Robust objectness tracking with weighted multiple instance learning algorithm

A novel improved online weighted multiple instance learning algorithm(IWMIL) for visual tracking is proposed. In the IWMIL algorithm, the importance of each sample contributing to bag probability is evaluated based on the objectness estimation with object properties (superpixel straddling). To reduc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) Jg. 288; S. 43 - 53
Hauptverfasser: Yang, Honghong, Qu, Shiru, Zhu, Fumin, Zheng, Zunxin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 02.05.2018
Schlagworte:
ISSN:0925-2312, 1872-8286
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel improved online weighted multiple instance learning algorithm(IWMIL) for visual tracking is proposed. In the IWMIL algorithm, the importance of each sample contributing to bag probability is evaluated based on the objectness estimation with object properties (superpixel straddling). To reduce the computation cost, a coarse-to-fine sample detection method is employed to detect sample for a new arriving frame. Then, an adaptive learning rate, which exploits the maximum classifier score to assign different weights to tracking result and template, is presented to update the classifiers. Furthermore, an object similarity constraint strategy is used to estimate tracking drift. Experimental results on challenging sequences show that the proposed method is robust to occlusion and appearance changes.
ISSN:0925-2312
1872-8286
DOI:10.1016/j.neucom.2017.02.106