pipsCloud: High performance cloud computing for remote sensing big data management and processing

Massive, large-region coverage, multi-temporal, multi-spectral remote sensing (RS) datasets are employed widely due to the increasing requirements for accurate and up-to-date information about resources and the environment for regional and global monitoring. In general, RS data processing involves a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Future generation computer systems Ročník 78; s. 353 - 368
Hlavní autoři: Wang, Lizhe, Ma, Yan, Yan, Jining, Chang, Victor, Zomaya, Albert Y.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.01.2018
Témata:
ISSN:0167-739X, 1872-7115
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Massive, large-region coverage, multi-temporal, multi-spectral remote sensing (RS) datasets are employed widely due to the increasing requirements for accurate and up-to-date information about resources and the environment for regional and global monitoring. In general, RS data processing involves a complex multi-stage processing sequence, which comprises several independent processing steps according to the type of RS application. RS data processing for regional environmental and disaster monitoring is recognized as being computationally intensive and data intensive. We propose pipsCloud to address these issues in an efficient manner, which combines recent cloud computing and HPC techniques to obtain a large-scale RS data processing system that is suitable for on-demand real-time services. Due to the ubiquity, elasticity, and high-level transparency of the cloud computing model, massive RS data management and data processing for dynamic environmental monitoring can all be performed on the cloud via Web interfaces. A Hilbert-R+-based data indexing method is employed for the optimal querying and access of RS images, RS data products, and interim data. In the core platform beneath the cloud services, we provide a parallel file system for massive high-dimensional RS data, as well as interfaces for accessing irregular RS data to improve data locality and optimize the I/O performance. Moreover, we use an adaptive RS data analysis workflow management system for on-demand workflow construction and the collaborative processing of a distributed complex chain of RS data, e.g., for forest fire detection, mineral resources detection, and coastline monitoring. Our experimental analysis demonstrated the efficiency of the pipsCloud platform. •A Cloud-enabled HPC platform for large-scale RS applications.•Hilbert-R+ Tree based data indexing for optimal RS big data indexing.•Collaborative large-scale RS workflow processing across data centers.•Cloud-enabled virtual HPC environment with VMs and bare-metal provisioning.
AbstractList Massive, large-region coverage, multi-temporal, multi-spectral remote sensing (RS) datasets are employed widely due to the increasing requirements for accurate and up-to-date information about resources and the environment for regional and global monitoring. In general, RS data processing involves a complex multi-stage processing sequence, which comprises several independent processing steps according to the type of RS application. RS data processing for regional environmental and disaster monitoring is recognized as being computationally intensive and data intensive. We propose pipsCloud to address these issues in an efficient manner, which combines recent cloud computing and HPC techniques to obtain a large-scale RS data processing system that is suitable for on-demand real-time services. Due to the ubiquity, elasticity, and high-level transparency of the cloud computing model, massive RS data management and data processing for dynamic environmental monitoring can all be performed on the cloud via Web interfaces. A Hilbert-R+-based data indexing method is employed for the optimal querying and access of RS images, RS data products, and interim data. In the core platform beneath the cloud services, we provide a parallel file system for massive high-dimensional RS data, as well as interfaces for accessing irregular RS data to improve data locality and optimize the I/O performance. Moreover, we use an adaptive RS data analysis workflow management system for on-demand workflow construction and the collaborative processing of a distributed complex chain of RS data, e.g., for forest fire detection, mineral resources detection, and coastline monitoring. Our experimental analysis demonstrated the efficiency of the pipsCloud platform. •A Cloud-enabled HPC platform for large-scale RS applications.•Hilbert-R+ Tree based data indexing for optimal RS big data indexing.•Collaborative large-scale RS workflow processing across data centers.•Cloud-enabled virtual HPC environment with VMs and bare-metal provisioning.
Author Wang, Lizhe
Zomaya, Albert Y.
Yan, Jining
Chang, Victor
Ma, Yan
Author_xml – sequence: 1
  givenname: Lizhe
  orcidid: 0000-0003-2766-0845
  surname: Wang
  fullname: Wang, Lizhe
  organization: School of Computer Science, China University of Geoscience, Wuhan 430074, PR China
– sequence: 2
  givenname: Yan
  surname: Ma
  fullname: Ma, Yan
  email: mayan@radi.ac.cn
  organization: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, PR China
– sequence: 3
  givenname: Jining
  surname: Yan
  fullname: Yan, Jining
  organization: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, PR China
– sequence: 4
  givenname: Victor
  surname: Chang
  fullname: Chang, Victor
  organization: Xi’an Jiaotong-Liverpool University, Suzhou, PR China
– sequence: 5
  givenname: Albert Y.
  surname: Zomaya
  fullname: Zomaya, Albert Y.
  organization: School of Information Technologies, University of Sydney, Australia
BookMark eNqFkN1KxDAQhYOs4O7qG3iRF-ia9C_tXgiy-AcL3ih4F9LptGbZJiVJBd_elPXKC4WBYWbOd2DOiiyMNUjINWcbznh5c9h0U5gcbtI4bVgsVp-RJa9EmgjOiwVZxoNIRFa_X5CV9wfGGBcZXxI16tHvjnZqt_RJ9x90RNdZNygDSGHeU7DDOAVtehoP1OFgA1KPxs-rRve0VUHRSKgeBzSBKtPS0VlAP0suyXmnjh6vfvqavD3cv-6ekv3L4_Pubp9AxsqQCMjrEkHlWVXyumOclZ2ClreiaJoK86oqSlZW0LSATQplpgqWQsO5KKKogmxN8pMvOOu9w06OTg_KfUnO5ByTPMhTTHKOSbJYrI7Y9hcGOqigrQlO6eN_8O0JxvjYp0YnPWiM0bXaIQTZWv23wTcwdYsM
CitedBy_id crossref_primary_10_1080_10095020_2025_2505556
crossref_primary_10_1109_ACCESS_2020_2992748
crossref_primary_10_1007_s10586_020_03197_w
crossref_primary_10_1016_j_future_2017_09_012
crossref_primary_10_1016_j_jksuci_2019_09_006
crossref_primary_10_1016_j_future_2018_05_082
crossref_primary_10_1109_ACCESS_2018_2810882
crossref_primary_10_1016_j_measen_2023_100991
crossref_primary_10_1016_j_knosys_2020_106677
crossref_primary_10_1080_17538947_2024_2313099
crossref_primary_10_3390_rs11232881
crossref_primary_10_1002_cpe_6096
crossref_primary_10_1109_JSTARS_2024_3481248
crossref_primary_10_3390_app10196676
crossref_primary_10_1007_s11069_024_06815_7
crossref_primary_10_3390_rs10010074
crossref_primary_10_3390_rs14030572
crossref_primary_10_1007_s10586_017_1477_0
crossref_primary_10_1016_j_ins_2019_07_092
crossref_primary_10_1016_j_knosys_2022_109496
crossref_primary_10_1007_s12652_021_02925_3
crossref_primary_10_1007_s10796_021_10132_w
crossref_primary_10_1016_j_future_2020_09_024
crossref_primary_10_1016_j_jpdc_2019_10_006
crossref_primary_10_1109_TSC_2019_2961082
crossref_primary_10_3390_data5030080
crossref_primary_10_1109_JSTARS_2022_3176612
crossref_primary_10_1007_s10586_017_1001_6
crossref_primary_10_1007_s11042_019_07797_6
crossref_primary_10_1109_TNET_2021_3107413
crossref_primary_10_32604_cmes_2023_024871
crossref_primary_10_1109_ACCESS_2019_2900889
crossref_primary_10_1007_s11554_021_01099_7
crossref_primary_10_1109_TSC_2021_3106260
crossref_primary_10_3390_rs12040607
crossref_primary_10_1002_spe_2631
crossref_primary_10_1016_j_procir_2019_04_092
crossref_primary_10_1007_s00521_021_06332_9
crossref_primary_10_1007_s11042_016_4167_7
crossref_primary_10_1016_j_rser_2025_116019
crossref_primary_10_1017_jmo_2022_17
crossref_primary_10_1016_j_future_2018_01_015
crossref_primary_10_1155_2018_2075057
crossref_primary_10_1109_JSTARS_2021_3085893
crossref_primary_10_1016_j_rsase_2022_100907
crossref_primary_10_1109_JPROC_2021_3087029
crossref_primary_10_3390_rs15163958
crossref_primary_10_1109_TKDE_2019_2931687
crossref_primary_10_3390_rs12040719
crossref_primary_10_1109_TBDATA_2018_2874469
crossref_primary_10_1007_s12145_020_00446_9
crossref_primary_10_1002_spe_2747
crossref_primary_10_1080_2150704X_2023_2293474
crossref_primary_10_1109_TFUZZ_2020_3016346
crossref_primary_10_1109_TC_2020_2995881
crossref_primary_10_3390_ijgi8090392
crossref_primary_10_1016_j_eswa_2021_114658
crossref_primary_10_1016_j_isprsjprs_2020_02_012
crossref_primary_10_1108_JSTPM_03_2022_0049
crossref_primary_10_3390_rs16224205
crossref_primary_10_1109_TPDS_2018_2843343
crossref_primary_10_1109_ACCESS_2020_2989138
crossref_primary_10_1177_03091333211023690
crossref_primary_10_1016_j_future_2019_07_042
crossref_primary_10_1080_10095020_2025_2537352
crossref_primary_10_3390_rs12111829
crossref_primary_10_1007_s00607_025_01536_6
crossref_primary_10_1007_s12145_020_00534_w
crossref_primary_10_1007_s10644_024_09610_3
crossref_primary_10_1109_ACCESS_2019_2925565
crossref_primary_10_1109_ACCESS_2020_3018326
crossref_primary_10_1109_ACCESS_2022_3224435
crossref_primary_10_1016_j_geomat_2024_100008
crossref_primary_10_1016_j_isprsjprs_2024_02_003
crossref_primary_10_1007_s10586_019_02944_y
crossref_primary_10_1016_j_future_2023_04_027
crossref_primary_10_1007_s12145_022_00893_6
crossref_primary_10_1016_j_scitotenv_2024_173273
crossref_primary_10_3390_s21092971
crossref_primary_10_1109_JSTARS_2023_3267118
crossref_primary_10_1016_j_envsoft_2025_106618
crossref_primary_10_1016_j_future_2018_07_054
crossref_primary_10_1109_JSTARS_2023_3329018
crossref_primary_10_3390_rs17132324
crossref_primary_10_1016_j_technovation_2023_102768
crossref_primary_10_3390_rs12121932
crossref_primary_10_3390_rs14030521
crossref_primary_10_3390_rs12081253
crossref_primary_10_1007_s11042_023_17858_6
crossref_primary_10_3390_f13091405
crossref_primary_10_3390_s24010145
crossref_primary_10_1007_s12145_022_00900_w
crossref_primary_10_1108_K_05_2021_0432
crossref_primary_10_1109_ACCESS_2024_3411307
crossref_primary_10_1016_j_jhydrol_2024_131553
crossref_primary_10_1016_j_ijdrr_2019_101188
crossref_primary_10_3390_rs15082201
crossref_primary_10_64026_JCCN_2025001
crossref_primary_10_1109_TII_2018_2800693
crossref_primary_10_1177_1550147719839014
crossref_primary_10_1016_j_rsase_2023_101093
crossref_primary_10_1002_cpe_5305
crossref_primary_10_1007_s11042_016_4311_4
crossref_primary_10_1109_JPROC_2021_3079176
crossref_primary_10_1016_j_future_2018_04_012
crossref_primary_10_1016_j_rse_2023_113838
crossref_primary_10_32604_cmc_2021_014729
crossref_primary_10_3389_fenvs_2022_867434
crossref_primary_10_1016_j_future_2019_05_056
crossref_primary_10_3390_rs12010062
crossref_primary_10_1007_s10586_022_03807_9
crossref_primary_10_3390_rs14184450
crossref_primary_10_1007_s10586_022_03619_x
crossref_primary_10_1109_ACCESS_2019_2923270
crossref_primary_10_3390_geosciences8120432
crossref_primary_10_1007_s13369_023_08172_2
crossref_primary_10_3390_app15063231
crossref_primary_10_1016_j_hcc_2023_100124
crossref_primary_10_3390_hydrology12070165
crossref_primary_10_2478_amns_2024_2811
Cites_doi 10.1109/AINA.2013.95
10.1109/SBAC-PAD.2013.18
10.1080/014311600210227
10.1145/1327452.1327492
10.1109/JPROC.2012.2196250
10.1109/IGARSS.2013.6723840
10.1109/CloudCom.2012.6427589
10.1109/TSC.2009.4
10.1109/CISP.2011.6100438
10.1109/LGRS.2011.2136317
10.1016/j.future.2015.09.031
10.1109/IPDPSW.2012.64
10.1109/ICCSNT.2011.6182030
10.1109/PACT.2005.13
10.1109/CyberC.2010.75
10.1109/IGARSS.2012.6351392
10.1109/GCC.2010.103
10.1109/ESIAT.2010.5568475
10.1002/cpe.994
10.1109/AINA.2010.30
10.1109/CLUSTER.2012.51
10.1109/JIOT.2014.2325071
10.1109/JSTARS.2011.2162643
10.1109/IPDPS.2011.103
10.1109/PDP.2009.43
10.1007/s10766-013-0272-7
10.1007/s11554-009-0126-0
10.1109/COMPSACW.2014.18
10.1109/ICMULT.2010.5631433
10.1109/ICIEV.2014.6850733
10.1109/ICECC.2011.6067845
10.1109/GeoInformatics.2011.5980671
10.1109/ICPADS.2011.95
10.1109/CCGRID.2009.93
10.1109/JSTARS.2010.2095495
10.1109/36.868880
10.1109/JSTARS.2011.2106332
10.1109/MCC.2014.9
10.1109/TGRS.2006.888103
10.1109/RSETE.2011.5964523
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.future.2016.06.009
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7115
EndPage 368
ExternalDocumentID 10_1016_j_future_2016_06_009
S0167739X16301923
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-7c496eca438619f0106facd1d75bb8e48856068cbdceb2c63a502cb1175d1d8c3
ISICitedReferencesCount 142
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000413127800027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-739X
IngestDate Sat Nov 29 07:46:58 EST 2025
Tue Nov 18 21:29:58 EST 2025
Fri Feb 23 02:30:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cloud computing
Big data
High performance computing
Data-intensive computing
Remote sensing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-7c496eca438619f0106facd1d75bb8e48856068cbdceb2c63a502cb1175d1d8c3
ORCID 0000-0003-2766-0845
PageCount 16
ParticipantIDs crossref_primary_10_1016_j_future_2016_06_009
crossref_citationtrail_10_1016_j_future_2016_06_009
elsevier_sciencedirect_doi_10_1016_j_future_2016_06_009
PublicationCentury 2000
PublicationDate January 2018
2018-01-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: January 2018
PublicationDecade 2010
PublicationTitle Future generation computer systems
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Th. Udelhoven, Big data in environmental remote sensing: Challenges and chances, 12 2013.
Yi-Man Ma, Che-Rung Lee, Yeh-Ching Chung, Infiniband virtualization on KVM, in: 2012 IEEE 4th International Conference on Cloud Computing Technology and Science, CloudCom, Dec 2012, pp. 777–781.
De Grandi, Mayaux, Rauste, Rosenqvist, Simard, Saatchi (br000070) 2000; 38
Zawodny (br000265) 2009; 79
Mehul Nalin Vora, Hadoop-Hbase for large-scale data, in: 2011 International Conference on Computer Science and Network Technology, ICCSNT, vol. 1, Dec 2011, pp. 601–605.
J. Milthorpe, V. Ganesh, A.P. Rendell, D. Grove, X10 as a parallel language for scientific computation: Practice and experience, in: Parallel Distributed Processing Symposium, IPDPS, 2011 IEEE International, May 2011, pp. 1080–1088.
Abdelwahab, Hamdaoui, Guizani, Rayes (br000250) 2014; 1
Cao, Shi (br000100) 2006; 10
(br000275) 2016; 57
Lee, Gasster, Plaza, Chang, Huang (br000025) 2011; 4
Xie, Su, Lin, Ma, Liang (br000120) 2013; 8
Barham, Dragovic, Fraser, Hand, Harris, Ho, Neugebauer, Pratt, Warfield (br000225) 2003
Dean, Ghemawat (br000195) 2008; 51
S. Pandey, A. Barker, K.K. Gupta, R. Buyya, Minimizing execution costs when using globally distributed cloud services, in: 2010 24th IEEE International Conference on Advanced Information Networking and Applications, AINA, April 2010, pp. 222–229.
Remon, Sanchez, Paz, Quintana-Orti, Plaza (br000125) 2011; 8
Taeyoung Kim, Myungjin Choi, Tae-Byeong Chae, Parallel processing with MPI for inter-band registration in remote sensing, in: 2011 IEEE 17th International Conference on Parallel and Distributed Systems, ICPADS, Dec 2011, pp. 1021–1025.
Nan Lu, Chengqi Cheng, An Jin, Haijian Ma, An index and retrieval method of spatial data based on GeoSOT global discrete grid system, in: Geoscience and Remote Sensing Symposium, IGARSS, 2013 IEEE International, July 2013, pp. 4519–4522.
Dobre, Xhafa (br000185) 2014; 42
Plaza (br000040) 2009; 4
Bingxin Liu, Ying Li, Peng Chen, Yongyi Guan, Junsong Han, Large oil spill surveillance with the use of MODIS and AVHRR images, in: 2011 International Conference on Remote Sensing, Environment and Transportation Engineering, RSETE, June 2011, pp. 1317–1320.
Ma, Wang, Zomaya, Chen, Ranjan (br000080) 2013; 99
Plaza, Chang (br000075) 2007
Plaza, Du, Chang, King (br000135) 2011; 4
Daniel Mandl, Matsu: An elastic cloud connected to a sensorweb for disaster response, 2011, pp. 1–22.
Solberg (br000055) 2012; 100
OGC-OpenGIS Consortium et al. The OpenGIS abstract specification-topic 7: The earth imagery case, 1999.
N. Skytland, Big data: What is NASA doing with big data today. Open. Gov open access article, 2012.
Keahey, Parashar (br000115) 2014; 1
Meixia Deng, Liping Di, Genong Yu, A. Yagci, Chunming Peng, Bei Zhang, Dayong Shen, Building an on-demand web service system for global agricultural drought monitoring and forecasting, in: Geoscience and Remote Sensing Symposium, IGARSS, 2012 IEEE International, July 2012, pp. 958–961.
Deelman, Singh, Su, Blythe, Gil, Kesselman, Mehta, Vahi, Bruce Berriman, Good, Laity, Jacob, Katz (br000295) 2005; 13
Dongjian Xue, Zhengwei He, Zhiheng Wang, Zhouqu county 8.8 extra-large-scale debris flow characters of remote sensing image analysis, in: 2011 International Conference on Electronics, Communications and Control, ICECC, Sept 2011, pp. 597–600.
A. Rosenqvist, M. Shimada, B. Chapman, K. McDonald, G. De Grandi, H. Jonsson, C. Williams, Y. Rauste, M. Nilsson, D. Sango, M. Matsumoto, An overview of the JERS-1 SAR global boreal forest mapping (GBFM) project, in: Geoscience and Remote Sensing Symposium, 2004. IGARSS ’04. Proceedings. 2004 IEEE International, vol. 2, Sept 2004, pp. 1033–1036.
Jianghui, Feng, Zhenhong, Renyi (br000270) 2015; 13
R. Rabenseifner, G. Hager, G. Jost, Hybrid MPI/OPENMP parallel programming on clusters of multi-core SMP nodes, in: 2009 17th Euromicro International Conference on Parallel, Distributed and Network-based Processing, Feb 2009, pp. 427–436.
Nan Dun, K. Taura, An empirical performance study of chapel programming language, in: Parallel and Distributed Processing Symposium Workshops Ph.D. Forum, IPDPSW, 2012 IEEE 26th International, May 2012, pp. 497–506.
Yan Ma, Lizhe Wang, Dingsheng Liu, Peng Liu, Jun Wang, Jie Tao, Generic parallel programming for massive remote sensing data processing, in: 2012 IEEE International Conference on Cluster Computing, CLUSTER, Sept 2012, pp. 420–428.
Xue Xiaorong, Guo Lei, Wang Hongfu, Xiang Fang, A parallel fusion method of remote sensing image based on IHS transformation, in: 2011 4th International Congress on Image and Signal Processing, CISP, vol. 3, Oct 2011, pp. 1600–1603.
Schumann, Hostache, Puech, Hoffmann, Matgen, Pappenberger, Pfister (br000050) 2007; 45
Lin, Lu, Fei, Chebotko, Pai, Lai, Fotouhi, Hua (br000285) 2009; 2
Bo Li, Hui Zhao, Zhenhua Lv, Parallel isodata clustering of remote sensing images based on MapReduce, in: 2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, CyberC, Oct 2010, pp. 380–383.
R. Nasim, A.J. Kassler, Deploying OpenStack: Virtual infrastructure or dedicated hardware, in: Computer Software and Applications Conference Workshops, COMPSACW, 2014 IEEE 38th International, July 2014, pp. 84–89.
A.B.M. Moniruzzaman, K.W. Nafi, S.A. Hossain, An experimental study of load balancing of OpenNebula open-source cloud computing platform, in: 2014 International Conference on Informatics, Electronics Vision, ICIEV, May 2014, pp. 1–6.
Ali, Kiriansky, Simons, Zaroo (br000235) 2012; vol. 7155
Wei-Yu Chen, C. Iancu, K. Yelick, Communication optimizations for fine-grained UPC applications, in: 14th International Conference on Parallel Architectures and Compilation Techniques, 2005. PACT 2005. Sept 2005, pp. 267–278.
Yanying Wang, Yan Ma, Peng Liu, Dingsheng Liu, Jibo Xie, An optimized image mosaic algorithm with parallel I/O and dynamic grouped parallel strategy based on minimal spanning tree, in: 2010 9th International Conference on Grid and Cooperative Computing, GCC, Nov 2010, pp. 501–506.
Fauvel, Benediktsson, Boardman, Brazile, Bruzzone, Camps-Valls, Chanussot, Gamba, Gualtieri, Marconcini (br000035) 2007
Blagojevi, Hargrove, Iancu, Yelick (br000165) 2010
Feng-Cheng Lin, Lan-Kun Chung, Wen-Yuan Ku, Lin-Ru Chu, Tien-Yin Chou, Service component architecture for geographic information system in cloud computing infrastructure, in: 2013 IEEE 27th International Conference on Advanced Information Networking and Applications, AINA, March 2013, pp. 368–373.
Ludscher, Bertram, Berkley, Higgins, Jaeger, Jones, Lee, Tao, Zhao (br000290) 2006; 18
Yinghui Zhao, Remote sensing based soil moisture estimation on high performance PC server, in: 2010 International Conference on Environmental Science and Information Application Technology, ESIAT, vol. 1, July 2010, pp. 64–69.
Xinyuan Qu, Jiacun Li, Wenji Zhao, Xiaoli Zhao, Cheng Yan, Research on critical techniques of disaster-oriented remote sensing quick mapping, in: 2010 International Conference on Multimedia Technology, ICMT, Oct 2010, pp. 1–4.
D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, D. Zagorodnov, The Eucalyptus open-source cloud-computing system, in: 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, 2009. CCGRID’09. May 2009, pp. 124–131.
Rosenqvist, Shimada, Chapman, Freeman, De Grandi, Saatchi, Rauste (br000030) 2000; 21
A. Kivity, Y. Kamay, D. Laor, U. Lublin, A. Liguori, KVM: The Linux virtual machine monitor, in: OLS’09: Ottawa Linux Symposium 2009, Jul 2007, pp. 225–230.
Gamba, Du, Juergens, Maktav (br000020) 2011; 4
S. Varrette, M. Guzek, V. Plugaru, X. Besseron, P. Bouvry, HPC performance and energy-efficiency of XEN, KVM and VMWare hypervisors, in: 2013 25th International Symposium on Computer Architecture and High Performance Computing, SBAC-PAD, Oct 2013, pp. 89–96.
Ma, Zhao, Liu (br000095) 2009; vol. 5545
Almeer (br000210) 2012; 3
Yuehu Liu, Bin Chen, Hao Yu, Yong Zhao, Zhou Huang, Yu Fang, Applying GPU and POSIX thread technologies in massive remote sensing image data processing, in: 2011 19th International Conference on Geoinformatics, June 2011, pp. 1–6.
Dobre (10.1016/j.future.2016.06.009_br000185) 2014; 42
Keahey (10.1016/j.future.2016.06.009_br000115) 2014; 1
Barham (10.1016/j.future.2016.06.009_br000225) 2003
10.1016/j.future.2016.06.009_br000150
10.1016/j.future.2016.06.009_br000230
10.1016/j.future.2016.06.009_br000155
10.1016/j.future.2016.06.009_br000110
Almeer (10.1016/j.future.2016.06.009_br000210) 2012; 3
Deelman (10.1016/j.future.2016.06.009_br000295) 2005; 13
Jianghui (10.1016/j.future.2016.06.009_br000270) 2015; 13
10.1016/j.future.2016.06.009_br000190
10.1016/j.future.2016.06.009_br000145
10.1016/j.future.2016.06.009_br000105
10.1016/j.future.2016.06.009_br000060
10.1016/j.future.2016.06.009_br000140
Ludscher (10.1016/j.future.2016.06.009_br000290) 2006; 18
10.1016/j.future.2016.06.009_br000260
10.1016/j.future.2016.06.009_br000065
10.1016/j.future.2016.06.009_br000220
Fauvel (10.1016/j.future.2016.06.009_br000035) 2007
Remon (10.1016/j.future.2016.06.009_br000125) 2011; 8
10.1016/j.future.2016.06.009_br000180
Abdelwahab (10.1016/j.future.2016.06.009_br000250) 2014; 1
Dean (10.1016/j.future.2016.06.009_br000195) 2008; 51
10.1016/j.future.2016.06.009_br000255
10.1016/j.future.2016.06.009_br000015
10.1016/j.future.2016.06.009_br000215
Plaza (10.1016/j.future.2016.06.009_br000075) 2007
10.1016/j.future.2016.06.009_br000170
10.1016/j.future.2016.06.009_br000010
Blagojevi (10.1016/j.future.2016.06.009_br000165) 2010
10.1016/j.future.2016.06.009_br000175
Lin (10.1016/j.future.2016.06.009_br000285) 2009; 2
10.1016/j.future.2016.06.009_br000130
(10.1016/j.future.2016.06.009_br000275) 2016; 57
Schumann (10.1016/j.future.2016.06.009_br000050) 2007; 45
10.1016/j.future.2016.06.009_br000090
Lee (10.1016/j.future.2016.06.009_br000025) 2011; 4
Cao (10.1016/j.future.2016.06.009_br000100) 2006; 10
Xie (10.1016/j.future.2016.06.009_br000120) 2013; 8
Ali (10.1016/j.future.2016.06.009_br000235) 2012; vol. 7155
10.1016/j.future.2016.06.009_br000245
10.1016/j.future.2016.06.009_br000200
10.1016/j.future.2016.06.009_br000005
10.1016/j.future.2016.06.009_br000205
10.1016/j.future.2016.06.009_br000160
10.1016/j.future.2016.06.009_br000280
10.1016/j.future.2016.06.009_br000085
Solberg (10.1016/j.future.2016.06.009_br000055) 2012; 100
10.1016/j.future.2016.06.009_br000240
10.1016/j.future.2016.06.009_br000045
Ma (10.1016/j.future.2016.06.009_br000095) 2009; vol. 5545
Gamba (10.1016/j.future.2016.06.009_br000020) 2011; 4
Zawodny (10.1016/j.future.2016.06.009_br000265) 2009; 79
Rosenqvist (10.1016/j.future.2016.06.009_br000030) 2000; 21
Plaza (10.1016/j.future.2016.06.009_br000135) 2011; 4
Plaza (10.1016/j.future.2016.06.009_br000040) 2009; 4
Ma (10.1016/j.future.2016.06.009_br000080) 2013; 99
De Grandi (10.1016/j.future.2016.06.009_br000070) 2000; 38
References_xml – volume: 51
  start-page: 107
  year: 2008
  end-page: 113
  ident: br000195
  article-title: MapReduce: Simplified data processing on large clusters
  publication-title: Commun. ACM
– reference: Mehul Nalin Vora, Hadoop-Hbase for large-scale data, in: 2011 International Conference on Computer Science and Network Technology, ICCSNT, vol. 1, Dec 2011, pp. 601–605.
– volume: 4
  start-page: 5
  year: 2011
  end-page: 7
  ident: br000020
  article-title: Foreword to the special issue on “human settlements: A global remote sensing challenge”
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– reference: A.B.M. Moniruzzaman, K.W. Nafi, S.A. Hossain, An experimental study of load balancing of OpenNebula open-source cloud computing platform, in: 2014 International Conference on Informatics, Electronics Vision, ICIEV, May 2014, pp. 1–6.
– volume: 13
  start-page: 365
  year: 2015
  end-page: 370
  ident: br000270
  article-title: Research of the landuse vector data storage and spatial index based on the main memory database
  publication-title: J. Zhejiang Univ. (Sci. Ed.)
– reference: Th. Udelhoven, Big data in environmental remote sensing: Challenges and chances, 12 2013.
– volume: 2
  start-page: 79
  year: 2009
  end-page: 92
  ident: br000285
  article-title: A reference architecture for scientific workflow management systems and the view SOA solution
  publication-title: IEEE Trans. Serv. Comput.
– volume: 1
  start-page: 21
  year: 2014
  end-page: 27
  ident: br000115
  article-title: Enabling on-demand science via cloud computing
  publication-title: IEEE Cloud Comput.
– volume: 3
  start-page: 637
  year: 2012
  end-page: 644
  ident: br000210
  article-title: Cloud Hadoop MapReduce for remote sensing image analysis
  publication-title: J. Emerg. Trends Comput. Inf. Sci.
– reference: Nan Lu, Chengqi Cheng, An Jin, Haijian Ma, An index and retrieval method of spatial data based on GeoSOT global discrete grid system, in: Geoscience and Remote Sensing Symposium, IGARSS, 2013 IEEE International, July 2013, pp. 4519–4522.
– reference: J. Milthorpe, V. Ganesh, A.P. Rendell, D. Grove, X10 as a parallel language for scientific computation: Practice and experience, in: Parallel Distributed Processing Symposium, IPDPS, 2011 IEEE International, May 2011, pp. 1080–1088.
– reference: Dongjian Xue, Zhengwei He, Zhiheng Wang, Zhouqu county 8.8 extra-large-scale debris flow characters of remote sensing image analysis, in: 2011 International Conference on Electronics, Communications and Control, ICECC, Sept 2011, pp. 597–600.
– volume: vol. 7155
  start-page: 213
  year: 2012
  end-page: 222
  ident: br000235
  article-title: Performance evaluation of HPC benchmarks on VMWares ESXI server
  publication-title: Euro-Par 2011: Parallel Processing Workshops
– reference: Yi-Man Ma, Che-Rung Lee, Yeh-Ching Chung, Infiniband virtualization on KVM, in: 2012 IEEE 4th International Conference on Cloud Computing Technology and Science, CloudCom, Dec 2012, pp. 777–781.
– volume: 10
  start-page: 55
  year: 2006
  end-page: 58
  ident: br000100
  article-title: Primary study of massive imaging auto-processing system pixel factory
  publication-title: Bull. Surv. Mapp.
– volume: 21
  start-page: 1375
  year: 2000
  end-page: 1387
  ident: br000030
  article-title: The global rain forest mapping project - a review
  publication-title: Int. J. Remote Sens.
– volume: 4
  start-page: 528
  year: 2011
  end-page: 544
  ident: br000135
  article-title: High performance computing for hyperspectral remote sensing
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 1
  start-page: 276
  year: 2014
  end-page: 288
  ident: br000250
  article-title: Enabling smart cloud services through remote sensing: An internet of everything enabler
  publication-title: IEEE Internet Things J.
– reference: A. Kivity, Y. Kamay, D. Laor, U. Lublin, A. Liguori, KVM: The Linux virtual machine monitor, in: OLS’09: Ottawa Linux Symposium 2009, Jul 2007, pp. 225–230.
– volume: 4
  start-page: 191
  year: 2009
  end-page: 193
  ident: br000040
  article-title: Special issue on architectures and techniques for real-time processing of remotely sensed images
  publication-title: J. Real-Time Image Process.
– volume: 42
  start-page: 710
  year: 2014
  end-page: 738
  ident: br000185
  article-title: Parallel programming paradigms and frameworks in big data era
  publication-title: Int. J. Parallel Program.
– reference: Bingxin Liu, Ying Li, Peng Chen, Yongyi Guan, Junsong Han, Large oil spill surveillance with the use of MODIS and AVHRR images, in: 2011 International Conference on Remote Sensing, Environment and Transportation Engineering, RSETE, June 2011, pp. 1317–1320.
– reference: Yuehu Liu, Bin Chen, Hao Yu, Yong Zhao, Zhou Huang, Yu Fang, Applying GPU and POSIX thread technologies in massive remote sensing image data processing, in: 2011 19th International Conference on Geoinformatics, June 2011, pp. 1–6.
– volume: 99
  start-page: 1
  year: 2013
  ident: br000080
  article-title: Task-tree based large-scale mosaicking for remote sensed imageries with dynamic DAG scheduling
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 57
  start-page: 24
  year: 2016
  end-page: 41
  ident: br000275
  article-title: Cloud computing adoption framework: A security framework for business clouds
  publication-title: Future Gener. Comput. Syst.
– start-page: 164
  year: 2003
  end-page: 177
  ident: br000225
  article-title: Xen and the art of virtualization
  publication-title: Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles
– year: 2007
  ident: br000075
  article-title: High Performance Computing in Remote Sensing
– volume: vol. 5545
  start-page: 357
  year: 2009
  end-page: 366
  ident: br000095
  article-title: An asynchronous parallelized and scalable image resampling algorithm with parallel I/O
  publication-title: Computational Science-ICCS 2009
– reference: Meixia Deng, Liping Di, Genong Yu, A. Yagci, Chunming Peng, Bei Zhang, Dayong Shen, Building an on-demand web service system for global agricultural drought monitoring and forecasting, in: Geoscience and Remote Sensing Symposium, IGARSS, 2012 IEEE International, July 2012, pp. 958–961.
– reference: Yinghui Zhao, Remote sensing based soil moisture estimation on high performance PC server, in: 2010 International Conference on Environmental Science and Information Application Technology, ESIAT, vol. 1, July 2010, pp. 64–69.
– volume: 8
  start-page: 1691
  year: 2013
  end-page: 1695
  ident: br000120
  article-title: Bare metal provisioning to OpenStack using xCAT
  publication-title: J. Comput. Phys.
– start-page: 1
  year: 2007
  end-page: 45
  ident: br000035
  article-title: Recent advances in techniques for hyperspectral image processing
  publication-title: Remote Sens. Environ.
– reference: Feng-Cheng Lin, Lan-Kun Chung, Wen-Yuan Ku, Lin-Ru Chu, Tien-Yin Chou, Service component architecture for geographic information system in cloud computing infrastructure, in: 2013 IEEE 27th International Conference on Advanced Information Networking and Applications, AINA, March 2013, pp. 368–373.
– volume: 100
  start-page: 2931
  year: 2012
  end-page: 2945
  ident: br000055
  article-title: Remote sensing of ocean oil-spill pollution
  publication-title: Proc. IEEE
– reference: S. Pandey, A. Barker, K.K. Gupta, R. Buyya, Minimizing execution costs when using globally distributed cloud services, in: 2010 24th IEEE International Conference on Advanced Information Networking and Applications, AINA, April 2010, pp. 222–229.
– reference: OGC-OpenGIS Consortium et al. The OpenGIS abstract specification-topic 7: The earth imagery case, 1999.
– reference: S. Varrette, M. Guzek, V. Plugaru, X. Besseron, P. Bouvry, HPC performance and energy-efficiency of XEN, KVM and VMWare hypervisors, in: 2013 25th International Symposium on Computer Architecture and High Performance Computing, SBAC-PAD, Oct 2013, pp. 89–96.
– volume: 79
  year: 2009
  ident: br000265
  article-title: Redis: Lightweight key/value store that goes the extra mile
  publication-title: Linux Mag.
– reference: Wei-Yu Chen, C. Iancu, K. Yelick, Communication optimizations for fine-grained UPC applications, in: 14th International Conference on Parallel Architectures and Compilation Techniques, 2005. PACT 2005. Sept 2005, pp. 267–278.
– reference: R. Nasim, A.J. Kassler, Deploying OpenStack: Virtual infrastructure or dedicated hardware, in: Computer Software and Applications Conference Workshops, COMPSACW, 2014 IEEE 38th International, July 2014, pp. 84–89.
– volume: 4
  start-page: 508
  year: 2011
  end-page: 527
  ident: br000025
  article-title: Recent developments in high performance computing for remote sensing: A review
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 8
  start-page: 924
  year: 2011
  end-page: 928
  ident: br000125
  article-title: Real-time endmember extraction on multicore processors
  publication-title: IEEE Geosci. Remote Sens. Lett.
– reference: Nan Dun, K. Taura, An empirical performance study of chapel programming language, in: Parallel and Distributed Processing Symposium Workshops Ph.D. Forum, IPDPSW, 2012 IEEE 26th International, May 2012, pp. 497–506.
– reference: Daniel Mandl, Matsu: An elastic cloud connected to a sensorweb for disaster response, 2011, pp. 1–22.
– reference: Yan Ma, Lizhe Wang, Dingsheng Liu, Peng Liu, Jun Wang, Jie Tao, Generic parallel programming for massive remote sensing data processing, in: 2012 IEEE International Conference on Cluster Computing, CLUSTER, Sept 2012, pp. 420–428.
– volume: 38
  start-page: 2218
  year: 2000
  end-page: 2233
  ident: br000070
  article-title: The global rain forest mapping project JERS-1 radar mosaic of tropical Africa: development and product characterization aspects
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 18
  start-page: 1039
  year: 2006
  end-page: 1065
  ident: br000290
  article-title: Scientific workflow management and the Kepler system
  publication-title: Concurr. Comput.: Pract. Exper.
– start-page: 3:1
  year: 2010
  end-page: 3:10
  ident: br000165
  article-title: Hybrid PGAS runtime support for multicore nodes
  publication-title: Proceedings of the Fourth Conference on Partitioned Global Address Space Programming Model
– reference: N. Skytland, Big data: What is NASA doing with big data today. Open. Gov open access article, 2012.
– reference: A. Rosenqvist, M. Shimada, B. Chapman, K. McDonald, G. De Grandi, H. Jonsson, C. Williams, Y. Rauste, M. Nilsson, D. Sango, M. Matsumoto, An overview of the JERS-1 SAR global boreal forest mapping (GBFM) project, in: Geoscience and Remote Sensing Symposium, 2004. IGARSS ’04. Proceedings. 2004 IEEE International, vol. 2, Sept 2004, pp. 1033–1036.
– reference: Taeyoung Kim, Myungjin Choi, Tae-Byeong Chae, Parallel processing with MPI for inter-band registration in remote sensing, in: 2011 IEEE 17th International Conference on Parallel and Distributed Systems, ICPADS, Dec 2011, pp. 1021–1025.
– reference: D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, D. Zagorodnov, The Eucalyptus open-source cloud-computing system, in: 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, 2009. CCGRID’09. May 2009, pp. 124–131.
– reference: R. Rabenseifner, G. Hager, G. Jost, Hybrid MPI/OPENMP parallel programming on clusters of multi-core SMP nodes, in: 2009 17th Euromicro International Conference on Parallel, Distributed and Network-based Processing, Feb 2009, pp. 427–436.
– reference: Xinyuan Qu, Jiacun Li, Wenji Zhao, Xiaoli Zhao, Cheng Yan, Research on critical techniques of disaster-oriented remote sensing quick mapping, in: 2010 International Conference on Multimedia Technology, ICMT, Oct 2010, pp. 1–4.
– volume: 45
  start-page: 1715
  year: 2007
  end-page: 1725
  ident: br000050
  article-title: High-resolution 3-D flood information from radar imagery for flood hazard management
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Bo Li, Hui Zhao, Zhenhua Lv, Parallel isodata clustering of remote sensing images based on MapReduce, in: 2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, CyberC, Oct 2010, pp. 380–383.
– reference: Yanying Wang, Yan Ma, Peng Liu, Dingsheng Liu, Jibo Xie, An optimized image mosaic algorithm with parallel I/O and dynamic grouped parallel strategy based on minimal spanning tree, in: 2010 9th International Conference on Grid and Cooperative Computing, GCC, Nov 2010, pp. 501–506.
– reference: Xue Xiaorong, Guo Lei, Wang Hongfu, Xiang Fang, A parallel fusion method of remote sensing image based on IHS transformation, in: 2011 4th International Congress on Image and Signal Processing, CISP, vol. 3, Oct 2011, pp. 1600–1603.
– volume: 13
  start-page: 219
  year: 2005
  end-page: 237
  ident: br000295
  article-title: Pegasus: a framework for mapping complex scientific workflows onto distributed systems
  publication-title: Sci. Program. J.
– ident: 10.1016/j.future.2016.06.009_br000110
– ident: 10.1016/j.future.2016.06.009_br000200
  doi: 10.1109/AINA.2013.95
– volume: 3
  start-page: 637
  issue: 4
  year: 2012
  ident: 10.1016/j.future.2016.06.009_br000210
  article-title: Cloud Hadoop MapReduce for remote sensing image analysis
  publication-title: J. Emerg. Trends Comput. Inf. Sci.
– ident: 10.1016/j.future.2016.06.009_br000245
  doi: 10.1109/SBAC-PAD.2013.18
– ident: 10.1016/j.future.2016.06.009_br000005
– volume: 21
  start-page: 1375
  issue: 6–7
  year: 2000
  ident: 10.1016/j.future.2016.06.009_br000030
  article-title: The global rain forest mapping project - a review
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311600210227
– volume: 51
  start-page: 107
  issue: 1
  year: 2008
  ident: 10.1016/j.future.2016.06.009_br000195
  article-title: MapReduce: Simplified data processing on large clusters
  publication-title: Commun. ACM
  doi: 10.1145/1327452.1327492
– volume: 100
  start-page: 2931
  issue: 10
  year: 2012
  ident: 10.1016/j.future.2016.06.009_br000055
  article-title: Remote sensing of ocean oil-spill pollution
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2012.2196250
– ident: 10.1016/j.future.2016.06.009_br000260
  doi: 10.1109/IGARSS.2013.6723840
– volume: 79
  year: 2009
  ident: 10.1016/j.future.2016.06.009_br000265
  article-title: Redis: Lightweight key/value store that goes the extra mile
  publication-title: Linux Mag.
– ident: 10.1016/j.future.2016.06.009_br000010
– ident: 10.1016/j.future.2016.06.009_br000240
  doi: 10.1109/CloudCom.2012.6427589
– volume: 2
  start-page: 79
  issue: 1
  year: 2009
  ident: 10.1016/j.future.2016.06.009_br000285
  article-title: A reference architecture for scientific workflow management systems and the view SOA solution
  publication-title: IEEE Trans. Serv. Comput.
  doi: 10.1109/TSC.2009.4
– ident: 10.1016/j.future.2016.06.009_br000150
  doi: 10.1109/CISP.2011.6100438
– volume: 8
  start-page: 924
  issue: 5
  year: 2011
  ident: 10.1016/j.future.2016.06.009_br000125
  article-title: Real-time endmember extraction on multicore processors
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2011.2136317
– volume: 57
  start-page: 24
  year: 2016
  ident: 10.1016/j.future.2016.06.009_br000275
  article-title: Cloud computing adoption framework: A security framework for business clouds
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2015.09.031
– ident: 10.1016/j.future.2016.06.009_br000175
  doi: 10.1109/IPDPSW.2012.64
– ident: 10.1016/j.future.2016.06.009_br000255
  doi: 10.1109/ICCSNT.2011.6182030
– ident: 10.1016/j.future.2016.06.009_br000170
  doi: 10.1109/PACT.2005.13
– ident: 10.1016/j.future.2016.06.009_br000205
  doi: 10.1109/CyberC.2010.75
– volume: vol. 5545
  start-page: 357
  year: 2009
  ident: 10.1016/j.future.2016.06.009_br000095
  article-title: An asynchronous parallelized and scalable image resampling algorithm with parallel I/O
– volume: 8
  start-page: 1691
  issue: 7
  year: 2013
  ident: 10.1016/j.future.2016.06.009_br000120
  article-title: Bare metal provisioning to OpenStack using xCAT
  publication-title: J. Comput. Phys.
– ident: 10.1016/j.future.2016.06.009_br000280
  doi: 10.1109/IGARSS.2012.6351392
– ident: 10.1016/j.future.2016.06.009_br000145
  doi: 10.1109/GCC.2010.103
– ident: 10.1016/j.future.2016.06.009_br000065
– ident: 10.1016/j.future.2016.06.009_br000140
  doi: 10.1109/ESIAT.2010.5568475
– start-page: 164
  year: 2003
  ident: 10.1016/j.future.2016.06.009_br000225
  article-title: Xen and the art of virtualization
– start-page: 3:1
  year: 2010
  ident: 10.1016/j.future.2016.06.009_br000165
  article-title: Hybrid PGAS runtime support for multicore nodes
– volume: 13
  start-page: 365
  issue: 3
  year: 2015
  ident: 10.1016/j.future.2016.06.009_br000270
  article-title: Research of the landuse vector data storage and spatial index based on the main memory database
  publication-title: J. Zhejiang Univ. (Sci. Ed.)
– volume: 18
  start-page: 1039
  issue: 10
  year: 2006
  ident: 10.1016/j.future.2016.06.009_br000290
  article-title: Scientific workflow management and the Kepler system
  publication-title: Concurr. Comput.: Pract. Exper.
  doi: 10.1002/cpe.994
– ident: 10.1016/j.future.2016.06.009_br000105
  doi: 10.1109/AINA.2010.30
– ident: 10.1016/j.future.2016.06.009_br000160
  doi: 10.1109/CLUSTER.2012.51
– volume: 1
  start-page: 276
  issue: 3
  year: 2014
  ident: 10.1016/j.future.2016.06.009_br000250
  article-title: Enabling smart cloud services through remote sensing: An internet of everything enabler
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2014.2325071
– volume: 4
  start-page: 508
  issue: 3
  year: 2011
  ident: 10.1016/j.future.2016.06.009_br000025
  article-title: Recent developments in high performance computing for remote sensing: A review
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2011.2162643
– ident: 10.1016/j.future.2016.06.009_br000180
  doi: 10.1109/IPDPS.2011.103
– ident: 10.1016/j.future.2016.06.009_br000130
  doi: 10.1109/PDP.2009.43
– volume: 42
  start-page: 710
  issue: 5
  year: 2014
  ident: 10.1016/j.future.2016.06.009_br000185
  article-title: Parallel programming paradigms and frameworks in big data era
  publication-title: Int. J. Parallel Program.
  doi: 10.1007/s10766-013-0272-7
– volume: 4
  start-page: 191
  issue: 3
  year: 2009
  ident: 10.1016/j.future.2016.06.009_br000040
  article-title: Special issue on architectures and techniques for real-time processing of remotely sensed images
  publication-title: J. Real-Time Image Process.
  doi: 10.1007/s11554-009-0126-0
– ident: 10.1016/j.future.2016.06.009_br000230
– year: 2007
  ident: 10.1016/j.future.2016.06.009_br000075
– ident: 10.1016/j.future.2016.06.009_br000215
  doi: 10.1109/COMPSACW.2014.18
– ident: 10.1016/j.future.2016.06.009_br000085
  doi: 10.1109/ICMULT.2010.5631433
– volume: 99
  start-page: 1
  year: 2013
  ident: 10.1016/j.future.2016.06.009_br000080
  article-title: Task-tree based large-scale mosaicking for remote sensed imageries with dynamic DAG scheduling
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– ident: 10.1016/j.future.2016.06.009_br000220
  doi: 10.1109/ICIEV.2014.6850733
– ident: 10.1016/j.future.2016.06.009_br000045
  doi: 10.1109/ICECC.2011.6067845
– ident: 10.1016/j.future.2016.06.009_br000090
  doi: 10.1109/GeoInformatics.2011.5980671
– ident: 10.1016/j.future.2016.06.009_br000155
  doi: 10.1109/ICPADS.2011.95
– volume: 13
  start-page: 219
  year: 2005
  ident: 10.1016/j.future.2016.06.009_br000295
  article-title: Pegasus: a framework for mapping complex scientific workflows onto distributed systems
  publication-title: Sci. Program. J.
– start-page: 1
  year: 2007
  ident: 10.1016/j.future.2016.06.009_br000035
  article-title: Recent advances in techniques for hyperspectral image processing
  publication-title: Remote Sens. Environ.
– volume: 10
  start-page: 55
  year: 2006
  ident: 10.1016/j.future.2016.06.009_br000100
  article-title: Primary study of massive imaging auto-processing system pixel factory
  publication-title: Bull. Surv. Mapp.
– ident: 10.1016/j.future.2016.06.009_br000190
  doi: 10.1109/CCGRID.2009.93
– volume: 4
  start-page: 528
  issue: 3
  year: 2011
  ident: 10.1016/j.future.2016.06.009_br000135
  article-title: High performance computing for hyperspectral remote sensing
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2010.2095495
– volume: 38
  start-page: 2218
  issue: 5
  year: 2000
  ident: 10.1016/j.future.2016.06.009_br000070
  article-title: The global rain forest mapping project JERS-1 radar mosaic of tropical Africa: development and product characterization aspects
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.868880
– volume: vol. 7155
  start-page: 213
  year: 2012
  ident: 10.1016/j.future.2016.06.009_br000235
  article-title: Performance evaluation of HPC benchmarks on VMWares ESXI server
– volume: 4
  start-page: 5
  issue: 1
  year: 2011
  ident: 10.1016/j.future.2016.06.009_br000020
  article-title: Foreword to the special issue on “human settlements: A global remote sensing challenge”
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2011.2106332
– ident: 10.1016/j.future.2016.06.009_br000015
– volume: 1
  start-page: 21
  issue: 1
  year: 2014
  ident: 10.1016/j.future.2016.06.009_br000115
  article-title: Enabling on-demand science via cloud computing
  publication-title: IEEE Cloud Comput.
  doi: 10.1109/MCC.2014.9
– volume: 45
  start-page: 1715
  issue: 6
  year: 2007
  ident: 10.1016/j.future.2016.06.009_br000050
  article-title: High-resolution 3-D flood information from radar imagery for flood hazard management
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.888103
– ident: 10.1016/j.future.2016.06.009_br000060
  doi: 10.1109/RSETE.2011.5964523
SSID ssj0001731
Score 2.5744677
Snippet Massive, large-region coverage, multi-temporal, multi-spectral remote sensing (RS) datasets are employed widely due to the increasing requirements for accurate...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 353
SubjectTerms Big data
Cloud computing
Data-intensive computing
High performance computing
Remote sensing
Title pipsCloud: High performance cloud computing for remote sensing big data management and processing
URI https://dx.doi.org/10.1016/j.future.2016.06.009
Volume 78
WOSCitedRecordID wos000413127800027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001731
  issn: 0167-739X
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELa20EMvBfoQlFL50BtKtXnZMTeEqAAhxIG221OUTJw2aBWifSDU_9D_zPiZqFQ8DlyilWM7uzvfesazn-cj5DMDkAyKOgCWJrhBYUVQcrVxTUKRQoEbACi02AQ_O8smE3E-Gv11Z2Gup7xts5sb0T2rqbENja2Ozj7B3H5SbMDXaHS8otnx-ijDd003P5heLbV4s6JxqNLE_nAAqDuaSL5cOBLlTKK95O5ccdmxqWx-7SriqGW2ehZ6Z84UOF_ntD11URKlxCwtmMAKRdgq0T5o_2FT06fNn98Dxq12Aj1Gf5qM7IkWrhiQD8zY7w2Y8sg-VRFmg1SFzV7iqsxjrZ3rl1-j4GPXz9hUDrauODaKO3dWeZNwuPxiyq4ofh7TRVjHovdq7p_8f5ydpyA6dttlbmbJ1Sy5JvmJF2Q14qnAdX51__hwcuJde8itwKX9HO4spiYM3n03_491BvHLxTp5bTcedN8AZoOMZPuGrDlRD2rX-Lek8PjZowo9dIAeqtFDPXoo3qAGPdSihyJ6qEIP7dFDET20R8878u3r4cXBUWB1OALADeUi4JAIJqFI4gy327XKItQFVGHF07LMJLoADJtZBmUFsoyAxUU6jqBURWCxUwbxe7LSXrVyk1BWJyxOOA8TniVQSlFh93occTGuK4jYFondN5aDLVKvtFKm-X322iKBH9WZIi0P9OfOGLkNNE0AmSPC7h354YlP2iav-h_CR7KymC3lDnkJ14tmPvtk4XULFKamJw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=pipsCloud%3A+High+performance+cloud+computing+for+remote+sensing+big+data+management+and+processing&rft.jtitle=Future+generation+computer+systems&rft.au=Wang%2C+Lizhe&rft.au=Ma%2C+Yan&rft.au=Yan%2C+Jining&rft.au=Chang%2C+Victor&rft.date=2018-01-01&rft.issn=0167-739X&rft.volume=78&rft.spage=353&rft.epage=368&rft_id=info:doi/10.1016%2Fj.future.2016.06.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2016_06_009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon