Process design and multi-objective optimization for separation of ternary mixtures with double azeotropes via integrated quasi-continuous pressure-swing batch distillation
•Ternary mixture with double azeotropes was separated by pressure-swing batch distillation.•Integrated quasi-continuous triple-column process was further proposed and analyzed.•Multi-objective optimization algorithm was adopted to realize the optimization of process.•Thermal integration technology w...
Uložené v:
| Vydané v: | Separation and purification technology Ročník 276; s. 119288 |
|---|---|
| Hlavní autori: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.12.2021
|
| Predmet: | |
| ISSN: | 1383-5866 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Ternary mixture with double azeotropes was separated by pressure-swing batch distillation.•Integrated quasi-continuous triple-column process was further proposed and analyzed.•Multi-objective optimization algorithm was adopted to realize the optimization of process.•Thermal integration technology was used to further reduce energy consumption.
An multivessel double-column pressure-swing batch distillation process and a triple-column integrated quasi-continuous distillation process were designed to separate ternary mixtures with double azeotropes of ethyl acetate-methanol-water. The process feasibility was analyzed based on ternary phase diagram. Based on a production capacity of 100 kmol/batch, the corresponding control strategy was proposed to achieve the effective separation of the mixture. Taking the minimum total annual cost as the objective function, the process parameters of the double-column process were optimized to determine the optimal operating pressure. Exergy loss of distillation column was calculated to evaluate the thermodynamic performance of the process. To further improve the separation efficiency of the process, a third column was integrated in the double-column batch distillation process to separate the methanol-water mixture directly. Combined with sequential iterative optimization sequence and multi-objective optimization algorithm, the triple-column process parameters were optimized, and the trade-off between equipment cost and carbon dioxide was realized. Thermal integration technology was adopted to further reduce the energy consumption of the triple-column process. The results show that the carbon dioxide emissions and total annual cost of the double-column process are 1.323 × 106 kg/y and 2.107 × 105 $/y. The purity of ethyl acetate and water was 99.9 mol%. While the purity of methanol was 99.5 mol%. The total annual cost and emission of the triple-column process were 1.993% and 1.890% higher than that of the double-column process, respectively, but the methanol purity was further improved to 99.9 mol%. Compared with the double-column process, the total annual cost and carbon dioxide emissions of the triple-column process with thermal integration technology were reduced by 1.281% and 17.337%. |
|---|---|
| AbstractList | •Ternary mixture with double azeotropes was separated by pressure-swing batch distillation.•Integrated quasi-continuous triple-column process was further proposed and analyzed.•Multi-objective optimization algorithm was adopted to realize the optimization of process.•Thermal integration technology was used to further reduce energy consumption.
An multivessel double-column pressure-swing batch distillation process and a triple-column integrated quasi-continuous distillation process were designed to separate ternary mixtures with double azeotropes of ethyl acetate-methanol-water. The process feasibility was analyzed based on ternary phase diagram. Based on a production capacity of 100 kmol/batch, the corresponding control strategy was proposed to achieve the effective separation of the mixture. Taking the minimum total annual cost as the objective function, the process parameters of the double-column process were optimized to determine the optimal operating pressure. Exergy loss of distillation column was calculated to evaluate the thermodynamic performance of the process. To further improve the separation efficiency of the process, a third column was integrated in the double-column batch distillation process to separate the methanol-water mixture directly. Combined with sequential iterative optimization sequence and multi-objective optimization algorithm, the triple-column process parameters were optimized, and the trade-off between equipment cost and carbon dioxide was realized. Thermal integration technology was adopted to further reduce the energy consumption of the triple-column process. The results show that the carbon dioxide emissions and total annual cost of the double-column process are 1.323 × 106 kg/y and 2.107 × 105 $/y. The purity of ethyl acetate and water was 99.9 mol%. While the purity of methanol was 99.5 mol%. The total annual cost and emission of the triple-column process were 1.993% and 1.890% higher than that of the double-column process, respectively, but the methanol purity was further improved to 99.9 mol%. Compared with the double-column process, the total annual cost and carbon dioxide emissions of the triple-column process with thermal integration technology were reduced by 1.281% and 17.337%. |
| ArticleNumber | 119288 |
| Author | Zhao, Fei Zhu, Zhaoyou Cui, Peizhe Hu, Mingyue Wang, Yinglong Ma, Yixin Wang, Jia Xu, Zaifeng Zhao, Jiangang Li, Xin |
| Author_xml | – sequence: 1 givenname: Fei surname: Zhao fullname: Zhao, Fei organization: College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China – sequence: 2 givenname: Zaifeng surname: Xu fullname: Xu, Zaifeng organization: College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China – sequence: 3 givenname: Jiangang surname: Zhao fullname: Zhao, Jiangang organization: College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China – sequence: 4 givenname: Jia surname: Wang fullname: Wang, Jia organization: College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China – sequence: 5 givenname: Mingyue surname: Hu fullname: Hu, Mingyue organization: College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China – sequence: 6 givenname: Xin surname: Li fullname: Li, Xin organization: College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China – sequence: 7 givenname: Zhaoyou surname: Zhu fullname: Zhu, Zhaoyou organization: College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China – sequence: 8 givenname: Peizhe surname: Cui fullname: Cui, Peizhe email: cpzmagic@qust.edu.cn organization: College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China – sequence: 9 givenname: Yinglong surname: Wang fullname: Wang, Yinglong email: wangyinglong@qust.edu.cn organization: College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China – sequence: 10 givenname: Yixin surname: Ma fullname: Ma, Yixin organization: College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China |
| BookMark | eNqFkctOxCAUhllo4vUNXPACHaFMO9SFiTHeEhNd6JoAPR3PpAMV6Hh5JV9StK5c6IpA8v0_5zt7ZMt5B4QccTbjjNfHq1mEYRjDrGQln3HelFJukV0upCgqWdc7ZC_GFWN8wWW5Sz7ug7cQI20h4tJR7Vq6HvuEhTcrsAk3QP2QcI3vOqF3tPOB5gYdpqvvaILgdHija3xNY4BIXzA90daPpgeq38Gn4If8vEFN0SVYZhRa-jzqiIX1LqEb_RjpkNmYA4r4gm5JjU42x2BM2PffZQdku9N9hMOfc588Xl48nF8Xt3dXN-dnt4UVrE7FwgieVbS6AbkQIKAB0chybnjZGQmdmVfaAK8Mq2tT1aJlpSxBW825rZhuxD45mXJt8DEG6JTF9P2DFDT2ijP1pVqt1KRafalWk-oMz3_BQ8B19vMfdjphkAfbIAQVLYKz0GLIa1Ctx78DPgFh8aaQ |
| CitedBy_id | crossref_primary_10_1002_apj_70046 crossref_primary_10_1016_j_jclepro_2021_130116 crossref_primary_10_1007_s11705_025_2607_5 crossref_primary_10_1016_j_cjche_2024_03_021 crossref_primary_10_1016_j_seppur_2023_123434 crossref_primary_10_1371_journal_pone_0310541 crossref_primary_10_1016_j_energy_2025_138040 crossref_primary_10_1016_j_seppur_2022_121755 crossref_primary_10_1016_j_seppur_2022_122448 crossref_primary_10_1016_j_seppur_2023_125933 crossref_primary_10_1016_j_compchemeng_2022_107959 crossref_primary_10_1016_j_cep_2023_109561 crossref_primary_10_1016_j_jtice_2023_104698 crossref_primary_10_1002_ceat_202300457 crossref_primary_10_1080_01496395_2023_2259606 crossref_primary_10_1016_j_cjche_2023_04_017 crossref_primary_10_1016_j_seppur_2021_120292 crossref_primary_10_1016_j_cjche_2023_04_016 crossref_primary_10_1016_j_seppur_2025_134228 crossref_primary_10_1016_j_cherd_2024_11_028 crossref_primary_10_3390_molecules27123802 crossref_primary_10_1016_j_molliq_2025_126994 crossref_primary_10_1016_j_seppur_2024_126730 crossref_primary_10_1016_j_seppur_2024_130132 crossref_primary_10_1016_j_energy_2022_124376 crossref_primary_10_1016_j_jics_2022_100795 crossref_primary_10_3390_pr10091861 crossref_primary_10_1016_j_seppur_2024_127942 crossref_primary_10_1016_j_ces_2023_119239 crossref_primary_10_1016_j_seppur_2022_120512 crossref_primary_10_1016_j_seppur_2024_129506 |
| Cites_doi | 10.1016/j.seppur.2019.05.063 10.1021/acs.iecr.9b01321 10.1016/j.jtice.2018.09.018 10.1016/j.seppur.2020.117329 10.1021/acssuschemeng.9b05251 10.1016/j.ijrefrig.2010.07.026 10.1016/j.applthermaleng.2019.01.073 10.1016/j.cep.2016.06.008 10.1016/j.compchemeng.2017.02.007 10.1016/S1570-7946(06)80169-0 10.1021/ie9019352 10.1016/j.jtice.2018.03.042 10.1205/cherd06092 10.1021/acssuschemeng.8b00204 10.1016/j.enpol.2018.01.040 10.1021/acssuschemeng.0c06951 10.1016/j.seppur.2017.08.027 10.1021/acs.iecr.9b00466 10.1016/j.cjche.2018.08.015 10.1016/j.seppur.2019.115853 10.1021/ie701695u 10.1021/ie400112k 10.1016/j.energy.2018.01.161 10.1021/acs.iecr.9b04294 10.1021/acs.iecr.5b01671 10.1016/j.enconman.2019.01.047 10.1016/j.apenergy.2016.12.098 10.1016/j.cherd.2021.02.018 10.1021/es049795q 10.1016/j.ces.2008.02.034 10.1016/j.psep.2019.05.040 10.1016/j.energy.2015.11.022 10.1016/j.energy.2020.118117 10.1016/j.ces.2007.09.005 10.1021/acs.iecr.7b00464 10.1016/j.cep.2006.07.008 10.1016/j.energy.2020.119126 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. |
| Copyright_xml | – notice: 2021 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.seppur.2021.119288 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_seppur_2021_119288 S1383586621009989 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABJNI ABMAC ABNUV ABXRA ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSG SSM SSZ T5K ~G- 9DU AAQXK AATTM AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FGOYB HZ~ R2- SEW ~HD |
| ID | FETCH-LOGICAL-c306t-7b31101da9e873e3e9e39824b12fb8efb45abe15b066b563d0282eaca11c50a93 |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000681680600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1383-5866 |
| IngestDate | Sat Nov 29 01:37:45 EST 2025 Tue Nov 18 21:21:48 EST 2025 Sat Oct 05 15:37:12 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Pressure-swing batch distillation Multi-objective optimization Heat integration Process evaluation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-7b31101da9e873e3e9e39824b12fb8efb45abe15b066b563d0282eaca11c50a93 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_seppur_2021_119288 crossref_primary_10_1016_j_seppur_2021_119288 elsevier_sciencedirect_doi_10_1016_j_seppur_2021_119288 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 2021-12-00 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Separation and purification technology |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Douglas (b0165) 1988 Li, Yang, Wang, Yang, Wang, Zhu, Cui, Wang, Gao (b0075) 2019; 128 Repke, Klein, Bogle, Wozny (b0055) 2007; 85 Wang, Ye, Chen, Zhang, Zhong (b0105) 2021; 215 Cui, Yu, Liu, Zhu, Yang (b0200) 2019; 184 Li, Yin (b0005) 2010; 23 Parvez, Mujtaba, Wu (b0130) 2016; 94 Sun, Chun, Yang, Shen, Cui, Ren (b0150) 2020; 206 Liu, Ren, Yang, Liu, Sun (b0135) 2021; 168 Li, Zhao, Qin, Zhang, Wang, Zhu (b0170) 2017; 56 Sayyaadi, Nejatolahi (b0205) 2011; 34 Yi, Huang, Chien (b0040) 2018; 87 Wang, Wang, Zhu, Li (b0120) 2018; 115 Modla, Lang (b0080) 2010; 49 Chen, Li, Chen, Chien (b0090) 2015; 54 Suo, Ye, Li, Dai, Yu (b0190) 2016; 107 Kister (b0010) 1990 Yang, Zou, Chien, Wang, Wei, Ren, Shen (b0015) 2019; 58 Chaniago, Hussain, Andika, Lee (b0035) 2019; 7 Zhao, Lyu, Wang, Shan, Qiu (b0050) 2017; 100 Barakat, Fraga, Sorensen (b0155) 2006; 21 Mukherjee, Diwekar (b0140) 2021; 9 Robbins (b0195) 2011 Wang, Yang, Zhao, Liu, Yao, Cui, Wang, Zhu, Li, Xu (b0070) 2020; 251 Paredes, Laoretani, Zelin, Vargas, Vecchietti, Espinosa (b0030) 2017; 189 Zhang, Bauer, Mutel, Volkart (b0125) 2017; 190 Van Kaam, Rodríguez-Donis, Gerbaud (b0060) 2008; 63 Zhang, Li, Zeng, Ma, Yuan (b0085) 2020; 230 Chen, Yuan, Xu, Yu (b0210) 2013; 52 Parhi, Rangaiah, Jana (b0145) 2019; 150 Modla, Lang (b0065) 2008; 63 Luyben (b0185) 2008; 47 Zhang, Liu, Li, Zeng (b0175) 2018; 93 Kim, Park, Kim, Lee, Cho, Park, Nam, Park (b0025) 2018; 6 You, Ma, Qiu (b0115) 2019; 58 Green, Southard (b0160) 2019 Yang, Shi, Sun, Shen, Ren (b0100) 2019; 225 Gadalla, Olujic, Jansens, Jobson, Smith (b0180) 2005; 39 Zhao, Ma, Bai, Du, Zhu, Wang, Gao (b0110) 2018; 148 Pan, Li, Shang, Ma, Liu, Sun, Sun (b0095) 2019; 58 Peng, Li, Sheng, Song, Zhao, Li (b0020) 2007; 46 Ma, Cui, Wang, Zhu, Wang, Gao (b0045) 2019; 27 Zhao (10.1016/j.seppur.2021.119288_b0110) 2018; 148 Barakat (10.1016/j.seppur.2021.119288_b0155) 2006; 21 Yi (10.1016/j.seppur.2021.119288_b0040) 2018; 87 Modla (10.1016/j.seppur.2021.119288_b0065) 2008; 63 Liu (10.1016/j.seppur.2021.119288_b0135) 2021; 168 Kim (10.1016/j.seppur.2021.119288_b0025) 2018; 6 Li (10.1016/j.seppur.2021.119288_b0005) 2010; 23 Parhi (10.1016/j.seppur.2021.119288_b0145) 2019; 150 Zhang (10.1016/j.seppur.2021.119288_b0125) 2017; 190 Peng (10.1016/j.seppur.2021.119288_b0020) 2007; 46 Wang (10.1016/j.seppur.2021.119288_b0105) 2021; 215 Sun (10.1016/j.seppur.2021.119288_b0150) 2020; 206 Paredes (10.1016/j.seppur.2021.119288_b0030) 2017; 189 Douglas (10.1016/j.seppur.2021.119288_b0165) 1988 Cui (10.1016/j.seppur.2021.119288_b0200) 2019; 184 Repke (10.1016/j.seppur.2021.119288_b0055) 2007; 85 Modla (10.1016/j.seppur.2021.119288_b0080) 2010; 49 Wang (10.1016/j.seppur.2021.119288_b0070) 2020; 251 Zhang (10.1016/j.seppur.2021.119288_b0085) 2020; 230 Suo (10.1016/j.seppur.2021.119288_b0190) 2016; 107 Li (10.1016/j.seppur.2021.119288_b0075) 2019; 128 Chen (10.1016/j.seppur.2021.119288_b0210) 2013; 52 Luyben (10.1016/j.seppur.2021.119288_b0185) 2008; 47 Zhang (10.1016/j.seppur.2021.119288_b0175) 2018; 93 Ma (10.1016/j.seppur.2021.119288_b0045) 2019; 27 Sayyaadi (10.1016/j.seppur.2021.119288_b0205) 2011; 34 Parvez (10.1016/j.seppur.2021.119288_b0130) 2016; 94 Pan (10.1016/j.seppur.2021.119288_b0095) 2019; 58 Li (10.1016/j.seppur.2021.119288_b0170) 2017; 56 You (10.1016/j.seppur.2021.119288_b0115) 2019; 58 Gadalla (10.1016/j.seppur.2021.119288_b0180) 2005; 39 Chaniago (10.1016/j.seppur.2021.119288_b0035) 2019; 7 Wang (10.1016/j.seppur.2021.119288_b0120) 2018; 115 Kister (10.1016/j.seppur.2021.119288_b0010) 1990 Yang (10.1016/j.seppur.2021.119288_b0100) 2019; 225 Mukherjee (10.1016/j.seppur.2021.119288_b0140) 2021; 9 Zhao (10.1016/j.seppur.2021.119288_b0050) 2017; 100 Van Kaam (10.1016/j.seppur.2021.119288_b0060) 2008; 63 Chen (10.1016/j.seppur.2021.119288_b0090) 2015; 54 Robbins (10.1016/j.seppur.2021.119288_b0195) 2011 Yang (10.1016/j.seppur.2021.119288_b0015) 2019; 58 Green (10.1016/j.seppur.2021.119288_b0160) 2019 |
| References_xml | – volume: 230 year: 2020 ident: b0085 article-title: Dynamic control analysis of partially heat-integrated pressure-swing distillation for separating a maximum-boiling azeotrope publication-title: Sep. Purif. Technol. – volume: 85 start-page: 492 year: 2007 end-page: 501 ident: b0055 article-title: Pressure swing batch distillation for homogeneous azeotropic separation publication-title: Chem. Eng. Res. Des. – volume: 215 year: 2021 ident: b0105 article-title: Improving the economy and energy efficiency of separating water/acetonitrile/isopropanol mixture via triple-column pressure-swing distillation with heat-pump technology publication-title: Energy – volume: 150 start-page: 1273 year: 2019 end-page: 1296 ident: b0145 article-title: Multi-objective optimization of vapor recompressed distillation column in batch processing: improving energy and cost savings publication-title: Appl. Therm. Eng. – year: 1990 ident: b0010 article-title: Distillation Operation – volume: 93 start-page: 644 year: 2018 end-page: 659 ident: b0175 article-title: Heat-integrated pressure-swing distillation process for separation of the maximum-boiling azeotrope diethylamine and methanol publication-title: J. Taiwan Inst. Chem. E – volume: 6 start-page: 6425 year: 2018 end-page: 6433 ident: b0025 article-title: Harnessing clean water from power plant emissions using membrane condenser technology publication-title: ACS Sustain. Chem. Eng. – volume: 27 start-page: 1510 year: 2019 end-page: 1522 ident: b0045 article-title: A review of extractive distillation from an azeotropic phenomenon for dynamic control publication-title: Chinese J. Chem. Eng. – volume: 100 start-page: 27 year: 2017 end-page: 37 ident: b0050 article-title: Comparison of heterogeneous azeotropic distillation and extractive distillation methods for ternary azeotrope ethanol/toluene/water separation publication-title: Comput. Chem. Eng. – volume: 94 start-page: 579 year: 2016 end-page: 588 ident: b0130 article-title: Energy, exergy and environmental analyses of conventional, steam and CO publication-title: Energy – volume: 190 start-page: 326 year: 2017 end-page: 338 ident: b0125 article-title: Life cycle assessment of power-to-gas: approaches, system variations and their environmental implications publication-title: Appl. Energ. – year: 2011 ident: b0195 article-title: Distillation Control, Optimization, and Tuning: Fundamentals and Strategies – volume: 148 start-page: 296 year: 2018 end-page: 308 ident: b0110 article-title: Energy-saving thermally coupled ternary extractive distillation process by combining with mixed entrainer for separating ternary mixture containing bioethanol publication-title: Energy – volume: 87 start-page: 26 year: 2018 end-page: 35 ident: b0040 article-title: Energy-efficient heterogeneous extractive distillation system for the separation of close-boiling cyclohexane/cyclohexene mixture publication-title: J. Taiwan Inst. Chem. E – volume: 58 start-page: 21659 year: 2019 end-page: 21670 ident: b0115 article-title: Design and optimization of sustainable pressure swing distillation for minimum-boiling azeotrope separation publication-title: Ind. Eng. Chem. Res. – volume: 46 start-page: 769 year: 2007 end-page: 772 ident: b0020 article-title: Study of dual temperature control method on cyclic total reflux batch distillation publication-title: Chem. Eng. Process. – volume: 115 start-page: 374 year: 2018 end-page: 384 ident: b0120 article-title: Life cycle assessment and environmental cost accounting of coal-fired power generation in China publication-title: Energy Policy – volume: 34 start-page: 243 year: 2011 end-page: 256 ident: b0205 article-title: Multi-objective optimization of a cooling tower assisted vapor compression refrigeration system publication-title: Int. J. Refrig. – volume: 184 start-page: 249 year: 2019 end-page: 261 ident: b0200 article-title: Energy, exergy, and economic (3E) analyses and multi-objective optimization of a cascade absorption refrigeration system for low-grade waste heat recovery publication-title: Energ. Convers. Manage. – volume: 63 start-page: 78 year: 2008 end-page: 94 ident: b0060 article-title: Heterogeneous extractive batch distillation of chloroform–methanol–water: feasibility and experiments publication-title: Chem. Eng. Sci. – volume: 63 start-page: 2856 year: 2008 end-page: 2874 ident: b0065 article-title: Feasibility of new pressure swing batch distillation methods publication-title: Chem. Eng. Sci. – volume: 225 start-page: 41 year: 2019 end-page: 53 ident: b0100 article-title: Dynamic controllability investigation of an energy-saving double side-stream ternary extractive distillation process publication-title: Sep. Purif. Technol. – volume: 168 start-page: 340 year: 2021 end-page: 356 ident: b0135 article-title: Effective semicontinuous distillation design for separating normal alkanes via multi-objective optimization and control publication-title: Chem. Eng. Res. Des. – volume: 56 start-page: 4104 year: 2017 end-page: 4112 ident: b0170 article-title: Optimization of pressure-swing batch distillation with and without heat integration for separating dichloromethane/methanol azeotrope based on minimum total annual cost publication-title: Ind. Eng. Chem. Res. – volume: 58 start-page: 7265 year: 2019 end-page: 7283 ident: b0015 article-title: Optimal design and effective control of triple-column extractive distillation for separating ethyl acetate/ethanol/water with multiazeotrope publication-title: Ind. Eng. Chem. Res. – volume: 7 start-page: 18677 year: 2019 end-page: 18689 ident: b0035 article-title: Reactive pressure-swing distillation toward sustainable process of novel continuous ultra-high-purity electronic-grade propylene glycol monomethyl ether acetate manufacture publication-title: ACS Sustain. Chem. Eng. – volume: 54 start-page: 7715 year: 2015 end-page: 7727 ident: b0090 article-title: Design and control of a hybrid extraction–distillation system for the separation of pyridine and water publication-title: Ind. Eng. Chem. Res. – volume: 251 year: 2020 ident: b0070 article-title: Design and comprehensive analysis of a novel pressure-swing batch distillation process for the separation of a binary azeotrope with various boiling behaviors publication-title: Sep. Purif. Technol. – volume: 128 start-page: 85 year: 2019 end-page: 94 ident: b0075 article-title: Separation of ternary mixture with double azeotropic system by a pressure-swing batch distillation integrated with quasi-continuous process publication-title: Process. Saf. Environ. – volume: 9 start-page: 1213 year: 2021 end-page: 1228 ident: b0140 article-title: Multi-objective optimization of the TEG dehydration process for BTEX emission mitigation using machine-learning and metaheuristic algorithms publication-title: ACS Sustain. Chem. Eng. – year: 1988 ident: b0165 article-title: Conceptual Design of Chemical Processes – volume: 107 start-page: 42 year: 2016 end-page: 57 ident: b0190 article-title: The partial heat-integrated pressure-swing reactive distillation process for transesterification of methyl acetate with isopropanol publication-title: Chem. Eng. Process. – volume: 23 start-page: 390 year: 2010 end-page: 392 ident: b0005 article-title: Recovery and application of methanol and ethyl acetate in cefotaxime sodium publication-title: Hlongjiang Med. J. – volume: 47 start-page: 2696 year: 2008 end-page: 2707 ident: b0185 article-title: Comparison of extractive distillation and pressure-swing distillation for acetone− methanol separation publication-title: Ind. Eng. Chem. Res. – volume: 21 start-page: 955 year: 2006 end-page: 960 ident: b0155 article-title: Multi-objective optimisation of batch distillation processes publication-title: Comput. Aided Chem. Eng. Elsevier – volume: 49 start-page: 3785 year: 2010 end-page: 3793 ident: b0080 article-title: Separation of an acetone−methanol mixture by pressure-swing batch distillation in a double-column system with and without thermal integration publication-title: Ind. Eng. Chem. Res. – volume: 206 year: 2020 ident: b0150 article-title: The separation of ternary azeotropic mixture: thermodynamic insight and improved multi-objective optimization publication-title: Energy – volume: 58 start-page: 9675 year: 2019 end-page: 9689 ident: b0095 article-title: Controllability, energy-efficiency, and safety comparisons of different control schemes for producing n-butyl acetate in a reactive dividing wall column publication-title: Ind. Eng. Chem. Res. – year: 2019 ident: b0160 article-title: Perry's Chemical Engineers' Handbook – volume: 189 start-page: 296 year: 2017 end-page: 309 ident: b0030 article-title: Screening of pervaporation membranes for the separation of methanol-methyl acetate mixtures: an approach based on the conceptual design of the pervaporation-distillation hybrid process publication-title: Sep. Purif. Technol. – volume: 39 start-page: 6860 year: 2005 end-page: 6870 ident: b0180 article-title: Reducing CO publication-title: Environ. Sci. Technol. – volume: 52 start-page: 5781 year: 2013 end-page: 5790 ident: b0210 article-title: Comparison between different configurations of internally and externally heat-integrated distillation by numerical simulation publication-title: Ind. Eng. Chem. Res. – year: 1990 ident: 10.1016/j.seppur.2021.119288_b0010 – volume: 225 start-page: 41 year: 2019 ident: 10.1016/j.seppur.2021.119288_b0100 article-title: Dynamic controllability investigation of an energy-saving double side-stream ternary extractive distillation process publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.05.063 – year: 2011 ident: 10.1016/j.seppur.2021.119288_b0195 – volume: 58 start-page: 9675 issue: 22 year: 2019 ident: 10.1016/j.seppur.2021.119288_b0095 article-title: Controllability, energy-efficiency, and safety comparisons of different control schemes for producing n-butyl acetate in a reactive dividing wall column publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b01321 – year: 2019 ident: 10.1016/j.seppur.2021.119288_b0160 – volume: 23 start-page: 390 issue: 03 year: 2010 ident: 10.1016/j.seppur.2021.119288_b0005 article-title: Recovery and application of methanol and ethyl acetate in cefotaxime sodium publication-title: Hlongjiang Med. J. – volume: 93 start-page: 644 year: 2018 ident: 10.1016/j.seppur.2021.119288_b0175 article-title: Heat-integrated pressure-swing distillation process for separation of the maximum-boiling azeotrope diethylamine and methanol publication-title: J. Taiwan Inst. Chem. E doi: 10.1016/j.jtice.2018.09.018 – volume: 251 year: 2020 ident: 10.1016/j.seppur.2021.119288_b0070 article-title: Design and comprehensive analysis of a novel pressure-swing batch distillation process for the separation of a binary azeotrope with various boiling behaviors publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.117329 – volume: 7 start-page: 18677 issue: 22 year: 2019 ident: 10.1016/j.seppur.2021.119288_b0035 article-title: Reactive pressure-swing distillation toward sustainable process of novel continuous ultra-high-purity electronic-grade propylene glycol monomethyl ether acetate manufacture publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b05251 – year: 1988 ident: 10.1016/j.seppur.2021.119288_b0165 – volume: 34 start-page: 243 issue: 1 year: 2011 ident: 10.1016/j.seppur.2021.119288_b0205 article-title: Multi-objective optimization of a cooling tower assisted vapor compression refrigeration system publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2010.07.026 – volume: 150 start-page: 1273 year: 2019 ident: 10.1016/j.seppur.2021.119288_b0145 article-title: Multi-objective optimization of vapor recompressed distillation column in batch processing: improving energy and cost savings publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.01.073 – volume: 107 start-page: 42 year: 2016 ident: 10.1016/j.seppur.2021.119288_b0190 article-title: The partial heat-integrated pressure-swing reactive distillation process for transesterification of methyl acetate with isopropanol publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2016.06.008 – volume: 100 start-page: 27 year: 2017 ident: 10.1016/j.seppur.2021.119288_b0050 article-title: Comparison of heterogeneous azeotropic distillation and extractive distillation methods for ternary azeotrope ethanol/toluene/water separation publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2017.02.007 – volume: 21 start-page: 955 year: 2006 ident: 10.1016/j.seppur.2021.119288_b0155 article-title: Multi-objective optimisation of batch distillation processes publication-title: Comput. Aided Chem. Eng. Elsevier doi: 10.1016/S1570-7946(06)80169-0 – volume: 49 start-page: 3785 issue: 8 year: 2010 ident: 10.1016/j.seppur.2021.119288_b0080 article-title: Separation of an acetone−methanol mixture by pressure-swing batch distillation in a double-column system with and without thermal integration publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie9019352 – volume: 87 start-page: 26 year: 2018 ident: 10.1016/j.seppur.2021.119288_b0040 article-title: Energy-efficient heterogeneous extractive distillation system for the separation of close-boiling cyclohexane/cyclohexene mixture publication-title: J. Taiwan Inst. Chem. E doi: 10.1016/j.jtice.2018.03.042 – volume: 85 start-page: 492 issue: 4 year: 2007 ident: 10.1016/j.seppur.2021.119288_b0055 article-title: Pressure swing batch distillation for homogeneous azeotropic separation publication-title: Chem. Eng. Res. Des. doi: 10.1205/cherd06092 – volume: 6 start-page: 6425 issue: 5 year: 2018 ident: 10.1016/j.seppur.2021.119288_b0025 article-title: Harnessing clean water from power plant emissions using membrane condenser technology publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b00204 – volume: 115 start-page: 374 year: 2018 ident: 10.1016/j.seppur.2021.119288_b0120 article-title: Life cycle assessment and environmental cost accounting of coal-fired power generation in China publication-title: Energy Policy doi: 10.1016/j.enpol.2018.01.040 – volume: 9 start-page: 1213 issue: 3 year: 2021 ident: 10.1016/j.seppur.2021.119288_b0140 article-title: Multi-objective optimization of the TEG dehydration process for BTEX emission mitigation using machine-learning and metaheuristic algorithms publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c06951 – volume: 189 start-page: 296 year: 2017 ident: 10.1016/j.seppur.2021.119288_b0030 article-title: Screening of pervaporation membranes for the separation of methanol-methyl acetate mixtures: an approach based on the conceptual design of the pervaporation-distillation hybrid process publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2017.08.027 – volume: 58 start-page: 7265 issue: 17 year: 2019 ident: 10.1016/j.seppur.2021.119288_b0015 article-title: Optimal design and effective control of triple-column extractive distillation for separating ethyl acetate/ethanol/water with multiazeotrope publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b00466 – volume: 27 start-page: 1510 issue: 7 year: 2019 ident: 10.1016/j.seppur.2021.119288_b0045 article-title: A review of extractive distillation from an azeotropic phenomenon for dynamic control publication-title: Chinese J. Chem. Eng. doi: 10.1016/j.cjche.2018.08.015 – volume: 230 year: 2020 ident: 10.1016/j.seppur.2021.119288_b0085 article-title: Dynamic control analysis of partially heat-integrated pressure-swing distillation for separating a maximum-boiling azeotrope publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.115853 – volume: 47 start-page: 2696 issue: 8 year: 2008 ident: 10.1016/j.seppur.2021.119288_b0185 article-title: Comparison of extractive distillation and pressure-swing distillation for acetone− methanol separation publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie701695u – volume: 52 start-page: 5781 issue: 16 year: 2013 ident: 10.1016/j.seppur.2021.119288_b0210 article-title: Comparison between different configurations of internally and externally heat-integrated distillation by numerical simulation publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie400112k – volume: 148 start-page: 296 year: 2018 ident: 10.1016/j.seppur.2021.119288_b0110 article-title: Energy-saving thermally coupled ternary extractive distillation process by combining with mixed entrainer for separating ternary mixture containing bioethanol publication-title: Energy doi: 10.1016/j.energy.2018.01.161 – volume: 58 start-page: 21659 issue: 47 year: 2019 ident: 10.1016/j.seppur.2021.119288_b0115 article-title: Design and optimization of sustainable pressure swing distillation for minimum-boiling azeotrope separation publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b04294 – volume: 54 start-page: 7715 issue: 31 year: 2015 ident: 10.1016/j.seppur.2021.119288_b0090 article-title: Design and control of a hybrid extraction–distillation system for the separation of pyridine and water publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b01671 – volume: 184 start-page: 249 year: 2019 ident: 10.1016/j.seppur.2021.119288_b0200 article-title: Energy, exergy, and economic (3E) analyses and multi-objective optimization of a cascade absorption refrigeration system for low-grade waste heat recovery publication-title: Energ. Convers. Manage. doi: 10.1016/j.enconman.2019.01.047 – volume: 190 start-page: 326 year: 2017 ident: 10.1016/j.seppur.2021.119288_b0125 article-title: Life cycle assessment of power-to-gas: approaches, system variations and their environmental implications publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2016.12.098 – volume: 168 start-page: 340 year: 2021 ident: 10.1016/j.seppur.2021.119288_b0135 article-title: Effective semicontinuous distillation design for separating normal alkanes via multi-objective optimization and control publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2021.02.018 – volume: 39 start-page: 6860 issue: 17 year: 2005 ident: 10.1016/j.seppur.2021.119288_b0180 article-title: Reducing CO2 emissions and energy consumption of heat-integrated distillation systems publication-title: Environ. Sci. Technol. doi: 10.1021/es049795q – volume: 63 start-page: 2856 issue: 11 year: 2008 ident: 10.1016/j.seppur.2021.119288_b0065 article-title: Feasibility of new pressure swing batch distillation methods publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2008.02.034 – volume: 128 start-page: 85 year: 2019 ident: 10.1016/j.seppur.2021.119288_b0075 article-title: Separation of ternary mixture with double azeotropic system by a pressure-swing batch distillation integrated with quasi-continuous process publication-title: Process. Saf. Environ. doi: 10.1016/j.psep.2019.05.040 – volume: 94 start-page: 579 year: 2016 ident: 10.1016/j.seppur.2021.119288_b0130 article-title: Energy, exergy and environmental analyses of conventional, steam and CO2-enhanced rice straw gasification publication-title: Energy doi: 10.1016/j.energy.2015.11.022 – volume: 206 year: 2020 ident: 10.1016/j.seppur.2021.119288_b0150 article-title: The separation of ternary azeotropic mixture: thermodynamic insight and improved multi-objective optimization publication-title: Energy doi: 10.1016/j.energy.2020.118117 – volume: 63 start-page: 78 issue: 1 year: 2008 ident: 10.1016/j.seppur.2021.119288_b0060 article-title: Heterogeneous extractive batch distillation of chloroform–methanol–water: feasibility and experiments publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2007.09.005 – volume: 56 start-page: 4104 issue: 14 year: 2017 ident: 10.1016/j.seppur.2021.119288_b0170 article-title: Optimization of pressure-swing batch distillation with and without heat integration for separating dichloromethane/methanol azeotrope based on minimum total annual cost publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b00464 – volume: 46 start-page: 769 issue: 8 year: 2007 ident: 10.1016/j.seppur.2021.119288_b0020 article-title: Study of dual temperature control method on cyclic total reflux batch distillation publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2006.07.008 – volume: 215 year: 2021 ident: 10.1016/j.seppur.2021.119288_b0105 article-title: Improving the economy and energy efficiency of separating water/acetonitrile/isopropanol mixture via triple-column pressure-swing distillation with heat-pump technology publication-title: Energy doi: 10.1016/j.energy.2020.119126 |
| SSID | ssj0017182 |
| Score | 2.5046148 |
| Snippet | •Ternary mixture with double azeotropes was separated by pressure-swing batch distillation.•Integrated quasi-continuous triple-column process was further... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 119288 |
| SubjectTerms | Heat integration Multi-objective optimization Pressure-swing batch distillation Process evaluation |
| Title | Process design and multi-objective optimization for separation of ternary mixtures with double azeotropes via integrated quasi-continuous pressure-swing batch distillation |
| URI | https://dx.doi.org/10.1016/j.seppur.2021.119288 |
| Volume | 276 |
| WOSCitedRecordID | wos000681680600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1383-5866 databaseCode: AIEXJ dateStart: 19970519 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017182 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE9RXvKB28pVHW_i5FihVrBCFRJFrLhEduzQVG2y2k2Whb_En-EnMX7k0V1U6IFLtLIcx9n5Mh7PfDNG6DXNAkkl1wR0f0wmkZIkmShBFOVKMam10FbS7_nJSTybJR9Go19tLszqgpdlvF4n8_8qamgDYZvU2RuIuxsUGuA3CB2uIHa4_pPgPfV_rCw3wwYHLGuQVPLcabdxBXri0idgWp7hUrsS4M54tD7CxffxZbE28QWfAKeqxmRZiR-6qo0HfzleFaIvN6FMfuayIIb7XpSNYdZaji0MQJbfjENCgtY_MxGh2px01AHCW8Yf-ynY2gXNwpCYXEO95f__ciasj_dYF23TrLGBFlHk2q_Gg35T-Aq-ir79s3eTTwsx9HsEdMAhcaoa9tYkjN2ZLa0uD_hQG1MwX92hgVsLhfNZmLz-ObzQvnnAft_9al3ujfWyYzG2BLnz1I2SmlFSN8ottBvwMAE9u3v47mg27SJbYAvYCHw7-zad03IOt2fzZ3NpYAKd3kf3_N4FHzrMPUAjXT5EdwcVLR-hnx592KEPgyjxBvrwEH0Y0Id79OEqxx59uEUfNujDDn24Rx8G9OEefXgTffgq-rBFHx6i7zH6dHx0-uYt8eeBkAw2tjXhkoGxSpVIdMyZZjrRLImDiaRBLmOdy0kopKahBDNahhFTxp8AhoWgNAsPRMKeoJ2yKvVTQ-iLkygRBzkD81RoEeeMx1EeqYixTGVqD7H2b08zXyzfnNlykV4n9D1EurvmrljMX_rzVqKpN3idIZsCTK-989kNn_Qc3em_oRdop140-iW6na3qYrl45TH6G3Ev3k4 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Process+design+and+multi-objective+optimization+for+separation+of+ternary+mixtures+with+double+azeotropes+via+integrated+quasi-continuous+pressure-swing+batch+distillation&rft.jtitle=Separation+and+purification+technology&rft.au=Zhao%2C+Fei&rft.au=Xu%2C+Zaifeng&rft.au=Zhao%2C+Jiangang&rft.au=Wang%2C+Jia&rft.date=2021-12-01&rft.issn=1383-5866&rft.volume=276&rft.spage=119288&rft_id=info:doi/10.1016%2Fj.seppur.2021.119288&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_seppur_2021_119288 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-5866&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-5866&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-5866&client=summon |