Process design and multi-objective optimization for separation of ternary mixtures with double azeotropes via integrated quasi-continuous pressure-swing batch distillation

•Ternary mixture with double azeotropes was separated by pressure-swing batch distillation.•Integrated quasi-continuous triple-column process was further proposed and analyzed.•Multi-objective optimization algorithm was adopted to realize the optimization of process.•Thermal integration technology w...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Separation and purification technology Ročník 276; s. 119288
Hlavní autori: Zhao, Fei, Xu, Zaifeng, Zhao, Jiangang, Wang, Jia, Hu, Mingyue, Li, Xin, Zhu, Zhaoyou, Cui, Peizhe, Wang, Yinglong, Ma, Yixin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.12.2021
Predmet:
ISSN:1383-5866
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Ternary mixture with double azeotropes was separated by pressure-swing batch distillation.•Integrated quasi-continuous triple-column process was further proposed and analyzed.•Multi-objective optimization algorithm was adopted to realize the optimization of process.•Thermal integration technology was used to further reduce energy consumption. An multivessel double-column pressure-swing batch distillation process and a triple-column integrated quasi-continuous distillation process were designed to separate ternary mixtures with double azeotropes of ethyl acetate-methanol-water. The process feasibility was analyzed based on ternary phase diagram. Based on a production capacity of 100 kmol/batch, the corresponding control strategy was proposed to achieve the effective separation of the mixture. Taking the minimum total annual cost as the objective function, the process parameters of the double-column process were optimized to determine the optimal operating pressure. Exergy loss of distillation column was calculated to evaluate the thermodynamic performance of the process. To further improve the separation efficiency of the process, a third column was integrated in the double-column batch distillation process to separate the methanol-water mixture directly. Combined with sequential iterative optimization sequence and multi-objective optimization algorithm, the triple-column process parameters were optimized, and the trade-off between equipment cost and carbon dioxide was realized. Thermal integration technology was adopted to further reduce the energy consumption of the triple-column process. The results show that the carbon dioxide emissions and total annual cost of the double-column process are 1.323 × 106 kg/y and 2.107 × 105 $/y. The purity of ethyl acetate and water was 99.9 mol%. While the purity of methanol was 99.5 mol%. The total annual cost and emission of the triple-column process were 1.993% and 1.890% higher than that of the double-column process, respectively, but the methanol purity was further improved to 99.9 mol%. Compared with the double-column process, the total annual cost and carbon dioxide emissions of the triple-column process with thermal integration technology were reduced by 1.281% and 17.337%.
AbstractList •Ternary mixture with double azeotropes was separated by pressure-swing batch distillation.•Integrated quasi-continuous triple-column process was further proposed and analyzed.•Multi-objective optimization algorithm was adopted to realize the optimization of process.•Thermal integration technology was used to further reduce energy consumption. An multivessel double-column pressure-swing batch distillation process and a triple-column integrated quasi-continuous distillation process were designed to separate ternary mixtures with double azeotropes of ethyl acetate-methanol-water. The process feasibility was analyzed based on ternary phase diagram. Based on a production capacity of 100 kmol/batch, the corresponding control strategy was proposed to achieve the effective separation of the mixture. Taking the minimum total annual cost as the objective function, the process parameters of the double-column process were optimized to determine the optimal operating pressure. Exergy loss of distillation column was calculated to evaluate the thermodynamic performance of the process. To further improve the separation efficiency of the process, a third column was integrated in the double-column batch distillation process to separate the methanol-water mixture directly. Combined with sequential iterative optimization sequence and multi-objective optimization algorithm, the triple-column process parameters were optimized, and the trade-off between equipment cost and carbon dioxide was realized. Thermal integration technology was adopted to further reduce the energy consumption of the triple-column process. The results show that the carbon dioxide emissions and total annual cost of the double-column process are 1.323 × 106 kg/y and 2.107 × 105 $/y. The purity of ethyl acetate and water was 99.9 mol%. While the purity of methanol was 99.5 mol%. The total annual cost and emission of the triple-column process were 1.993% and 1.890% higher than that of the double-column process, respectively, but the methanol purity was further improved to 99.9 mol%. Compared with the double-column process, the total annual cost and carbon dioxide emissions of the triple-column process with thermal integration technology were reduced by 1.281% and 17.337%.
ArticleNumber 119288
Author Zhao, Fei
Zhu, Zhaoyou
Cui, Peizhe
Hu, Mingyue
Wang, Yinglong
Ma, Yixin
Wang, Jia
Xu, Zaifeng
Zhao, Jiangang
Li, Xin
Author_xml – sequence: 1
  givenname: Fei
  surname: Zhao
  fullname: Zhao, Fei
  organization: College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
– sequence: 2
  givenname: Zaifeng
  surname: Xu
  fullname: Xu, Zaifeng
  organization: College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
– sequence: 3
  givenname: Jiangang
  surname: Zhao
  fullname: Zhao, Jiangang
  organization: College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
– sequence: 4
  givenname: Jia
  surname: Wang
  fullname: Wang, Jia
  organization: College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
– sequence: 5
  givenname: Mingyue
  surname: Hu
  fullname: Hu, Mingyue
  organization: College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
– sequence: 6
  givenname: Xin
  surname: Li
  fullname: Li, Xin
  organization: College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
– sequence: 7
  givenname: Zhaoyou
  surname: Zhu
  fullname: Zhu, Zhaoyou
  organization: College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
– sequence: 8
  givenname: Peizhe
  surname: Cui
  fullname: Cui, Peizhe
  email: cpzmagic@qust.edu.cn
  organization: College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
– sequence: 9
  givenname: Yinglong
  surname: Wang
  fullname: Wang, Yinglong
  email: wangyinglong@qust.edu.cn
  organization: College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
– sequence: 10
  givenname: Yixin
  surname: Ma
  fullname: Ma, Yixin
  organization: College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
BookMark eNqFkctOxCAUhllo4vUNXPACHaFMO9SFiTHeEhNd6JoAPR3PpAMV6Hh5JV9StK5c6IpA8v0_5zt7ZMt5B4QccTbjjNfHq1mEYRjDrGQln3HelFJukV0upCgqWdc7ZC_GFWN8wWW5Sz7ug7cQI20h4tJR7Vq6HvuEhTcrsAk3QP2QcI3vOqF3tPOB5gYdpqvvaILgdHija3xNY4BIXzA90daPpgeq38Gn4If8vEFN0SVYZhRa-jzqiIX1LqEb_RjpkNmYA4r4gm5JjU42x2BM2PffZQdku9N9hMOfc588Xl48nF8Xt3dXN-dnt4UVrE7FwgieVbS6AbkQIKAB0chybnjZGQmdmVfaAK8Mq2tT1aJlpSxBW825rZhuxD45mXJt8DEG6JTF9P2DFDT2ijP1pVqt1KRafalWk-oMz3_BQ8B19vMfdjphkAfbIAQVLYKz0GLIa1Ctx78DPgFh8aaQ
CitedBy_id crossref_primary_10_1002_apj_70046
crossref_primary_10_1016_j_jclepro_2021_130116
crossref_primary_10_1007_s11705_025_2607_5
crossref_primary_10_1016_j_cjche_2024_03_021
crossref_primary_10_1016_j_seppur_2023_123434
crossref_primary_10_1371_journal_pone_0310541
crossref_primary_10_1016_j_energy_2025_138040
crossref_primary_10_1016_j_seppur_2022_121755
crossref_primary_10_1016_j_seppur_2022_122448
crossref_primary_10_1016_j_seppur_2023_125933
crossref_primary_10_1016_j_compchemeng_2022_107959
crossref_primary_10_1016_j_cep_2023_109561
crossref_primary_10_1016_j_jtice_2023_104698
crossref_primary_10_1002_ceat_202300457
crossref_primary_10_1080_01496395_2023_2259606
crossref_primary_10_1016_j_cjche_2023_04_017
crossref_primary_10_1016_j_seppur_2021_120292
crossref_primary_10_1016_j_cjche_2023_04_016
crossref_primary_10_1016_j_seppur_2025_134228
crossref_primary_10_1016_j_cherd_2024_11_028
crossref_primary_10_3390_molecules27123802
crossref_primary_10_1016_j_molliq_2025_126994
crossref_primary_10_1016_j_seppur_2024_126730
crossref_primary_10_1016_j_seppur_2024_130132
crossref_primary_10_1016_j_energy_2022_124376
crossref_primary_10_1016_j_jics_2022_100795
crossref_primary_10_3390_pr10091861
crossref_primary_10_1016_j_seppur_2024_127942
crossref_primary_10_1016_j_ces_2023_119239
crossref_primary_10_1016_j_seppur_2022_120512
crossref_primary_10_1016_j_seppur_2024_129506
Cites_doi 10.1016/j.seppur.2019.05.063
10.1021/acs.iecr.9b01321
10.1016/j.jtice.2018.09.018
10.1016/j.seppur.2020.117329
10.1021/acssuschemeng.9b05251
10.1016/j.ijrefrig.2010.07.026
10.1016/j.applthermaleng.2019.01.073
10.1016/j.cep.2016.06.008
10.1016/j.compchemeng.2017.02.007
10.1016/S1570-7946(06)80169-0
10.1021/ie9019352
10.1016/j.jtice.2018.03.042
10.1205/cherd06092
10.1021/acssuschemeng.8b00204
10.1016/j.enpol.2018.01.040
10.1021/acssuschemeng.0c06951
10.1016/j.seppur.2017.08.027
10.1021/acs.iecr.9b00466
10.1016/j.cjche.2018.08.015
10.1016/j.seppur.2019.115853
10.1021/ie701695u
10.1021/ie400112k
10.1016/j.energy.2018.01.161
10.1021/acs.iecr.9b04294
10.1021/acs.iecr.5b01671
10.1016/j.enconman.2019.01.047
10.1016/j.apenergy.2016.12.098
10.1016/j.cherd.2021.02.018
10.1021/es049795q
10.1016/j.ces.2008.02.034
10.1016/j.psep.2019.05.040
10.1016/j.energy.2015.11.022
10.1016/j.energy.2020.118117
10.1016/j.ces.2007.09.005
10.1021/acs.iecr.7b00464
10.1016/j.cep.2006.07.008
10.1016/j.energy.2020.119126
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.seppur.2021.119288
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_seppur_2021_119288
S1383586621009989
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABJNI
ABMAC
ABNUV
ABXRA
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSM
SSZ
T5K
~G-
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FGOYB
HZ~
R2-
SEW
~HD
ID FETCH-LOGICAL-c306t-7b31101da9e873e3e9e39824b12fb8efb45abe15b066b563d0282eaca11c50a93
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000681680600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1383-5866
IngestDate Sat Nov 29 01:37:45 EST 2025
Tue Nov 18 21:21:48 EST 2025
Sat Oct 05 15:37:12 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Pressure-swing batch distillation
Multi-objective optimization
Heat integration
Process evaluation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-7b31101da9e873e3e9e39824b12fb8efb45abe15b066b563d0282eaca11c50a93
ParticipantIDs crossref_citationtrail_10_1016_j_seppur_2021_119288
crossref_primary_10_1016_j_seppur_2021_119288
elsevier_sciencedirect_doi_10_1016_j_seppur_2021_119288
PublicationCentury 2000
PublicationDate 2021-12-01
2021-12-00
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Separation and purification technology
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Douglas (b0165) 1988
Li, Yang, Wang, Yang, Wang, Zhu, Cui, Wang, Gao (b0075) 2019; 128
Repke, Klein, Bogle, Wozny (b0055) 2007; 85
Wang, Ye, Chen, Zhang, Zhong (b0105) 2021; 215
Cui, Yu, Liu, Zhu, Yang (b0200) 2019; 184
Li, Yin (b0005) 2010; 23
Parvez, Mujtaba, Wu (b0130) 2016; 94
Sun, Chun, Yang, Shen, Cui, Ren (b0150) 2020; 206
Liu, Ren, Yang, Liu, Sun (b0135) 2021; 168
Li, Zhao, Qin, Zhang, Wang, Zhu (b0170) 2017; 56
Sayyaadi, Nejatolahi (b0205) 2011; 34
Yi, Huang, Chien (b0040) 2018; 87
Wang, Wang, Zhu, Li (b0120) 2018; 115
Modla, Lang (b0080) 2010; 49
Chen, Li, Chen, Chien (b0090) 2015; 54
Suo, Ye, Li, Dai, Yu (b0190) 2016; 107
Kister (b0010) 1990
Yang, Zou, Chien, Wang, Wei, Ren, Shen (b0015) 2019; 58
Chaniago, Hussain, Andika, Lee (b0035) 2019; 7
Zhao, Lyu, Wang, Shan, Qiu (b0050) 2017; 100
Barakat, Fraga, Sorensen (b0155) 2006; 21
Mukherjee, Diwekar (b0140) 2021; 9
Robbins (b0195) 2011
Wang, Yang, Zhao, Liu, Yao, Cui, Wang, Zhu, Li, Xu (b0070) 2020; 251
Paredes, Laoretani, Zelin, Vargas, Vecchietti, Espinosa (b0030) 2017; 189
Zhang, Bauer, Mutel, Volkart (b0125) 2017; 190
Van Kaam, Rodríguez-Donis, Gerbaud (b0060) 2008; 63
Zhang, Li, Zeng, Ma, Yuan (b0085) 2020; 230
Chen, Yuan, Xu, Yu (b0210) 2013; 52
Parhi, Rangaiah, Jana (b0145) 2019; 150
Modla, Lang (b0065) 2008; 63
Luyben (b0185) 2008; 47
Zhang, Liu, Li, Zeng (b0175) 2018; 93
Kim, Park, Kim, Lee, Cho, Park, Nam, Park (b0025) 2018; 6
You, Ma, Qiu (b0115) 2019; 58
Green, Southard (b0160) 2019
Yang, Shi, Sun, Shen, Ren (b0100) 2019; 225
Gadalla, Olujic, Jansens, Jobson, Smith (b0180) 2005; 39
Zhao, Ma, Bai, Du, Zhu, Wang, Gao (b0110) 2018; 148
Pan, Li, Shang, Ma, Liu, Sun, Sun (b0095) 2019; 58
Peng, Li, Sheng, Song, Zhao, Li (b0020) 2007; 46
Ma, Cui, Wang, Zhu, Wang, Gao (b0045) 2019; 27
Zhao (10.1016/j.seppur.2021.119288_b0110) 2018; 148
Barakat (10.1016/j.seppur.2021.119288_b0155) 2006; 21
Yi (10.1016/j.seppur.2021.119288_b0040) 2018; 87
Modla (10.1016/j.seppur.2021.119288_b0065) 2008; 63
Liu (10.1016/j.seppur.2021.119288_b0135) 2021; 168
Kim (10.1016/j.seppur.2021.119288_b0025) 2018; 6
Li (10.1016/j.seppur.2021.119288_b0005) 2010; 23
Parhi (10.1016/j.seppur.2021.119288_b0145) 2019; 150
Zhang (10.1016/j.seppur.2021.119288_b0125) 2017; 190
Peng (10.1016/j.seppur.2021.119288_b0020) 2007; 46
Wang (10.1016/j.seppur.2021.119288_b0105) 2021; 215
Sun (10.1016/j.seppur.2021.119288_b0150) 2020; 206
Paredes (10.1016/j.seppur.2021.119288_b0030) 2017; 189
Douglas (10.1016/j.seppur.2021.119288_b0165) 1988
Cui (10.1016/j.seppur.2021.119288_b0200) 2019; 184
Repke (10.1016/j.seppur.2021.119288_b0055) 2007; 85
Modla (10.1016/j.seppur.2021.119288_b0080) 2010; 49
Wang (10.1016/j.seppur.2021.119288_b0070) 2020; 251
Zhang (10.1016/j.seppur.2021.119288_b0085) 2020; 230
Suo (10.1016/j.seppur.2021.119288_b0190) 2016; 107
Li (10.1016/j.seppur.2021.119288_b0075) 2019; 128
Chen (10.1016/j.seppur.2021.119288_b0210) 2013; 52
Luyben (10.1016/j.seppur.2021.119288_b0185) 2008; 47
Zhang (10.1016/j.seppur.2021.119288_b0175) 2018; 93
Ma (10.1016/j.seppur.2021.119288_b0045) 2019; 27
Sayyaadi (10.1016/j.seppur.2021.119288_b0205) 2011; 34
Parvez (10.1016/j.seppur.2021.119288_b0130) 2016; 94
Pan (10.1016/j.seppur.2021.119288_b0095) 2019; 58
Li (10.1016/j.seppur.2021.119288_b0170) 2017; 56
You (10.1016/j.seppur.2021.119288_b0115) 2019; 58
Gadalla (10.1016/j.seppur.2021.119288_b0180) 2005; 39
Chaniago (10.1016/j.seppur.2021.119288_b0035) 2019; 7
Wang (10.1016/j.seppur.2021.119288_b0120) 2018; 115
Kister (10.1016/j.seppur.2021.119288_b0010) 1990
Yang (10.1016/j.seppur.2021.119288_b0100) 2019; 225
Mukherjee (10.1016/j.seppur.2021.119288_b0140) 2021; 9
Zhao (10.1016/j.seppur.2021.119288_b0050) 2017; 100
Van Kaam (10.1016/j.seppur.2021.119288_b0060) 2008; 63
Chen (10.1016/j.seppur.2021.119288_b0090) 2015; 54
Robbins (10.1016/j.seppur.2021.119288_b0195) 2011
Yang (10.1016/j.seppur.2021.119288_b0015) 2019; 58
Green (10.1016/j.seppur.2021.119288_b0160) 2019
References_xml – volume: 230
  year: 2020
  ident: b0085
  article-title: Dynamic control analysis of partially heat-integrated pressure-swing distillation for separating a maximum-boiling azeotrope
  publication-title: Sep. Purif. Technol.
– volume: 85
  start-page: 492
  year: 2007
  end-page: 501
  ident: b0055
  article-title: Pressure swing batch distillation for homogeneous azeotropic separation
  publication-title: Chem. Eng. Res. Des.
– volume: 215
  year: 2021
  ident: b0105
  article-title: Improving the economy and energy efficiency of separating water/acetonitrile/isopropanol mixture via triple-column pressure-swing distillation with heat-pump technology
  publication-title: Energy
– volume: 150
  start-page: 1273
  year: 2019
  end-page: 1296
  ident: b0145
  article-title: Multi-objective optimization of vapor recompressed distillation column in batch processing: improving energy and cost savings
  publication-title: Appl. Therm. Eng.
– year: 1990
  ident: b0010
  article-title: Distillation Operation
– volume: 93
  start-page: 644
  year: 2018
  end-page: 659
  ident: b0175
  article-title: Heat-integrated pressure-swing distillation process for separation of the maximum-boiling azeotrope diethylamine and methanol
  publication-title: J. Taiwan Inst. Chem. E
– volume: 6
  start-page: 6425
  year: 2018
  end-page: 6433
  ident: b0025
  article-title: Harnessing clean water from power plant emissions using membrane condenser technology
  publication-title: ACS Sustain. Chem. Eng.
– volume: 27
  start-page: 1510
  year: 2019
  end-page: 1522
  ident: b0045
  article-title: A review of extractive distillation from an azeotropic phenomenon for dynamic control
  publication-title: Chinese J. Chem. Eng.
– volume: 100
  start-page: 27
  year: 2017
  end-page: 37
  ident: b0050
  article-title: Comparison of heterogeneous azeotropic distillation and extractive distillation methods for ternary azeotrope ethanol/toluene/water separation
  publication-title: Comput. Chem. Eng.
– volume: 94
  start-page: 579
  year: 2016
  end-page: 588
  ident: b0130
  article-title: Energy, exergy and environmental analyses of conventional, steam and CO
  publication-title: Energy
– volume: 190
  start-page: 326
  year: 2017
  end-page: 338
  ident: b0125
  article-title: Life cycle assessment of power-to-gas: approaches, system variations and their environmental implications
  publication-title: Appl. Energ.
– year: 2011
  ident: b0195
  article-title: Distillation Control, Optimization, and Tuning: Fundamentals and Strategies
– volume: 148
  start-page: 296
  year: 2018
  end-page: 308
  ident: b0110
  article-title: Energy-saving thermally coupled ternary extractive distillation process by combining with mixed entrainer for separating ternary mixture containing bioethanol
  publication-title: Energy
– volume: 87
  start-page: 26
  year: 2018
  end-page: 35
  ident: b0040
  article-title: Energy-efficient heterogeneous extractive distillation system for the separation of close-boiling cyclohexane/cyclohexene mixture
  publication-title: J. Taiwan Inst. Chem. E
– volume: 58
  start-page: 21659
  year: 2019
  end-page: 21670
  ident: b0115
  article-title: Design and optimization of sustainable pressure swing distillation for minimum-boiling azeotrope separation
  publication-title: Ind. Eng. Chem. Res.
– volume: 46
  start-page: 769
  year: 2007
  end-page: 772
  ident: b0020
  article-title: Study of dual temperature control method on cyclic total reflux batch distillation
  publication-title: Chem. Eng. Process.
– volume: 115
  start-page: 374
  year: 2018
  end-page: 384
  ident: b0120
  article-title: Life cycle assessment and environmental cost accounting of coal-fired power generation in China
  publication-title: Energy Policy
– volume: 34
  start-page: 243
  year: 2011
  end-page: 256
  ident: b0205
  article-title: Multi-objective optimization of a cooling tower assisted vapor compression refrigeration system
  publication-title: Int. J. Refrig.
– volume: 184
  start-page: 249
  year: 2019
  end-page: 261
  ident: b0200
  article-title: Energy, exergy, and economic (3E) analyses and multi-objective optimization of a cascade absorption refrigeration system for low-grade waste heat recovery
  publication-title: Energ. Convers. Manage.
– volume: 63
  start-page: 78
  year: 2008
  end-page: 94
  ident: b0060
  article-title: Heterogeneous extractive batch distillation of chloroform–methanol–water: feasibility and experiments
  publication-title: Chem. Eng. Sci.
– volume: 63
  start-page: 2856
  year: 2008
  end-page: 2874
  ident: b0065
  article-title: Feasibility of new pressure swing batch distillation methods
  publication-title: Chem. Eng. Sci.
– volume: 225
  start-page: 41
  year: 2019
  end-page: 53
  ident: b0100
  article-title: Dynamic controllability investigation of an energy-saving double side-stream ternary extractive distillation process
  publication-title: Sep. Purif. Technol.
– volume: 168
  start-page: 340
  year: 2021
  end-page: 356
  ident: b0135
  article-title: Effective semicontinuous distillation design for separating normal alkanes via multi-objective optimization and control
  publication-title: Chem. Eng. Res. Des.
– volume: 56
  start-page: 4104
  year: 2017
  end-page: 4112
  ident: b0170
  article-title: Optimization of pressure-swing batch distillation with and without heat integration for separating dichloromethane/methanol azeotrope based on minimum total annual cost
  publication-title: Ind. Eng. Chem. Res.
– volume: 58
  start-page: 7265
  year: 2019
  end-page: 7283
  ident: b0015
  article-title: Optimal design and effective control of triple-column extractive distillation for separating ethyl acetate/ethanol/water with multiazeotrope
  publication-title: Ind. Eng. Chem. Res.
– volume: 7
  start-page: 18677
  year: 2019
  end-page: 18689
  ident: b0035
  article-title: Reactive pressure-swing distillation toward sustainable process of novel continuous ultra-high-purity electronic-grade propylene glycol monomethyl ether acetate manufacture
  publication-title: ACS Sustain. Chem. Eng.
– volume: 54
  start-page: 7715
  year: 2015
  end-page: 7727
  ident: b0090
  article-title: Design and control of a hybrid extraction–distillation system for the separation of pyridine and water
  publication-title: Ind. Eng. Chem. Res.
– volume: 251
  year: 2020
  ident: b0070
  article-title: Design and comprehensive analysis of a novel pressure-swing batch distillation process for the separation of a binary azeotrope with various boiling behaviors
  publication-title: Sep. Purif. Technol.
– volume: 128
  start-page: 85
  year: 2019
  end-page: 94
  ident: b0075
  article-title: Separation of ternary mixture with double azeotropic system by a pressure-swing batch distillation integrated with quasi-continuous process
  publication-title: Process. Saf. Environ.
– volume: 9
  start-page: 1213
  year: 2021
  end-page: 1228
  ident: b0140
  article-title: Multi-objective optimization of the TEG dehydration process for BTEX emission mitigation using machine-learning and metaheuristic algorithms
  publication-title: ACS Sustain. Chem. Eng.
– year: 1988
  ident: b0165
  article-title: Conceptual Design of Chemical Processes
– volume: 107
  start-page: 42
  year: 2016
  end-page: 57
  ident: b0190
  article-title: The partial heat-integrated pressure-swing reactive distillation process for transesterification of methyl acetate with isopropanol
  publication-title: Chem. Eng. Process.
– volume: 23
  start-page: 390
  year: 2010
  end-page: 392
  ident: b0005
  article-title: Recovery and application of methanol and ethyl acetate in cefotaxime sodium
  publication-title: Hlongjiang Med. J.
– volume: 47
  start-page: 2696
  year: 2008
  end-page: 2707
  ident: b0185
  article-title: Comparison of extractive distillation and pressure-swing distillation for acetone− methanol separation
  publication-title: Ind. Eng. Chem. Res.
– volume: 21
  start-page: 955
  year: 2006
  end-page: 960
  ident: b0155
  article-title: Multi-objective optimisation of batch distillation processes
  publication-title: Comput. Aided Chem. Eng. Elsevier
– volume: 49
  start-page: 3785
  year: 2010
  end-page: 3793
  ident: b0080
  article-title: Separation of an acetone−methanol mixture by pressure-swing batch distillation in a double-column system with and without thermal integration
  publication-title: Ind. Eng. Chem. Res.
– volume: 206
  year: 2020
  ident: b0150
  article-title: The separation of ternary azeotropic mixture: thermodynamic insight and improved multi-objective optimization
  publication-title: Energy
– volume: 58
  start-page: 9675
  year: 2019
  end-page: 9689
  ident: b0095
  article-title: Controllability, energy-efficiency, and safety comparisons of different control schemes for producing n-butyl acetate in a reactive dividing wall column
  publication-title: Ind. Eng. Chem. Res.
– year: 2019
  ident: b0160
  article-title: Perry's Chemical Engineers' Handbook
– volume: 189
  start-page: 296
  year: 2017
  end-page: 309
  ident: b0030
  article-title: Screening of pervaporation membranes for the separation of methanol-methyl acetate mixtures: an approach based on the conceptual design of the pervaporation-distillation hybrid process
  publication-title: Sep. Purif. Technol.
– volume: 39
  start-page: 6860
  year: 2005
  end-page: 6870
  ident: b0180
  article-title: Reducing CO
  publication-title: Environ. Sci. Technol.
– volume: 52
  start-page: 5781
  year: 2013
  end-page: 5790
  ident: b0210
  article-title: Comparison between different configurations of internally and externally heat-integrated distillation by numerical simulation
  publication-title: Ind. Eng. Chem. Res.
– year: 1990
  ident: 10.1016/j.seppur.2021.119288_b0010
– volume: 225
  start-page: 41
  year: 2019
  ident: 10.1016/j.seppur.2021.119288_b0100
  article-title: Dynamic controllability investigation of an energy-saving double side-stream ternary extractive distillation process
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2019.05.063
– year: 2011
  ident: 10.1016/j.seppur.2021.119288_b0195
– volume: 58
  start-page: 9675
  issue: 22
  year: 2019
  ident: 10.1016/j.seppur.2021.119288_b0095
  article-title: Controllability, energy-efficiency, and safety comparisons of different control schemes for producing n-butyl acetate in a reactive dividing wall column
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b01321
– year: 2019
  ident: 10.1016/j.seppur.2021.119288_b0160
– volume: 23
  start-page: 390
  issue: 03
  year: 2010
  ident: 10.1016/j.seppur.2021.119288_b0005
  article-title: Recovery and application of methanol and ethyl acetate in cefotaxime sodium
  publication-title: Hlongjiang Med. J.
– volume: 93
  start-page: 644
  year: 2018
  ident: 10.1016/j.seppur.2021.119288_b0175
  article-title: Heat-integrated pressure-swing distillation process for separation of the maximum-boiling azeotrope diethylamine and methanol
  publication-title: J. Taiwan Inst. Chem. E
  doi: 10.1016/j.jtice.2018.09.018
– volume: 251
  year: 2020
  ident: 10.1016/j.seppur.2021.119288_b0070
  article-title: Design and comprehensive analysis of a novel pressure-swing batch distillation process for the separation of a binary azeotrope with various boiling behaviors
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2020.117329
– volume: 7
  start-page: 18677
  issue: 22
  year: 2019
  ident: 10.1016/j.seppur.2021.119288_b0035
  article-title: Reactive pressure-swing distillation toward sustainable process of novel continuous ultra-high-purity electronic-grade propylene glycol monomethyl ether acetate manufacture
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b05251
– year: 1988
  ident: 10.1016/j.seppur.2021.119288_b0165
– volume: 34
  start-page: 243
  issue: 1
  year: 2011
  ident: 10.1016/j.seppur.2021.119288_b0205
  article-title: Multi-objective optimization of a cooling tower assisted vapor compression refrigeration system
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2010.07.026
– volume: 150
  start-page: 1273
  year: 2019
  ident: 10.1016/j.seppur.2021.119288_b0145
  article-title: Multi-objective optimization of vapor recompressed distillation column in batch processing: improving energy and cost savings
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.01.073
– volume: 107
  start-page: 42
  year: 2016
  ident: 10.1016/j.seppur.2021.119288_b0190
  article-title: The partial heat-integrated pressure-swing reactive distillation process for transesterification of methyl acetate with isopropanol
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2016.06.008
– volume: 100
  start-page: 27
  year: 2017
  ident: 10.1016/j.seppur.2021.119288_b0050
  article-title: Comparison of heterogeneous azeotropic distillation and extractive distillation methods for ternary azeotrope ethanol/toluene/water separation
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.02.007
– volume: 21
  start-page: 955
  year: 2006
  ident: 10.1016/j.seppur.2021.119288_b0155
  article-title: Multi-objective optimisation of batch distillation processes
  publication-title: Comput. Aided Chem. Eng. Elsevier
  doi: 10.1016/S1570-7946(06)80169-0
– volume: 49
  start-page: 3785
  issue: 8
  year: 2010
  ident: 10.1016/j.seppur.2021.119288_b0080
  article-title: Separation of an acetone−methanol mixture by pressure-swing batch distillation in a double-column system with and without thermal integration
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie9019352
– volume: 87
  start-page: 26
  year: 2018
  ident: 10.1016/j.seppur.2021.119288_b0040
  article-title: Energy-efficient heterogeneous extractive distillation system for the separation of close-boiling cyclohexane/cyclohexene mixture
  publication-title: J. Taiwan Inst. Chem. E
  doi: 10.1016/j.jtice.2018.03.042
– volume: 85
  start-page: 492
  issue: 4
  year: 2007
  ident: 10.1016/j.seppur.2021.119288_b0055
  article-title: Pressure swing batch distillation for homogeneous azeotropic separation
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1205/cherd06092
– volume: 6
  start-page: 6425
  issue: 5
  year: 2018
  ident: 10.1016/j.seppur.2021.119288_b0025
  article-title: Harnessing clean water from power plant emissions using membrane condenser technology
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b00204
– volume: 115
  start-page: 374
  year: 2018
  ident: 10.1016/j.seppur.2021.119288_b0120
  article-title: Life cycle assessment and environmental cost accounting of coal-fired power generation in China
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2018.01.040
– volume: 9
  start-page: 1213
  issue: 3
  year: 2021
  ident: 10.1016/j.seppur.2021.119288_b0140
  article-title: Multi-objective optimization of the TEG dehydration process for BTEX emission mitigation using machine-learning and metaheuristic algorithms
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c06951
– volume: 189
  start-page: 296
  year: 2017
  ident: 10.1016/j.seppur.2021.119288_b0030
  article-title: Screening of pervaporation membranes for the separation of methanol-methyl acetate mixtures: an approach based on the conceptual design of the pervaporation-distillation hybrid process
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2017.08.027
– volume: 58
  start-page: 7265
  issue: 17
  year: 2019
  ident: 10.1016/j.seppur.2021.119288_b0015
  article-title: Optimal design and effective control of triple-column extractive distillation for separating ethyl acetate/ethanol/water with multiazeotrope
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b00466
– volume: 27
  start-page: 1510
  issue: 7
  year: 2019
  ident: 10.1016/j.seppur.2021.119288_b0045
  article-title: A review of extractive distillation from an azeotropic phenomenon for dynamic control
  publication-title: Chinese J. Chem. Eng.
  doi: 10.1016/j.cjche.2018.08.015
– volume: 230
  year: 2020
  ident: 10.1016/j.seppur.2021.119288_b0085
  article-title: Dynamic control analysis of partially heat-integrated pressure-swing distillation for separating a maximum-boiling azeotrope
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2019.115853
– volume: 47
  start-page: 2696
  issue: 8
  year: 2008
  ident: 10.1016/j.seppur.2021.119288_b0185
  article-title: Comparison of extractive distillation and pressure-swing distillation for acetone− methanol separation
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie701695u
– volume: 52
  start-page: 5781
  issue: 16
  year: 2013
  ident: 10.1016/j.seppur.2021.119288_b0210
  article-title: Comparison between different configurations of internally and externally heat-integrated distillation by numerical simulation
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie400112k
– volume: 148
  start-page: 296
  year: 2018
  ident: 10.1016/j.seppur.2021.119288_b0110
  article-title: Energy-saving thermally coupled ternary extractive distillation process by combining with mixed entrainer for separating ternary mixture containing bioethanol
  publication-title: Energy
  doi: 10.1016/j.energy.2018.01.161
– volume: 58
  start-page: 21659
  issue: 47
  year: 2019
  ident: 10.1016/j.seppur.2021.119288_b0115
  article-title: Design and optimization of sustainable pressure swing distillation for minimum-boiling azeotrope separation
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b04294
– volume: 54
  start-page: 7715
  issue: 31
  year: 2015
  ident: 10.1016/j.seppur.2021.119288_b0090
  article-title: Design and control of a hybrid extraction–distillation system for the separation of pyridine and water
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.5b01671
– volume: 184
  start-page: 249
  year: 2019
  ident: 10.1016/j.seppur.2021.119288_b0200
  article-title: Energy, exergy, and economic (3E) analyses and multi-objective optimization of a cascade absorption refrigeration system for low-grade waste heat recovery
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/j.enconman.2019.01.047
– volume: 190
  start-page: 326
  year: 2017
  ident: 10.1016/j.seppur.2021.119288_b0125
  article-title: Life cycle assessment of power-to-gas: approaches, system variations and their environmental implications
  publication-title: Appl. Energ.
  doi: 10.1016/j.apenergy.2016.12.098
– volume: 168
  start-page: 340
  year: 2021
  ident: 10.1016/j.seppur.2021.119288_b0135
  article-title: Effective semicontinuous distillation design for separating normal alkanes via multi-objective optimization and control
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2021.02.018
– volume: 39
  start-page: 6860
  issue: 17
  year: 2005
  ident: 10.1016/j.seppur.2021.119288_b0180
  article-title: Reducing CO2 emissions and energy consumption of heat-integrated distillation systems
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es049795q
– volume: 63
  start-page: 2856
  issue: 11
  year: 2008
  ident: 10.1016/j.seppur.2021.119288_b0065
  article-title: Feasibility of new pressure swing batch distillation methods
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2008.02.034
– volume: 128
  start-page: 85
  year: 2019
  ident: 10.1016/j.seppur.2021.119288_b0075
  article-title: Separation of ternary mixture with double azeotropic system by a pressure-swing batch distillation integrated with quasi-continuous process
  publication-title: Process. Saf. Environ.
  doi: 10.1016/j.psep.2019.05.040
– volume: 94
  start-page: 579
  year: 2016
  ident: 10.1016/j.seppur.2021.119288_b0130
  article-title: Energy, exergy and environmental analyses of conventional, steam and CO2-enhanced rice straw gasification
  publication-title: Energy
  doi: 10.1016/j.energy.2015.11.022
– volume: 206
  year: 2020
  ident: 10.1016/j.seppur.2021.119288_b0150
  article-title: The separation of ternary azeotropic mixture: thermodynamic insight and improved multi-objective optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118117
– volume: 63
  start-page: 78
  issue: 1
  year: 2008
  ident: 10.1016/j.seppur.2021.119288_b0060
  article-title: Heterogeneous extractive batch distillation of chloroform–methanol–water: feasibility and experiments
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2007.09.005
– volume: 56
  start-page: 4104
  issue: 14
  year: 2017
  ident: 10.1016/j.seppur.2021.119288_b0170
  article-title: Optimization of pressure-swing batch distillation with and without heat integration for separating dichloromethane/methanol azeotrope based on minimum total annual cost
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b00464
– volume: 46
  start-page: 769
  issue: 8
  year: 2007
  ident: 10.1016/j.seppur.2021.119288_b0020
  article-title: Study of dual temperature control method on cyclic total reflux batch distillation
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2006.07.008
– volume: 215
  year: 2021
  ident: 10.1016/j.seppur.2021.119288_b0105
  article-title: Improving the economy and energy efficiency of separating water/acetonitrile/isopropanol mixture via triple-column pressure-swing distillation with heat-pump technology
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119126
SSID ssj0017182
Score 2.5046148
Snippet •Ternary mixture with double azeotropes was separated by pressure-swing batch distillation.•Integrated quasi-continuous triple-column process was further...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 119288
SubjectTerms Heat integration
Multi-objective optimization
Pressure-swing batch distillation
Process evaluation
Title Process design and multi-objective optimization for separation of ternary mixtures with double azeotropes via integrated quasi-continuous pressure-swing batch distillation
URI https://dx.doi.org/10.1016/j.seppur.2021.119288
Volume 276
WOSCitedRecordID wos000681680600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1383-5866
  databaseCode: AIEXJ
  dateStart: 19970519
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017182
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE9RXvKB28pVHW_i5FihVrBCFRJFrLhEduzQVG2y2k2Whb_En-EnMX7k0V1U6IFLtLIcx9n5Mh7PfDNG6DXNAkkl1wR0f0wmkZIkmShBFOVKMam10FbS7_nJSTybJR9Go19tLszqgpdlvF4n8_8qamgDYZvU2RuIuxsUGuA3CB2uIHa4_pPgPfV_rCw3wwYHLGuQVPLcabdxBXri0idgWp7hUrsS4M54tD7CxffxZbE28QWfAKeqxmRZiR-6qo0HfzleFaIvN6FMfuayIIb7XpSNYdZaji0MQJbfjENCgtY_MxGh2px01AHCW8Yf-ynY2gXNwpCYXEO95f__ciasj_dYF23TrLGBFlHk2q_Gg35T-Aq-ir79s3eTTwsx9HsEdMAhcaoa9tYkjN2ZLa0uD_hQG1MwX92hgVsLhfNZmLz-ObzQvnnAft_9al3ujfWyYzG2BLnz1I2SmlFSN8ottBvwMAE9u3v47mg27SJbYAvYCHw7-zad03IOt2fzZ3NpYAKd3kf3_N4FHzrMPUAjXT5EdwcVLR-hnx592KEPgyjxBvrwEH0Y0Id79OEqxx59uEUfNujDDn24Rx8G9OEefXgTffgq-rBFHx6i7zH6dHx0-uYt8eeBkAw2tjXhkoGxSpVIdMyZZjrRLImDiaRBLmOdy0kopKahBDNahhFTxp8AhoWgNAsPRMKeoJ2yKvVTQ-iLkygRBzkD81RoEeeMx1EeqYixTGVqD7H2b08zXyzfnNlykV4n9D1EurvmrljMX_rzVqKpN3idIZsCTK-989kNn_Qc3em_oRdop140-iW6na3qYrl45TH6G3Ev3k4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Process+design+and+multi-objective+optimization+for+separation+of+ternary+mixtures+with+double+azeotropes+via+integrated+quasi-continuous+pressure-swing+batch+distillation&rft.jtitle=Separation+and+purification+technology&rft.au=Zhao%2C+Fei&rft.au=Xu%2C+Zaifeng&rft.au=Zhao%2C+Jiangang&rft.au=Wang%2C+Jia&rft.date=2021-12-01&rft.issn=1383-5866&rft.volume=276&rft.spage=119288&rft_id=info:doi/10.1016%2Fj.seppur.2021.119288&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_seppur_2021_119288
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-5866&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-5866&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-5866&client=summon