Energy (RISE), and Department of Electrical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region, China
– sequence: 3
  givenname: Minghao
  surname: Wang
  fullname: Wang, Minghao
  organization: Research Institute for Smart Energy (RISE), and Department of Electrical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region, China
– sequence: 4
  givenname: Jian
  surname: Zhao
  fullname: Zhao, Jian
  organization: College of Electric Engineering, Shanghai University of Electric Power, Shanghai 200000, China
– sequence: 5
  givenname: Xu
  surname: Xu
  fullname: Xu, Xu
  organization: Research Institute for Smart Energy (RISE), and Department of Electrical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region, China
BookMark eNqFkMtOwzAQRS1UJNrCH7DwD6T4lRcLJFTxkpDYlLXlOJPikNqR7bbqL_DVpA0rFrAa6Y7OHc2ZoYl1FhC6pmRBCc1u2oVpoYewYITxISppWpyhKS3yMuEpzSdoSqhgCcloeoFmIbSEkLwUbIq-VnuXhKjWgHeuO00P622nonEWG4t7twePaxOiN9X2lIZDiLDB22DsGq-96j-wdnbAT2vVYQtx7_xnUqkANa4B-qHU2MZ5DRuwEXegvD3SwwEPAxHNBi7ReaO6AFc_c47eHx9Wy-fk9e3pZXn_mmhOspjkWjPOK17UVabTgpdVI0ouOClrVtCGUg0sLUUjWMY0QJ5ljBAQGauJYFqVfI7E2Ku9C8FDI3tvNsofJCXy6FO2cvQpjz7l6HPAbn9h2sSTpuiV6f6D70YYhsd2BrwM2oDVUBsPOsramb8LvgE_75mA
CitedBy_id crossref_primary_10_1016_j_epsr_2025_111618
crossref_primary_10_1016_j_ress_2025_111599
crossref_primary_10_1109_ACCESS_2024_3403035
crossref_primary_10_1016_j_egyai_2025_100486
crossref_primary_10_1109_TSG_2023_3333789
crossref_primary_10_1109_TSTE_2024_3454080
crossref_primary_10_1142_S0218126625501427
crossref_primary_10_1016_j_segan_2025_101896
crossref_primary_10_1016_j_ijepes_2024_110166
crossref_primary_10_1016_j_ijepes_2024_110376
crossref_primary_10_1109_TSTE_2024_3376369
crossref_primary_10_1016_j_ijepes_2024_110423
crossref_primary_10_1016_j_ress_2025_110804
Cites_doi 10.1016/j.ijepes.2022.108624
10.1109/TSG.2017.2752234
10.1109/TPWRS.2017.2732443
10.1109/TSG.2020.2968394
10.1109/TSG.2018.2880419
10.1109/TII.2021.3050039
10.1016/j.ijepes.2019.105715
10.1109/TPWRS.2019.2926317
10.1109/TSTE.2015.2494587
10.1109/TSTE.2021.3092961
10.1016/j.ijepes.2019.105749
10.1016/j.ijepes.2021.107936
10.1109/TSG.2020.3000726
10.1016/j.ijepes.2020.106047
10.1109/TSG.2021.3088010
10.1109/TIA.2021.3089446
10.1109/TSG.2019.2962625
10.1016/j.ijepes.2019.06.030
10.1109/TSTE.2022.3211706
10.1109/TII.2018.2856826
10.1049/iet-rpg.2017.0696
10.1109/TIA.2022.3202159
10.1109/TII.2018.2871551
10.1016/j.energy.2022.123223
10.1109/TNNLS.2020.2978386
10.1016/j.apenergy.2019.114331
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.ijepes.2023.109158
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3517
ExternalDocumentID 10_1016_j_ijepes_2023_109158
S0142061523002156
GroupedDBID --K
--M
.~1
0R~
0SF
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSV
SSZ
T5K
VH1
WUQ
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
GROUPED_DOAJ
~HD
ID FETCH-LOGICAL-c306t-7cc233b38db6c5839bf4934309d281f11ce2594f4262cee766200e462d042ca93
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000990889800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0142-0615
IngestDate Sat Nov 29 07:24:44 EST 2025
Tue Nov 18 22:31:42 EST 2025
Fri Feb 23 02:37:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep deterministic policy gradient
Graph convolutional network
Renewable energy
Voltage regulation
Reinforcement learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-7cc233b38db6c5839bf4934309d281f11ce2594f4262cee766200e462d042ca93
ParticipantIDs crossref_primary_10_1016_j_ijepes_2023_109158
crossref_citationtrail_10_1016_j_ijepes_2023_109158
elsevier_sciencedirect_doi_10_1016_j_ijepes_2023_109158
PublicationCentury 2000
PublicationDate September 2023
2023-09-00
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: September 2023
PublicationDecade 2020
PublicationTitle International journal of electrical power & energy systems
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wu Z, Pan S, Chen F et al. A comprehensive survey on graph neural networks. IEEE Trans Neural Netw Learn Syst, Mar 24 2020.
Zhang, Guo, Wang (b0065) 2021; 12
Zhang, Xu, Dong (b0125) 2020; 11
Xie, Liu, Wu (b0050) 2020; 118
Wu, Dong, Liu (b0005) 2018; 12
Sun, Qiu (b0090) 2021; 17
Rigo-Mariani, Vai (b0135) 2022; 138
Zhang, Dehghanpour, Wang (b0025) 2018; 10
Song, Zheng, Liu (b0130) 2020; 35
Wang, Du, Fan (b0085) 2021; 12
Zhang, Ochoa, Valverde (b0070) 2018; 33
Zhang, Xu, Dong (b0055) 2019; 10
Zhang, Chen, He (b0080) 2019; 15
Cao, Zhao, Hu (b0095) 2021
Zhang, Xu (b0120) 2020; 11
Wu, Xu, Wang (b0115) 2023; 14
Liu, Li, Rehtanz (b0020) 2019; 113
Wu, Xu, Zhao (b0105) 2022
Ahmadi, Sadeghi, Marzband (b0040) 2022; 245
Wu, Dong, Liu (b0150) 2020; 16
Wu, Ji, Wang (b0060) 2022; 58
Mak, Choeum, Choi (b0015) 2020; 261
Wu, Wang, Xu (b0110) 2022; 58
Ding, Liu, Yuan (b0035) 2016; 7
WM Kipf T N. Semi-Supervised Classification with Graph Convolutional Networks. International Conference on Learning Representations (ICLR); 2017.
Tang, Hill, Liu (b0010) 2020; 117
Wang, Song (b0045) 2023; 145
Wang, Yu, Gao (b0100) 2020; 11
Huo, Li, Ji (b0075) 2021
Sheidaei, Ahmarinejad (b0030) 2020; 120
Zhang (10.1016/j.ijepes.2023.109158_b0025) 2018; 10
Wu (10.1016/j.ijepes.2023.109158_b0150) 2020; 16
Ding (10.1016/j.ijepes.2023.109158_b0035) 2016; 7
Zhang (10.1016/j.ijepes.2023.109158_b0065) 2021; 12
Wang (10.1016/j.ijepes.2023.109158_b0045) 2023; 145
Wu (10.1016/j.ijepes.2023.109158_b0115) 2023; 14
Liu (10.1016/j.ijepes.2023.109158_b0020) 2019; 113
Wu (10.1016/j.ijepes.2023.109158_b0060) 2022; 58
Zhang (10.1016/j.ijepes.2023.109158_b0080) 2019; 15
Mak (10.1016/j.ijepes.2023.109158_b0015) 2020; 261
Sheidaei (10.1016/j.ijepes.2023.109158_b0030) 2020; 120
Ahmadi (10.1016/j.ijepes.2023.109158_b0040) 2022; 245
Zhang (10.1016/j.ijepes.2023.109158_b0055) 2019; 10
Wang (10.1016/j.ijepes.2023.109158_b0085) 2021; 12
Huo (10.1016/j.ijepes.2023.109158_b0075) 2021
Song (10.1016/j.ijepes.2023.109158_b0130) 2020; 35
Wu (10.1016/j.ijepes.2023.109158_b0005) 2018; 12
Sun (10.1016/j.ijepes.2023.109158_b0090) 2021; 17
10.1016/j.ijepes.2023.109158_b0145
Wang (10.1016/j.ijepes.2023.109158_b0100) 2020; 11
Wu (10.1016/j.ijepes.2023.109158_b0105) 2022
Zhang (10.1016/j.ijepes.2023.109158_b0070) 2018; 33
Wu (10.1016/j.ijepes.2023.109158_b0110) 2022; 58
Tang (10.1016/j.ijepes.2023.109158_b0010) 2020; 117
Cao (10.1016/j.ijepes.2023.109158_b0095) 2021
Zhang (10.1016/j.ijepes.2023.109158_b0120) 2020; 11
Xie (10.1016/j.ijepes.2023.109158_b0050) 2020; 118
Zhang (10.1016/j.ijepes.2023.109158_b0125) 2020; 11
Rigo-Mariani (10.1016/j.ijepes.2023.109158_b0135) 2022; 138
10.1016/j.ijepes.2023.109158_b0140
References_xml – volume: 35
  start-page: 496
  year: 2020
  end-page: 507
  ident: b0130
  article-title: A new formulation of distribution network reconfiguration for reducing the voltage volatility induced by distributed generation
  publication-title: IEEE Trans Power Syst
– volume: 16
  start-page: 5655
  year: 2020
  end-page: 5666
  ident: b0150
  article-title: Distribution network reconfiguration for loss reduction and voltage stability with random fuzzy uncertainties of renewable energy generation and load
  publication-title: IEEE Trans Ind Inf
– volume: 120
  year: 2020
  ident: b0030
  article-title: Multi-stage stochastic framework for energy management of virtual power plants considering electric vehicles and demand response programs
  publication-title: Int J Electr Power Energy Syst
– volume: 33
  start-page: 1566
  year: 2018
  end-page: 1576
  ident: b0070
  article-title: A novel voltage sensitivity approach for the decentralized control of DG plants
  publication-title: IEEE Trans Power Syst
– volume: 138
  year: 2022
  ident: b0135
  article-title: An iterative linear DistFLow for dynamic optimization in distributed generation planning studies
  publication-title: Int J Electr Power Energy Syst
– start-page: 1
  year: 2021
  ident: b0095
  article-title: Deep reinforcement learning enabled physical-model-free two-timescale voltage control method for active distribution systems
  publication-title: IEEE Trans Smart Grid
– volume: 17
  start-page: 6852
  year: 2021
  end-page: 6863
  ident: b0090
  article-title: A Customized voltage control strategy for electric vehicles in distribution networks with reinforcement learning method
  publication-title: IEEE Trans Ind Inf
– volume: 11
  start-page: 3008
  year: 2020
  end-page: 3018
  ident: b0100
  article-title: Safe off-policy deep reinforcement learning algorithm for volt-VAR control in power distribution systems
  publication-title: IEEE Trans Smart Grid
– volume: 11
  start-page: 2942
  year: 2020
  end-page: 2953
  ident: b0120
  article-title: Hierarchically-coordinated voltage/VAR control of distribution networks using PV inverters
  publication-title: IEEE Trans Smart Grid
– volume: 117
  year: 2020
  ident: b0010
  article-title: Distributed control of active distribution networks to support voltage control in subtransmission networks
  publication-title: Int J Electr Power Energy Syst
– volume: 113
  start-page: 991
  year: 2019
  end-page: 1001
  ident: b0020
  article-title: An OLTC-inverter coordinated voltage regulation method for distribution network with high penetration of PV generations
  publication-title: Int J Electr Power Energy Syst
– volume: 118
  year: 2020
  ident: b0050
  article-title: Robust model predictive control based voltage regulation method for a distribution system with renewable energy sources and energy storage systems
  publication-title: Int J Electr Power Energy Syst
– volume: 145
  year: 2023
  ident: b0045
  article-title: Distributionally robust OPF in distribution network considering CVaR-averse voltage security
  publication-title: Int J Electr Power Energy Syst
– volume: 11
  start-page: 5288
  year: 2020
  end-page: 5300
  ident: b0125
  article-title: Multi-objective adaptive robust voltage/VAR control for High-PV penetrated distribution networks
  publication-title: IEEE Trans Smart Grid
– volume: 12
  start-page: 3889
  year: 2021
  end-page: 3900
  ident: b0065
  article-title: Distributed optimal conservation voltage reduction in integrated primary-secondary distribution systems
  publication-title: IEEE Trans Smart Grid
– volume: 58
  start-page: 2718
  year: 2022
  end-page: 2727
  ident: b0060
  article-title: Hydrogen energy storage system for demand forecast error mitigation and voltage stabilization in a fast-charging station
  publication-title: IEEE Trans Ind Appl
– volume: 7
  start-page: 301
  year: 2016
  end-page: 311
  ident: b0035
  article-title: A two-stage robust reactive power optimization considering uncertain wind power integration in active distribution networks
  publication-title: IEEE Trans Sustainable Energy
– volume: 58
  start-page: 7068
  year: 2022
  end-page: 7078
  ident: b0110
  article-title: Graph attention enabled convolutional network for distribution system probabilistic power flow
  publication-title: IEEE Trans Ind Appl
– volume: 12
  start-page: 2342
  year: 2021
  end-page: 2352
  ident: b0085
  article-title: Deep reinforcement scheduling of energy storage systems for real-time voltage regulation in unbalanced LV networks with high PV penetration
  publication-title: IEEE Trans Sustainable Energy
– volume: 10
  start-page: 5308
  year: 2018
  end-page: 5319
  ident: b0025
  article-title: Distributed CVR in unbalanced distribution systems with PV penetration
  publication-title: IEEE Trans Smart Grid
– volume: 261
  year: 2020
  ident: b0015
  article-title: Sensitivity analysis of volt-VAR optimization to data changes in distribution networks with distributed energy resources
  publication-title: Appl Energy
– reference: WM Kipf T N. Semi-Supervised Classification with Graph Convolutional Networks. International Conference on Learning Representations (ICLR); 2017.
– volume: 15
  start-page: 2136
  year: 2019
  end-page: 2145
  ident: b0080
  article-title: Data-driven-based optimization for power system var-voltage sequential control
  publication-title: IEEE Trans Ind Inf
– start-page: 1
  year: 2022
  ident: b0105
  article-title: Gridtopo-GAN for distribution system topology identification
  publication-title: IEEE Trans Ind Inf
– reference: Wu Z, Pan S, Chen F et al. A comprehensive survey on graph neural networks. IEEE Trans Neural Netw Learn Syst, Mar 24 2020.
– start-page: 1
  year: 2021
  ident: b0075
  article-title: Data-driven adaptive operation of soft open points in active distribution networks
  publication-title: IEEE Trans Ind Inf
– volume: 12
  start-page: 1180
  year: 2018
  end-page: 1188
  ident: b0005
  article-title: Random fuzzy power flow of distribution network with uncertain wind turbine, PV generation, and load based on random fuzzy theory
  publication-title: IET Renew Power Gener
– volume: 10
  start-page: 782
  year: 2019
  end-page: 793
  ident: b0055
  article-title: Three-Stage robust inverter-based voltage/var control for distribution networks with high-level PV
  publication-title: IEEE Trans Smart Grid
– volume: 245
  year: 2022
  ident: b0040
  article-title: Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies
  publication-title: Energy
– volume: 14
  start-page: 297
  year: 2023
  end-page: 308
  ident: b0115
  article-title: Unrolled spatiotemporal graph convolutional network for distribution system state estimation and forecasting
  publication-title: IEEE Trans Sustainable Energy
– volume: 145
  year: 2023
  ident: 10.1016/j.ijepes.2023.109158_b0045
  article-title: Distributionally robust OPF in distribution network considering CVaR-averse voltage security
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2022.108624
– volume: 10
  start-page: 782
  issue: 1
  year: 2019
  ident: 10.1016/j.ijepes.2023.109158_b0055
  article-title: Three-Stage robust inverter-based voltage/var control for distribution networks with high-level PV
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2017.2752234
– volume: 33
  start-page: 1566
  issue: 2
  year: 2018
  ident: 10.1016/j.ijepes.2023.109158_b0070
  article-title: A novel voltage sensitivity approach for the decentralized control of DG plants
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2017.2732443
– volume: 11
  start-page: 2942
  issue: 4
  year: 2020
  ident: 10.1016/j.ijepes.2023.109158_b0120
  article-title: Hierarchically-coordinated voltage/VAR control of distribution networks using PV inverters
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2020.2968394
– volume: 10
  start-page: 5308
  issue: 5
  year: 2018
  ident: 10.1016/j.ijepes.2023.109158_b0025
  article-title: Distributed CVR in unbalanced distribution systems with PV penetration
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2018.2880419
– volume: 17
  start-page: 6852
  issue: 10
  year: 2021
  ident: 10.1016/j.ijepes.2023.109158_b0090
  article-title: A Customized voltage control strategy for electric vehicles in distribution networks with reinforcement learning method
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2021.3050039
– volume: 117
  year: 2020
  ident: 10.1016/j.ijepes.2023.109158_b0010
  article-title: Distributed control of active distribution networks to support voltage control in subtransmission networks
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2019.105715
– volume: 35
  start-page: 496
  issue: 1
  year: 2020
  ident: 10.1016/j.ijepes.2023.109158_b0130
  article-title: A new formulation of distribution network reconfiguration for reducing the voltage volatility induced by distributed generation
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2019.2926317
– volume: 7
  start-page: 301
  issue: 1
  year: 2016
  ident: 10.1016/j.ijepes.2023.109158_b0035
  article-title: A two-stage robust reactive power optimization considering uncertain wind power integration in active distribution networks
  publication-title: IEEE Trans Sustainable Energy
  doi: 10.1109/TSTE.2015.2494587
– volume: 12
  start-page: 2342
  issue: 4
  year: 2021
  ident: 10.1016/j.ijepes.2023.109158_b0085
  article-title: Deep reinforcement scheduling of energy storage systems for real-time voltage regulation in unbalanced LV networks with high PV penetration
  publication-title: IEEE Trans Sustainable Energy
  doi: 10.1109/TSTE.2021.3092961
– ident: 10.1016/j.ijepes.2023.109158_b0145
– volume: 118
  year: 2020
  ident: 10.1016/j.ijepes.2023.109158_b0050
  article-title: Robust model predictive control based voltage regulation method for a distribution system with renewable energy sources and energy storage systems
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2019.105749
– volume: 138
  year: 2022
  ident: 10.1016/j.ijepes.2023.109158_b0135
  article-title: An iterative linear DistFLow for dynamic optimization in distributed generation planning studies
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2021.107936
– start-page: 1
  year: 2021
  ident: 10.1016/j.ijepes.2023.109158_b0075
  article-title: Data-driven adaptive operation of soft open points in active distribution networks
  publication-title: IEEE Trans Ind Inf
– volume: 11
  start-page: 5288
  issue: 6
  year: 2020
  ident: 10.1016/j.ijepes.2023.109158_b0125
  article-title: Multi-objective adaptive robust voltage/VAR control for High-PV penetrated distribution networks
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2020.3000726
– volume: 120
  year: 2020
  ident: 10.1016/j.ijepes.2023.109158_b0030
  article-title: Multi-stage stochastic framework for energy management of virtual power plants considering electric vehicles and demand response programs
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2020.106047
– start-page: 1
  year: 2021
  ident: 10.1016/j.ijepes.2023.109158_b0095
  article-title: Deep reinforcement learning enabled physical-model-free two-timescale voltage control method for active distribution systems
  publication-title: IEEE Trans Smart Grid
– volume: 12
  start-page: 3889
  issue: 5
  year: 2021
  ident: 10.1016/j.ijepes.2023.109158_b0065
  article-title: Distributed optimal conservation voltage reduction in integrated primary-secondary distribution systems
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2021.3088010
– volume: 58
  start-page: 2718
  issue: 2
  year: 2022
  ident: 10.1016/j.ijepes.2023.109158_b0060
  article-title: Hydrogen energy storage system for demand forecast error mitigation and voltage stabilization in a fast-charging station
  publication-title: IEEE Trans Ind Appl
  doi: 10.1109/TIA.2021.3089446
– volume: 11
  start-page: 3008
  issue: 4
  year: 2020
  ident: 10.1016/j.ijepes.2023.109158_b0100
  article-title: Safe off-policy deep reinforcement learning algorithm for volt-VAR control in power distribution systems
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2019.2962625
– volume: 113
  start-page: 991
  year: 2019
  ident: 10.1016/j.ijepes.2023.109158_b0020
  article-title: An OLTC-inverter coordinated voltage regulation method for distribution network with high penetration of PV generations
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2019.06.030
– start-page: 1
  year: 2022
  ident: 10.1016/j.ijepes.2023.109158_b0105
  article-title: Gridtopo-GAN for distribution system topology identification
  publication-title: IEEE Trans Ind Inf
– volume: 14
  start-page: 297
  issue: 1
  year: 2023
  ident: 10.1016/j.ijepes.2023.109158_b0115
  article-title: Unrolled spatiotemporal graph convolutional network for distribution system state estimation and forecasting
  publication-title: IEEE Trans Sustainable Energy
  doi: 10.1109/TSTE.2022.3211706
– volume: 15
  start-page: 2136
  issue: 4
  year: 2019
  ident: 10.1016/j.ijepes.2023.109158_b0080
  article-title: Data-driven-based optimization for power system var-voltage sequential control
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2018.2856826
– volume: 12
  start-page: 1180
  issue: 10
  year: 2018
  ident: 10.1016/j.ijepes.2023.109158_b0005
  article-title: Random fuzzy power flow of distribution network with uncertain wind turbine, PV generation, and load based on random fuzzy theory
  publication-title: IET Renew Power Gener
  doi: 10.1049/iet-rpg.2017.0696
– volume: 58
  start-page: 7068
  issue: 6
  year: 2022
  ident: 10.1016/j.ijepes.2023.109158_b0110
  article-title: Graph attention enabled convolutional network for distribution system probabilistic power flow
  publication-title: IEEE Trans Ind Appl
  doi: 10.1109/TIA.2022.3202159
– volume: 16
  start-page: 5655
  issue: 9
  year: 2020
  ident: 10.1016/j.ijepes.2023.109158_b0150
  article-title: Distribution network reconfiguration for loss reduction and voltage stability with random fuzzy uncertainties of renewable energy generation and load
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2018.2871551
– volume: 245
  year: 2022
  ident: 10.1016/j.ijepes.2023.109158_b0040
  article-title: Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123223
– ident: 10.1016/j.ijepes.2023.109158_b0140
  doi: 10.1109/TNNLS.2020.2978386
– volume: 261
  year: 2020
  ident: 10.1016/j.ijepes.2023.109158_b0015
  article-title: Sensitivity analysis of volt-VAR optimization to data changes in distribution networks with distributed energy resources
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114331
SSID ssj0007942
Score 2.4876988
Snippet •A two-stage voltage regulation framework is proposed to alleviate voltage violations.•A mixed-integer second order cone optimization programming (MISOCP)...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109158
SubjectTerms Deep deterministic policy gradient
Graph convolutional network
Reinforcement learning
Renewable energy
Voltage regulation
Title Two-stage voltage regulation in power distribution system using graph convolutional network-based deep reinforcement learning in real time
URI https://dx.doi.org/10.1016/j.ijepes.2023.109158
Volume 151
WOSCitedRecordID wos000990889800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-3517
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007942
  issn: 0142-0615
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE-1vOQDt5WrjZ3E8bFCRYBExaFIKy5R_AjsqspG293S_oX-LH4Z41ceFBV64JJdWY5jZT57xpOZbxB6w7UxuaoUEcLUJDV5Qoq8ykiWSSlkNasLKV2xCX58XMzn4vNk8jPmwpyf8qYpLi5E-19FDW0gbJs6ewtxd4NCA_wHocMVxA7XfxP8jxUBk--bmcLO437Xvt58iGpsbV00-2Gmq3UV6JynW-c3cBTWLho9TBOE2PhgcWJ1np7Ci29hUMe5qpx7MRafCOkxLhVlzIIw9jwO-Cp8HR4HFT8zi0XjMxLPBnTqVnFsnaLcVpeL2DR3TV-_V6v-y4DfvT7BbAbNtotDbFwOwdNBWRfK1Ts_qa1EkY1278BX6_dfS3PqqeCvqQbvpVgeLJamNZaonbKDvvuYifs3DdnFLcaQuGXpRyntKKUf5Q7apTwToBx2Dz8czT929gDseNQH0vrZxwROF2V4fTZ_NpAGRs_JQ_QgnFbwoUfZIzQxzWN0f8Bh-QRddXjDAW-4xxteNNhJFQ_xhr1cscMbdnjDI7zhEd6wxRse4Q1HvNkHWLxhi7en6Mu7o5O370ko8EEUnFQ3hCtFGZOs0DJXGZjqsk4FS9lMaFokdZIoA6fztLZVE8CY43kOC92kOdWgalQl2DO006was4ew1mDoGhijpjwVMyNkwiUTutA6KYSu9xGLb7VUgf3eFmE5LW-S6T4i3V2tZ3_5S38eBVYGC9ZbpiWg8MY7n9_ySS_QvX6JvEQ7m_XWvEJ31flmcbZ-HSD4Cx5ryGQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-stage+voltage+regulation+in+power+distribution+system+using+graph+convolutional+network-based+deep+reinforcement+learning+in+real+time&rft.jtitle=International+journal+of+electrical+power+%26+energy+systems&rft.au=Wu%2C+Huayi&rft.au=Xu%2C+Zhao&rft.au=Wang%2C+Minghao&rft.au=Zhao%2C+Jian&rft.date=2023-09-01&rft.issn=0142-0615&rft.volume=151&rft.spage=109158&rft_id=info:doi/10.1016%2Fj.ijepes.2023.109158&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijepes_2023_109158
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-0615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-0615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-0615&client=summon