Robust objectness tracking with weighted multiple instance learning algorithm

A novel improved online weighted multiple instance learning algorithm(IWMIL) for visual tracking is proposed. In the IWMIL algorithm, the importance of each sample contributing to bag probability is evaluated based on the objectness estimation with object properties (superpixel straddling). To reduc...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neurocomputing (Amsterdam) Ročník 288; s. 43 - 53
Hlavní autori: Yang, Honghong, Qu, Shiru, Zhu, Fumin, Zheng, Zunxin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 02.05.2018
Predmet:
ISSN:0925-2312, 1872-8286
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A novel improved online weighted multiple instance learning algorithm(IWMIL) for visual tracking is proposed. In the IWMIL algorithm, the importance of each sample contributing to bag probability is evaluated based on the objectness estimation with object properties (superpixel straddling). To reduce the computation cost, a coarse-to-fine sample detection method is employed to detect sample for a new arriving frame. Then, an adaptive learning rate, which exploits the maximum classifier score to assign different weights to tracking result and template, is presented to update the classifiers. Furthermore, an object similarity constraint strategy is used to estimate tracking drift. Experimental results on challenging sequences show that the proposed method is robust to occlusion and appearance changes.
ISSN:0925-2312
1872-8286
DOI:10.1016/j.neucom.2017.02.106