Efficient design of multicolumn RBF networks

To make radial basis function (RBF) networks efficient for large-scale learning tasks, the parallel technique provides a promising way for the construction of multicolumn RBF network (MCRN), where the task to be tackled is decomposed into several subtasks and RBF networks designed for these subtasks...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) Jg. 450; S. 253 - 263
Hauptverfasser: Han, Ziyang, Qian, Xusheng, Huang, He, Huang, Tingwen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 25.08.2021
Schlagworte:
ISSN:0925-2312, 1872-8286
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract To make radial basis function (RBF) networks efficient for large-scale learning tasks, the parallel technique provides a promising way for the construction of multicolumn RBF network (MCRN), where the task to be tackled is decomposed into several subtasks and RBF networks designed for these subtasks are integrated as a parallel structure to obtain the final model. This paper focuses on presenting an efficient design method for MCRN based on improved generalized hybrid constructive (GHC) learning algorithm such that desired performance and high efficiency are guaranteed. Specifically, a minimum difference scheme is firstly introduced to divide a large-scale dataset into several parts with similar distribution. For each subtask, a compact RBF network is designed by improved GHC learning algorithm. By fully considering the inherent properties of RBF networks, a K-nearest potential centers based criterion is established to calculate the output of testing sample. Experiments on some benchmark classification problems are conducted to verify the advantages of the proposed method. In terms of training and testing efficiencies and classification accuracy, it is shown that our model is superior over some existing ones.
AbstractList To make radial basis function (RBF) networks efficient for large-scale learning tasks, the parallel technique provides a promising way for the construction of multicolumn RBF network (MCRN), where the task to be tackled is decomposed into several subtasks and RBF networks designed for these subtasks are integrated as a parallel structure to obtain the final model. This paper focuses on presenting an efficient design method for MCRN based on improved generalized hybrid constructive (GHC) learning algorithm such that desired performance and high efficiency are guaranteed. Specifically, a minimum difference scheme is firstly introduced to divide a large-scale dataset into several parts with similar distribution. For each subtask, a compact RBF network is designed by improved GHC learning algorithm. By fully considering the inherent properties of RBF networks, a K-nearest potential centers based criterion is established to calculate the output of testing sample. Experiments on some benchmark classification problems are conducted to verify the advantages of the proposed method. In terms of training and testing efficiencies and classification accuracy, it is shown that our model is superior over some existing ones.
Author Qian, Xusheng
Huang, Tingwen
Han, Ziyang
Huang, He
Author_xml – sequence: 1
  givenname: Ziyang
  surname: Han
  fullname: Han, Ziyang
  organization: School of Electronics and Information Engineering, Soochow University, Suzhou 215006, PR China
– sequence: 2
  givenname: Xusheng
  surname: Qian
  fullname: Qian, Xusheng
  organization: Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, PR China
– sequence: 3
  givenname: He
  surname: Huang
  fullname: Huang, He
  email: hhuang@suda.edu.cn
  organization: School of Electronics and Information Engineering, Soochow University, Suzhou 215006, PR China
– sequence: 4
  givenname: Tingwen
  surname: Huang
  fullname: Huang, Tingwen
  organization: Texas A & M University at Qatar, Doha 5825, Qatar
BookMark eNqFkM1KxDAUhYOM4MzoG7joA9h689O0dSHoMKPCgCC6DmmaSMY2kSRVfHs7jCsXCgfu6juH7y7QzHmnETrHUGDA_HJXOD0qPxQECC6ATYEjNMd1RfKa1HyG5tCQMicUkxO0iHEHgCtMmjm6WBtjldUuZZ2O9tVl3mTD2CerfD8OLnu63WROp08f3uIpOjayj_rs5y7Ry2b9vLrPt493D6ubba4o8JRXLW9a4HyaZzUFxpguNS1VLZlqOdOtKktDwWCmZN0o0vCOVrUxkre4opLTJbo69KrgYwzaCGWTTNa7FKTtBQax9xY7cfAWe28BbApMMPsFvwc7yPD1H3Z9wPQk9mF1EHH_FqU7G7RKovP274Jv5Ux1kA
CitedBy_id crossref_primary_10_1007_s00500_023_09207_4
crossref_primary_10_1109_TNNLS_2022_3227296
crossref_primary_10_1016_j_jpowsour_2025_236432
crossref_primary_10_1007_s40436_022_00403_3
crossref_primary_10_1016_j_est_2025_116809
crossref_primary_10_1177_01423312221083782
crossref_primary_10_1016_j_ins_2022_11_038
crossref_primary_10_1002_oca_2940
crossref_primary_10_1016_j_energy_2024_131626
crossref_primary_10_3390_e26050368
Cites_doi 10.1109/TSE.1979.234200
10.1016/j.neunet.2015.12.011
10.1109/TNNLS.2018.2886341
10.1109/TNNLS.2017.2650865
10.1109/CVPR.2012.6248110
10.1109/TCYB.2015.2484378
10.1145/1961189.1961199
10.1109/TPAMI.2019.2906594
10.1109/TNNLS.2015.2497286
10.1109/TNN.2010.2045657
10.1109/TAC.1974.1100705
10.1109/TNNLS.2017.2716947
10.1109/TNNLS.2013.2295813
10.1109/TNN.2006.880583
10.1016/j.neunet.2017.07.004
10.1016/j.neucom.2020.04.105
10.1109/TCYB.2018.2869861
10.1109/TNNLS.2017.2731319
10.1109/TNNLS.2012.2185059
10.1016/j.ijepes.2012.08.014
10.1109/TNNLS.2014.2350957
10.1109/5.58326
10.1109/TCYB.2019.2921057
10.1016/S0893-6080(01)00027-2
10.1109/TIE.2011.2164773
10.1016/j.neunet.2015.05.001
10.1109/TCYB.2017.2764744
10.1109/TNNLS.2012.2226748
10.1109/TCYB.2018.2833805
10.1109/TNNLS.2019.2952000
10.1109/TNN.2009.2019270
10.1016/j.neucom.2016.09.027
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2021.04.040
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 263
ExternalDocumentID 10_1016_j_neucom_2021_04_040
S0925231221005749
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-7b69b0668724830444e5e35c8a4cb64ebc55f30f14ca89c296d378ffa6b173a63
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000660414000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 07:11:09 EST 2025
Tue Nov 18 22:34:40 EST 2025
Fri Feb 23 02:44:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Generalized hybrid constructive algorithm
Efficient learning
Multicolumn RBF networks
Parallel structure
Potential centers
Minimum difference scheme
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-7b69b0668724830444e5e35c8a4cb64ebc55f30f14ca89c296d378ffa6b173a63
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2021_04_040
crossref_primary_10_1016_j_neucom_2021_04_040
elsevier_sciencedirect_doi_10_1016_j_neucom_2021_04_040
PublicationCentury 2000
PublicationDate 2021-08-25
PublicationDateYYYYMMDD 2021-08-25
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-25
  day: 25
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Rouhani, Javan (b0075) 2016; 75
J. Chen, Y. Wu, Y. Yang, S. Wen, K. Shi, A. Bermak, T. Huang, An efficient memristor-based circuit implementation of squeeze-and-excitation fully convolutional neural networks, IEEE Trans. Neural Netw. Learn. Syst., in press.
Wilamowski, Yu (b0140) 2010; 21
Xie, Yu, Hewlett, Różycki, Wilamowski (b0105) 2012; 23
Hu, Wen, Zeng, Huang (b0165) 2017; 221
Raitoharju, Kiranyaz, Gabbouj (b0070) 2016; 27
J.L. Bentley, Multidimensional binary search trees in database applications, IEEE Trans. Softw. Eng. SE-5 (4) (1979) 333–340.
Bai, Zhou, Li, Li (b0025) 2020; 50
S. Wen, J. Chen, Y. Wu, Z. Yan, Y. Yang, and T. Huang, CKFO: convolutional kernel first operated algorithm with applications in memristor-based convolutional neural networks, IEEE Trans. Comput. Aided Design Integr. Circuits Syst., in press.
Yu, Reiner, Xie, Bartczak, Wilamowski (b0110) 2014; 25
Han, Wu, Zhang, Tian, Qiao (b0040) 2019; 49
Wang, Han, Shen, Li, Dong (b0175) 2020; 45
Poggio, Girosi (b0010) 1990; 78
Qian, Huang, Chen, Huang (b0085) 2017; 47
Bortman, Aladjem (b0115) 2009; 20
H. Akaike, A new look at the statistical model identification, IEEE Trans. Automat. Contr. AC-19 (6) (1974) 716–723.
Yu, Xie, Paszczynski, Wilamowski (b0005) 2011; 58
Wang, Feng, Han, Leung (b0065) 2018; 29
Liang, Huang, Saratchandran, Sundararajan (b0100) 2006; 17
Wang, Han, Zhang, Lu (b0170) 2020; 403
A. Asuncion, D.J. Newman, UCI Machine Learning Repository, accessed on Mar. 3, 2016. [Online]. Available: http://www.ics.uci.edu//MLRepository.html.
Wang, Liu, Li, Wang (b0015) 2018; 29
Hoori, Motai (b0145) 2018; 29
H. Ran, S. Wen, Q. Li, Y. Yang, K. Shi, Y. Feng, P. Zhou, T. Huang, Memristor-based edge computing of blaze block for image recognition, IEEE Trans. Neural Netw. Learn. Syst., in press.
Bonab, Can (b0155) 2019; 30
Yoo, Oh, Pedrycz (b0030) 2015; 69
Seghouane, Shokouhi (b0050) 2020
Babu, Suresh (b0095) 2013; 24
D. Cireşan, U. Meier, J. Schmidhuber, Multi-column deep neural networks for image classification, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2012, pp. 3642–3649.
Mesquita, Freitas, Gomes, Mattos (b0035) 2020; 31
Wu, Różycki, Wilamowski (b0120) 2015; 26
Qian, Huang, Chen, Huang (b0080) 2017; 94
Xie, Xie, Huang, Gui, Yang (b0020) 2018; 48
Schwenker, Kestler, Palm (b0090) 2001; 14
Chang, Lin (b0190) 2011; 2
Chen, Gong, Hong, Chen (b0045) 2016; 46
Chang, Huang (b0060) 2019; 49
Javan, Mashhadi, Rouhani (b0180) 2013; 44
Que, Belkin (b0055) 2020; 42
Javan (10.1016/j.neucom.2021.04.040_b0180) 2013; 44
Rouhani (10.1016/j.neucom.2021.04.040_b0075) 2016; 75
10.1016/j.neucom.2021.04.040_b0130
Mesquita (10.1016/j.neucom.2021.04.040_b0035) 2020; 31
10.1016/j.neucom.2021.04.040_b0195
Wang (10.1016/j.neucom.2021.04.040_b0015) 2018; 29
Hu (10.1016/j.neucom.2021.04.040_b0165) 2017; 221
10.1016/j.neucom.2021.04.040_b0135
Bai (10.1016/j.neucom.2021.04.040_b0025) 2020; 50
Bonab (10.1016/j.neucom.2021.04.040_b0155) 2019; 30
Han (10.1016/j.neucom.2021.04.040_b0040) 2019; 49
Seghouane (10.1016/j.neucom.2021.04.040_b0050) 2020
10.1016/j.neucom.2021.04.040_b0150
Chang (10.1016/j.neucom.2021.04.040_b0190) 2011; 2
Raitoharju (10.1016/j.neucom.2021.04.040_b0070) 2016; 27
Yu (10.1016/j.neucom.2021.04.040_b0110) 2014; 25
Wang (10.1016/j.neucom.2021.04.040_b0170) 2020; 403
Qian (10.1016/j.neucom.2021.04.040_b0080) 2017; 94
Hoori (10.1016/j.neucom.2021.04.040_b0145) 2018; 29
Chen (10.1016/j.neucom.2021.04.040_b0045) 2016; 46
Poggio (10.1016/j.neucom.2021.04.040_b0010) 1990; 78
Schwenker (10.1016/j.neucom.2021.04.040_b0090) 2001; 14
Liang (10.1016/j.neucom.2021.04.040_b0100) 2006; 17
Bortman (10.1016/j.neucom.2021.04.040_b0115) 2009; 20
10.1016/j.neucom.2021.04.040_b0185
Wang (10.1016/j.neucom.2021.04.040_b0065) 2018; 29
10.1016/j.neucom.2021.04.040_b0125
Yoo (10.1016/j.neucom.2021.04.040_b0030) 2015; 69
Yu (10.1016/j.neucom.2021.04.040_b0005) 2011; 58
Chang (10.1016/j.neucom.2021.04.040_b0060) 2019; 49
Qian (10.1016/j.neucom.2021.04.040_b0085) 2017; 47
Que (10.1016/j.neucom.2021.04.040_b0055) 2020; 42
10.1016/j.neucom.2021.04.040_b0160
Babu (10.1016/j.neucom.2021.04.040_b0095) 2013; 24
Wilamowski (10.1016/j.neucom.2021.04.040_b0140) 2010; 21
Xie (10.1016/j.neucom.2021.04.040_b0105) 2012; 23
Xie (10.1016/j.neucom.2021.04.040_b0020) 2018; 48
Wu (10.1016/j.neucom.2021.04.040_b0120) 2015; 26
Wang (10.1016/j.neucom.2021.04.040_b0175) 2020; 45
References_xml – volume: 27
  start-page: 2458
  year: 2016
  end-page: 2471
  ident: b0070
  article-title: Training radial basis function neural networks for classification via class-specific clustering
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 2
  start-page: 1
  year: 2011
  end-page: 27
  ident: b0190
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
– volume: 17
  start-page: 1411
  year: 2006
  end-page: 1423
  ident: b0100
  article-title: A fast and accurate online sequential learning algorithm for feedforward networks
  publication-title: IEEE Trans. Neural Netw.
– reference: H. Ran, S. Wen, Q. Li, Y. Yang, K. Shi, Y. Feng, P. Zhou, T. Huang, Memristor-based edge computing of blaze block for image recognition, IEEE Trans. Neural Netw. Learn. Syst., in press.
– volume: 221
  start-page: 24
  year: 2017
  end-page: 31
  ident: b0165
  article-title: A short-term power load forecasting model based on the generalized regression neural network with decreasing step fruit fly optimization algorithm
  publication-title: Neurocomputing
– volume: 44
  start-page: 988
  year: 2013
  end-page: 996
  ident: b0180
  article-title: A fast static security assessment method based on radial basis function neural networks using enhanced clustering
  publication-title: Int. J. Elect. Power Energy Syst.
– volume: 58
  start-page: 5438
  year: 2011
  end-page: 5450
  ident: b0005
  article-title: Advantages of radial basis function networks for dynamic system design
  publication-title: IEEE Trans. Ind. Elect.
– reference: H. Akaike, A new look at the statistical model identification, IEEE Trans. Automat. Contr. AC-19 (6) (1974) 716–723.
– volume: 49
  start-page: 4460
  year: 2019
  end-page: 4472
  ident: b0060
  article-title: Automatic tuning of the RBF kernel parameter for batch-mode active learning algorithms: a scalable framework
  publication-title: IEEE Trans. Cybern.
– volume: 49
  start-page: 69
  year: 2019
  end-page: 82
  ident: b0040
  article-title: Self-organizing RBF neural network using an adaptive gradient multiobjective particle swarm optimization
  publication-title: IEEE Trans. Cybern.
– volume: 29
  start-page: 3870
  year: 2018
  end-page: 3878
  ident: b0065
  article-title: ADMM-based algorithm for training fault tolerant RBF networks and selecting centers
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 26
  start-page: 1659
  year: 2015
  end-page: 1668
  ident: b0120
  article-title: A hybrid constructive algorithm for single-Layer feedforward networks learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– reference: J.L. Bentley, Multidimensional binary search trees in database applications, IEEE Trans. Softw. Eng. SE-5 (4) (1979) 333–340.
– reference: A. Asuncion, D.J. Newman, UCI Machine Learning Repository, accessed on Mar. 3, 2016. [Online]. Available: http://www.ics.uci.edu//MLRepository.html.
– volume: 78
  start-page: 1481
  year: 1990
  end-page: 1497
  ident: b0010
  article-title: Networks for approximation and learning
  publication-title: Proc. IEEE
– volume: 94
  start-page: 239
  year: 2017
  end-page: 254
  ident: b0080
  article-title: Efficient construction of sparse radial basis function neural networks using
  publication-title: Neural Netw.
– reference: S. Wen, J. Chen, Y. Wu, Z. Yan, Y. Yang, and T. Huang, CKFO: convolutional kernel first operated algorithm with applications in memristor-based convolutional neural networks, IEEE Trans. Comput. Aided Design Integr. Circuits Syst., in press.
– volume: 20
  start-page: 1039
  year: 2009
  end-page: 1045
  ident: b0115
  article-title: A growing and pruning method for radial basis function networks
  publication-title: IEEE Trans. Neural Network
– volume: 403
  start-page: 237
  year: 2020
  end-page: 246
  ident: b0170
  article-title: An SAE-based resampling SVM ensemble learning paradigm for pipeline leakage detection
  publication-title: Neurocomputing
– volume: 42
  start-page: 1856
  year: 2020
  end-page: 1867
  ident: b0055
  article-title: Back to the future: Radial basis function network revisited
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 47
  start-page: 3634
  year: 2017
  end-page: 3648
  ident: b0085
  article-title: Generalized hybrid constructive learning algorithm for multioutput RBF networks
  publication-title: IEEE Trans. Cybern.
– reference: D. Cireşan, U. Meier, J. Schmidhuber, Multi-column deep neural networks for image classification, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2012, pp. 3642–3649.
– volume: 24
  start-page: 194
  year: 2013
  end-page: 206
  ident: b0095
  article-title: Sequential projection-based metacognitive learning in a radial basis function network for classification problems
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 23
  start-page: 609
  year: 2012
  end-page: 619
  ident: b0105
  article-title: Fast and efficient second-order method for training radial basis function networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 31
  start-page: 4389
  year: 2020
  end-page: 4399
  ident: b0035
  article-title: LS-SVR as a Bayesian RBF network
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 48
  start-page: 3313
  year: 2018
  end-page: 3322
  ident: b0020
  article-title: Coordinated optimization for the descent gradient of technical index in the iron removal process
  publication-title: IEEE Trans. Cybern.
– reference: J. Chen, Y. Wu, Y. Yang, S. Wen, K. Shi, A. Bermak, T. Huang, An efficient memristor-based circuit implementation of squeeze-and-excitation fully convolutional neural networks, IEEE Trans. Neural Netw. Learn. Syst., in press.
– year: 2020
  ident: b0050
  article-title: Adaptive learning for robust radial basis function networks
  publication-title: IEEE Trans. Cybern., in press
– volume: 75
  start-page: 150
  year: 2016
  end-page: 161
  ident: b0075
  article-title: Two fast and accurate heuristic RBF learning rules for data classification
  publication-title: Neural Netw.
– volume: 29
  start-page: 766
  year: 2018
  end-page: 778
  ident: b0145
  article-title: Multicolumn RBF network
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 46
  start-page: 2683
  year: 2016
  end-page: 2692
  ident: b0045
  article-title: A fast adaptive tunable RBF network for nonstationary systems
  publication-title: IEEE Trans. Cybern.
– volume: 21
  start-page: 930
  year: 2010
  end-page: 937
  ident: b0140
  article-title: Improved computation for Levenberg-Marquardt traning
  publication-title: IEEE Trans. Neural Netw.
– volume: 14
  start-page: 439
  year: 2001
  end-page: 458
  ident: b0090
  article-title: Three learning phases for radial-basis-function networks
  publication-title: Neural Netw.
– volume: 45
  start-page: 1
  year: 2020
  end-page: 13
  ident: b0175
  article-title: Full-information particle swarm optimizer based on event-triggering strategy and its applications
  publication-title: Acta Autom. Sin.
– volume: 30
  start-page: 2735
  year: 2019
  end-page: 2745
  ident: b0155
  article-title: Less is more: a comprehensive framework for the number of components of ensemble classifiers
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 25
  start-page: 1793
  year: 2014
  end-page: 1803
  ident: b0110
  article-title: An incremental design of radial basis function networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 69
  start-page: 111
  year: 2015
  end-page: 125
  ident: b0030
  article-title: Optimized face recognition algorithm using radial basis function neural networks and its practical applications
  publication-title: Neural Netw.
– volume: 29
  start-page: 3658
  year: 2018
  end-page: 3668
  ident: b0015
  article-title: Adaptive neural output-feedback control for a class of nonlower triangular nonlinear systems with unmodeled dynamics
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 50
  start-page: 3433
  year: 2020
  end-page: 3443
  ident: b0025
  article-title: Adaptive reinforcement learning neural network control for uncertain nonlinear system with input saturation
  publication-title: IEEE Trans. Cybern.
– ident: 10.1016/j.neucom.2021.04.040_b0195
– ident: 10.1016/j.neucom.2021.04.040_b0160
  doi: 10.1109/TSE.1979.234200
– volume: 75
  start-page: 150
  year: 2016
  ident: 10.1016/j.neucom.2021.04.040_b0075
  article-title: Two fast and accurate heuristic RBF learning rules for data classification
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2015.12.011
– volume: 30
  start-page: 2735
  issue: 9
  year: 2019
  ident: 10.1016/j.neucom.2021.04.040_b0155
  article-title: Less is more: a comprehensive framework for the number of components of ensemble classifiers
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2886341
– volume: 29
  start-page: 766
  issue: 4
  year: 2018
  ident: 10.1016/j.neucom.2021.04.040_b0145
  article-title: Multicolumn RBF network
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2017.2650865
– ident: 10.1016/j.neucom.2021.04.040_b0150
  doi: 10.1109/CVPR.2012.6248110
– ident: 10.1016/j.neucom.2021.04.040_b0130
– ident: 10.1016/j.neucom.2021.04.040_b0135
– volume: 46
  start-page: 2683
  issue: 12
  year: 2016
  ident: 10.1016/j.neucom.2021.04.040_b0045
  article-title: A fast adaptive tunable RBF network for nonstationary systems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2484378
– volume: 2
  start-page: 1
  issue: 27
  year: 2011
  ident: 10.1016/j.neucom.2021.04.040_b0190
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– volume: 42
  start-page: 1856
  issue: 8
  year: 2020
  ident: 10.1016/j.neucom.2021.04.040_b0055
  article-title: Back to the future: Radial basis function network revisited
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2906594
– volume: 27
  start-page: 2458
  issue: 12
  year: 2016
  ident: 10.1016/j.neucom.2021.04.040_b0070
  article-title: Training radial basis function neural networks for classification via class-specific clustering
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2497286
– ident: 10.1016/j.neucom.2021.04.040_b0125
– volume: 21
  start-page: 930
  issue: 6
  year: 2010
  ident: 10.1016/j.neucom.2021.04.040_b0140
  article-title: Improved computation for Levenberg-Marquardt traning
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2010.2045657
– ident: 10.1016/j.neucom.2021.04.040_b0185
  doi: 10.1109/TAC.1974.1100705
– volume: 47
  start-page: 3634
  issue: 11
  year: 2017
  ident: 10.1016/j.neucom.2021.04.040_b0085
  article-title: Generalized hybrid constructive learning algorithm for multioutput RBF networks
  publication-title: IEEE Trans. Cybern.
– volume: 29
  start-page: 3658
  issue: 8
  year: 2018
  ident: 10.1016/j.neucom.2021.04.040_b0015
  article-title: Adaptive neural output-feedback control for a class of nonlower triangular nonlinear systems with unmodeled dynamics
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2017.2716947
– volume: 25
  start-page: 1793
  issue: 10
  year: 2014
  ident: 10.1016/j.neucom.2021.04.040_b0110
  article-title: An incremental design of radial basis function networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2013.2295813
– volume: 17
  start-page: 1411
  issue: 6
  year: 2006
  ident: 10.1016/j.neucom.2021.04.040_b0100
  article-title: A fast and accurate online sequential learning algorithm for feedforward networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2006.880583
– volume: 94
  start-page: 239
  year: 2017
  ident: 10.1016/j.neucom.2021.04.040_b0080
  article-title: Efficient construction of sparse radial basis function neural networks using L1-regularization
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2017.07.004
– year: 2020
  ident: 10.1016/j.neucom.2021.04.040_b0050
  article-title: Adaptive learning for robust radial basis function networks
  publication-title: IEEE Trans. Cybern., in press
– volume: 403
  start-page: 237
  year: 2020
  ident: 10.1016/j.neucom.2021.04.040_b0170
  article-title: An SAE-based resampling SVM ensemble learning paradigm for pipeline leakage detection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.04.105
– volume: 49
  start-page: 4460
  issue: 12
  year: 2019
  ident: 10.1016/j.neucom.2021.04.040_b0060
  article-title: Automatic tuning of the RBF kernel parameter for batch-mode active learning algorithms: a scalable framework
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2869861
– volume: 29
  start-page: 3870
  issue: 8
  year: 2018
  ident: 10.1016/j.neucom.2021.04.040_b0065
  article-title: ADMM-based algorithm for training fault tolerant RBF networks and selecting centers
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2017.2731319
– volume: 23
  start-page: 609
  issue: 4
  year: 2012
  ident: 10.1016/j.neucom.2021.04.040_b0105
  article-title: Fast and efficient second-order method for training radial basis function networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2012.2185059
– volume: 44
  start-page: 988
  issue: 1
  year: 2013
  ident: 10.1016/j.neucom.2021.04.040_b0180
  article-title: A fast static security assessment method based on radial basis function neural networks using enhanced clustering
  publication-title: Int. J. Elect. Power Energy Syst.
  doi: 10.1016/j.ijepes.2012.08.014
– volume: 26
  start-page: 1659
  issue: 8
  year: 2015
  ident: 10.1016/j.neucom.2021.04.040_b0120
  article-title: A hybrid constructive algorithm for single-Layer feedforward networks learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2014.2350957
– volume: 78
  start-page: 1481
  issue: 9
  year: 1990
  ident: 10.1016/j.neucom.2021.04.040_b0010
  article-title: Networks for approximation and learning
  publication-title: Proc. IEEE
  doi: 10.1109/5.58326
– volume: 50
  start-page: 3433
  issue: 8
  year: 2020
  ident: 10.1016/j.neucom.2021.04.040_b0025
  article-title: Adaptive reinforcement learning neural network control for uncertain nonlinear system with input saturation
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2921057
– volume: 14
  start-page: 439
  year: 2001
  ident: 10.1016/j.neucom.2021.04.040_b0090
  article-title: Three learning phases for radial-basis-function networks
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(01)00027-2
– volume: 45
  start-page: 1
  year: 2020
  ident: 10.1016/j.neucom.2021.04.040_b0175
  article-title: Full-information particle swarm optimizer based on event-triggering strategy and its applications
  publication-title: Acta Autom. Sin.
– volume: 58
  start-page: 5438
  issue: 12
  year: 2011
  ident: 10.1016/j.neucom.2021.04.040_b0005
  article-title: Advantages of radial basis function networks for dynamic system design
  publication-title: IEEE Trans. Ind. Elect.
  doi: 10.1109/TIE.2011.2164773
– volume: 69
  start-page: 111
  year: 2015
  ident: 10.1016/j.neucom.2021.04.040_b0030
  article-title: Optimized face recognition algorithm using radial basis function neural networks and its practical applications
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2015.05.001
– volume: 49
  start-page: 69
  issue: 1
  year: 2019
  ident: 10.1016/j.neucom.2021.04.040_b0040
  article-title: Self-organizing RBF neural network using an adaptive gradient multiobjective particle swarm optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2764744
– volume: 24
  start-page: 194
  issue: 2
  year: 2013
  ident: 10.1016/j.neucom.2021.04.040_b0095
  article-title: Sequential projection-based metacognitive learning in a radial basis function network for classification problems
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2012.2226748
– volume: 48
  start-page: 3313
  issue: 12
  year: 2018
  ident: 10.1016/j.neucom.2021.04.040_b0020
  article-title: Coordinated optimization for the descent gradient of technical index in the iron removal process
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2833805
– volume: 31
  start-page: 4389
  issue: 10
  year: 2020
  ident: 10.1016/j.neucom.2021.04.040_b0035
  article-title: LS-SVR as a Bayesian RBF network
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2019.2952000
– volume: 20
  start-page: 1039
  issue: 6
  year: 2009
  ident: 10.1016/j.neucom.2021.04.040_b0115
  article-title: A growing and pruning method for radial basis function networks
  publication-title: IEEE Trans. Neural Network
  doi: 10.1109/TNN.2009.2019270
– volume: 221
  start-page: 24
  year: 2017
  ident: 10.1016/j.neucom.2021.04.040_b0165
  article-title: A short-term power load forecasting model based on the generalized regression neural network with decreasing step fruit fly optimization algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.027
SSID ssj0017129
Score 2.399032
Snippet To make radial basis function (RBF) networks efficient for large-scale learning tasks, the parallel technique provides a promising way for the construction of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 253
SubjectTerms Efficient learning
Generalized hybrid constructive algorithm
Minimum difference scheme
Multicolumn RBF networks
Parallel structure
Potential centers
Title Efficient design of multicolumn RBF networks
URI https://dx.doi.org/10.1016/j.neucom.2021.04.040
Volume 450
WOSCitedRecordID wos000660414000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdg44EXvhHjY8oDb8MojZ3YfuymTh0PE4IiVbxE_hSdRjatLYz_nrPPaSuK-JKQqqg6xYnju_xyPvt-R8hLZ5X1tQ_UBF5SLoOkxjFLHRe1rgOHOYRNxSbE6amcTtXbnF0yT-UERNfJ62t1-V9VDTJQdkyd_Qt1ry4KAvgPSocjqB2Of6T4USKFiEv8Lu3OSCvoiWQjAlF38O7w-KDDzd_zTdc00XTYVOQhhw-GnyOLgosmo9ZIlWDq4-ybzt-8GDWdoXS6nH_ya_F4mYPRY78lmsA9vuY0tBx0qFIUFROUMRK2lQ2DIcWqpuAvIrp6BFQpqpSqvom4HLlme8xEtuD8-a0Q77aQHYMMZ687v4zbfGKnEkctkj39wJn9PnYl9gQmtOCQcnWT7FaiVgB7u8OT0fTNaqFJDCqkY8xd77Mr0xbA7Xv93HvZ8Egm98idPJUohmgC98kN3z0gd_syHUVG7Yfk1coiCrSI4iIUGxZRgEUUvUU8Ih-OR5OjMc1FMqiF2d6CCtMoA34jjDOXLLL_wavHais1t6bh3ti6DqwMA261VLZSjWNChqAbMxBMN-wx2ekuOv-EFIwbGYQeuLg2XQan4DSYTWptnLeV4XuE9Q_f2swgHwuZnLf9VsGzFoesjUPWlhx-5R6hq1aXyKDym_NFP65t9gLRu2vBFH7Z8uk_t3xGbq-t_DnZWVwt_Qtyy35ZzOZX-9lmvgO6VIEJ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+design+of+multicolumn+RBF+networks&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Han%2C+Ziyang&rft.au=Qian%2C+Xusheng&rft.au=Huang%2C+He&rft.au=Huang%2C+Tingwen&rft.date=2021-08-25&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=450&rft.spage=253&rft.epage=263&rft_id=info:doi/10.1016%2Fj.neucom.2021.04.040&rft.externalDocID=S0925231221005749
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon