A method of reconstructing compressive spectral imaging with a complementary prior constraint

Compressed spectral imaging (CSI) is a technique for acquiring a cube of spectral image data in a single snapshot. In this paper, we propose a reconstruction method for the CSI system that integrates complementary prior constraints on spectral data to significantly enhance the accuracy of reconstruc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optics communications Ročník 550; s. 130010
Hlavní autoři: Wang, Pan, Li, Jie, Qi, Chun, Wang, Lin, Wang, Feng ping
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.01.2024
Témata:
ISSN:0030-4018, 1873-0310
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Compressed spectral imaging (CSI) is a technique for acquiring a cube of spectral image data in a single snapshot. In this paper, we propose a reconstruction method for the CSI system that integrates complementary prior constraints on spectral data to significantly enhance the accuracy of reconstructed data. The fundamental concepts are as follows: (1) Firstly, by conducting a thorough analysis of the corresponding feature maps of spectral data on the convolution dictionaries, we confirm the feasibility of utilizing the stationary response characteristics of spectral data on the convolution dictionaries as a reconstruction constraint to enhance spectral accuracy. (2) To compensate for the limitations of Convolutional Sparse Coding in reconstructing low-frequency signals, this paper proposes utilizing iterative Total Variation operators to estimate the low-frequency portion of spectral data. This approach results in improved performance in reconstructing low-frequency data and noise suppression. (3) Convolutional Sparse Coding and Total Variation are utilized as constraints for high and low-frequency complementary reconstruction, resulting in a multi-constraint solution problem within the Plug-and-Play framework that simplifies the overall reconstruction process. The proposed method surpasses the state-of-the-art reconstruction methods in both spatial reconstruction quality and spectral accuracy, while also significantly enhancing the level of detail in reconstructed spectral images. •Convolutional sparse coding shows stationary characteristics on spectral data.•Additional low frequency estimation is an important part of convolutional sparse coding.•Frequency complementary constraints can improve the accuracy of compressed sensing spectral imaging.•Iterative low frequency estimation can better estimate low frequency signal.
AbstractList Compressed spectral imaging (CSI) is a technique for acquiring a cube of spectral image data in a single snapshot. In this paper, we propose a reconstruction method for the CSI system that integrates complementary prior constraints on spectral data to significantly enhance the accuracy of reconstructed data. The fundamental concepts are as follows: (1) Firstly, by conducting a thorough analysis of the corresponding feature maps of spectral data on the convolution dictionaries, we confirm the feasibility of utilizing the stationary response characteristics of spectral data on the convolution dictionaries as a reconstruction constraint to enhance spectral accuracy. (2) To compensate for the limitations of Convolutional Sparse Coding in reconstructing low-frequency signals, this paper proposes utilizing iterative Total Variation operators to estimate the low-frequency portion of spectral data. This approach results in improved performance in reconstructing low-frequency data and noise suppression. (3) Convolutional Sparse Coding and Total Variation are utilized as constraints for high and low-frequency complementary reconstruction, resulting in a multi-constraint solution problem within the Plug-and-Play framework that simplifies the overall reconstruction process. The proposed method surpasses the state-of-the-art reconstruction methods in both spatial reconstruction quality and spectral accuracy, while also significantly enhancing the level of detail in reconstructed spectral images. •Convolutional sparse coding shows stationary characteristics on spectral data.•Additional low frequency estimation is an important part of convolutional sparse coding.•Frequency complementary constraints can improve the accuracy of compressed sensing spectral imaging.•Iterative low frequency estimation can better estimate low frequency signal.
ArticleNumber 130010
Author Wang, Feng ping
Wang, Lin
Wang, Pan
Li, Jie
Qi, Chun
Author_xml – sequence: 1
  givenname: Pan
  orcidid: 0000-0002-1905-5269
  surname: Wang
  fullname: Wang, Pan
– sequence: 2
  givenname: Jie
  surname: Li
  fullname: Li, Jie
  email: jielixjtu@xjtu.edu.cn
– sequence: 3
  givenname: Chun
  surname: Qi
  fullname: Qi, Chun
– sequence: 4
  givenname: Lin
  surname: Wang
  fullname: Wang, Lin
– sequence: 5
  givenname: Feng ping
  surname: Wang
  fullname: Wang, Feng ping
BookMark eNqFkMtOwzAQRS1UJErhD1j4BxL8SJyUBVJV8ZIqsYElshx70rpK4so2Rfw9DmHFAlazmDlXd845mg1uAISuKMkpoeJ6n7tD1K7PGWE8p5wQSk7QnNYVzwinZIbmhHCSFYTWZ-g8hD1JJwWv5-hthXuIO2ewa7EH7YYQ_buOdtjilHjwEII9Ag4H0NGrDttebcflh407rL5vOuhhiMp_4oO3zuMpRNkhXqDTVnUBLn_mAr3e372sH7PN88PTerXJNCciZpWqGG1KYNQsdarGaihLvhQtFHUlyqJkIHjDhNaNUI2hRi0Nr4uqrQumBTF8gYopV3sXgodWpiZ9aiQpkaMiuZeTIjkqkpOihN38wrSNKlo3jPW7_-DbCYb02NGCl0FbGDQYmzxGaZz9O-ALYOeIjQ
CitedBy_id crossref_primary_10_3788_gzxb20255406_0630001
Cites_doi 10.1109/MSP.2007.914730
10.1109/TPAMI.2021.3099035
10.1109/TPAMI.2018.2873587
10.1109/MSP.2020.3023869
10.1109/JSTARS.2019.2902332
10.1364/AO.45.002965
10.1063/1.5140721
10.1109/MSP.2022.3199595
10.1109/MSP.2007.914731
10.1109/TIP.2007.909319
10.1364/AO.420305
10.1109/TIP.2014.2344294
10.1561/2200000016
10.1109/TIP.2015.2495260
10.1145/2661229.2661262
10.1109/TIP.2021.3086049
10.1109/JSTSP.2007.910281
10.1016/j.acha.2015.03.003
10.1109/TIP.2003.819861
10.1109/TIP.2014.2365720
10.1364/OE.15.014013
10.1109/JSTSP.2015.2411575
10.1364/AO.47.000B44
10.1111/cgf.13086
10.1023/B:JMIV.0000011325.36760.1e
10.1364/OPTICA.6.000921
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.optcom.2023.130010
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-0310
ExternalDocumentID 10_1016_j_optcom_2023_130010
S0030401823007587
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LY7
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29N
53G
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AETEA
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
EJD
F0J
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
MVM
NDZJH
R2-
SET
SPG
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c306t-7a721b5e21d9c00028e55396fe48765452e63b26ccb6abd1da9d3847f842c60d3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001098281400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0030-4018
IngestDate Tue Nov 18 20:40:10 EST 2025
Sat Nov 29 07:28:05 EST 2025
Fri Feb 23 02:36:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Plug-and-Play
Compressive spectral imaging
Convolutional sparse coding
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-7a721b5e21d9c00028e55396fe48765452e63b26ccb6abd1da9d3847f842c60d3
ORCID 0000-0002-1905-5269
ParticipantIDs crossref_primary_10_1016_j_optcom_2023_130010
crossref_citationtrail_10_1016_j_optcom_2023_130010
elsevier_sciencedirect_doi_10_1016_j_optcom_2023_130010
PublicationCentury 2000
PublicationDate 2024-01-01
2024-01-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Optics communications
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Barajas-Solano, Ramirez, Arguello (bib27) 2019; 66
Qiao, Meng, Ma, Yuan (bib20) 2020; 5
Candès, Wakin (bib6) 2008; 25
Bioucas-Dias, Figueiredo (bib12) 2007; 16
Wagadarikar, John, Willett, Brady (bib3) 2008; 47
Figueiredo, Nowak, Wright (bib9) 2007; 1
bib30
Barajas-Solano, Ramirez, Garcia, Arguello (bib28) 2019
Gehm, McCain, Pitsianis, Brady, Potuluri, Sullivan (bib2) 2006; 45
Liu, Yuan, Suo, Brady, Dai (bib17) 2019; 41
Kamilov, Bouman, Buzzard, Wohlberg (bib22) Jan. 2023; 40
Duarte, Davenport, Takhar, Laska, Sun, Kelly, Baraniuk (bib8) 2008; 25
Chambolle (bib13) 2004; 20
Gehm, John, Brady, Willett, Schulz (bib4) 2007; 15
Gu, Zhang, Zuo, Feng (bib16) 2014
Lin, Liu, Wu, Dai (bib5) 2014; 33
Miao, Yuan, Pu, Athitsos (bib21) 2019
Yuan (bib14) 2016
Chartrand, Wohlberg (bib35) 2013
Serrano, Garces, Masia, Gutierrez (bib33) 2017; 36
Zha, Wen, Yuan, Tianyi Zhou, Zhou, Zhu (bib34) 2021; 30
Wang, Bovik, Sheikh, Simoncelli (bib37) 2004; 13
Brady (bib1) 2009
Barbastathis, Ozcan, Situ (bib19) 2019; 6
Yuan, Liu, Suo, Durand, Dai (bib23) 2022; 44
Bacca, Correa, Arguello (bib38) 2019; 12
Bacca, Fonseca, Henry (bib24) 2021; 60
Arguello, Carin (bib36) 2014
Yang, Liao, Yuan, Llull, Brady, Sapiro, Carin (bib11) 2015; 24
Yuan, Brady, Katsaggelos (bib18) 2021; 38
Wohlberg (bib31) Jan. 2016; 25
Heide, Heidrich, Wetzstein (bib32) 2015
Wohlberg (bib26) 2016
Jalali, Maleki (bib7) 2016; 40
Boyd, Parikh, Chu, Peleato, Eckstein (bib15) 2011; 3
Kavukcuoglu, Sermanet, lan Boureau, Gregor, Mathieu, Cun (bib25) 2010
Yuan, Tsai, Zhu, Llull, Brady, Carin (bib39) 2015; 9
Yang, Yuan, Liao, Llull, Brady, Sapiro, Carin (bib10) 2014; 23
Bao (bib29) 2019
Chambolle (10.1016/j.optcom.2023.130010_bib13) 2004; 20
Kamilov (10.1016/j.optcom.2023.130010_bib22) 2023; 40
Yuan (10.1016/j.optcom.2023.130010_bib23) 2022; 44
Barajas-Solano (10.1016/j.optcom.2023.130010_bib27) 2019; 66
Zha (10.1016/j.optcom.2023.130010_bib34) 2021; 30
Yang (10.1016/j.optcom.2023.130010_bib10) 2014; 23
Chartrand (10.1016/j.optcom.2023.130010_bib35) 2013
Candès (10.1016/j.optcom.2023.130010_bib6) 2008; 25
Yuan (10.1016/j.optcom.2023.130010_bib14) 2016
Gehm (10.1016/j.optcom.2023.130010_bib4) 2007; 15
Figueiredo (10.1016/j.optcom.2023.130010_bib9) 2007; 1
Bacca (10.1016/j.optcom.2023.130010_bib38) 2019; 12
Jalali (10.1016/j.optcom.2023.130010_bib7) 2016; 40
Lin (10.1016/j.optcom.2023.130010_bib5) 2014; 33
Kavukcuoglu (10.1016/j.optcom.2023.130010_bib25) 2010
Wohlberg (10.1016/j.optcom.2023.130010_bib31) 2016; 25
Bao (10.1016/j.optcom.2023.130010_bib29) 2019
Qiao (10.1016/j.optcom.2023.130010_bib20) 2020; 5
Brady (10.1016/j.optcom.2023.130010_bib1) 2009
Yang (10.1016/j.optcom.2023.130010_bib11) 2015; 24
Bioucas-Dias (10.1016/j.optcom.2023.130010_bib12) 2007; 16
Liu (10.1016/j.optcom.2023.130010_bib17) 2019; 41
Gu (10.1016/j.optcom.2023.130010_bib16) 2014
Serrano (10.1016/j.optcom.2023.130010_bib33) 2017; 36
Barbastathis (10.1016/j.optcom.2023.130010_bib19) 2019; 6
Miao (10.1016/j.optcom.2023.130010_bib21) 2019
Arguello (10.1016/j.optcom.2023.130010_bib36) 2014
Wang (10.1016/j.optcom.2023.130010_bib37) 2004; 13
Gehm (10.1016/j.optcom.2023.130010_bib2) 2006; 45
Barajas-Solano (10.1016/j.optcom.2023.130010_bib28) 2019
Yuan (10.1016/j.optcom.2023.130010_bib18) 2021; 38
Boyd (10.1016/j.optcom.2023.130010_bib15) 2011; 3
Wagadarikar (10.1016/j.optcom.2023.130010_bib3) 2008; 47
Heide (10.1016/j.optcom.2023.130010_bib32) 2015
Yuan (10.1016/j.optcom.2023.130010_bib39) 2015; 9
Duarte (10.1016/j.optcom.2023.130010_bib8) 2008; 25
Bacca (10.1016/j.optcom.2023.130010_bib24) 2021; 60
Wohlberg (10.1016/j.optcom.2023.130010_bib26) 2016
References_xml – volume: 33
  start-page: 1
  year: 2014
  end-page: 11
  ident: bib5
  article-title: Spatial-spectral encoded compressive hyperspectral imaging
  publication-title: ACM Trans. Graph.
– volume: 12
  start-page: 1231
  year: 2019
  end-page: 1239
  ident: bib38
  article-title: Noniterative hyperspectral image reconstruction from compressive fused measurements
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens.
– start-page: 2539
  year: 2016
  end-page: 2543
  ident: bib14
  article-title: Generalized alternating projection based total variation minimization for compressive sensing
  publication-title: Proceedings of IEEE International Conference on Image Processing
– volume: 20
  start-page: 89
  year: 2004
  end-page: 97
  ident: bib13
  article-title: An algorithm for total variation minimization and applications
  publication-title: J. Math. Imag. Vis.
– volume: 41
  start-page: 2990
  year: 2019
  end-page: 3006
  ident: bib17
  article-title: Rank minimization for snapshot compressive imaging
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 3
  start-page: 1
  year: 2011
  end-page: 122
  ident: bib15
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found. Trends Mach. Learn.
– volume: 60
  start-page: 4197
  year: 2021
  end-page: 4207
  ident: bib24
  article-title: Compressive spectral image reconstruction using deep prior and low-rank tensor representation
  publication-title: Appl. Opt.
– year: 2009
  ident: bib1
  article-title: Optical Imaging and Spectroscopy
– volume: 45
  start-page: 2965
  year: 2006
  end-page: 2974
  ident: bib2
  article-title: Static two-dimensional aperture coding for multimodal, multiplex spectroscopy
  publication-title: Appl. Opt.
– volume: 1
  start-page: 586
  year: 2007
  end-page: 597
  ident: bib9
  article-title: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems
  publication-title: IEEE J. Sel. Top. Signal Process.
– volume: 44
  start-page: 7093
  year: 2022
  end-page: 7111
  ident: bib23
  article-title: Plug-and-Play algorithms for video snapshot compressive imaging
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2019
  ident: bib28
  article-title: Tridimensional convolutional sparse coding of spectral images
  publication-title: Optical Sensors and Sensing Congress (ES, FTS, HISE, Sensors), OSA Technical Digest
– volume: 30
  start-page: 5819
  year: 2021
  end-page: 5834
  ident: bib34
  article-title: Triply complementary priors for image restoration
  publication-title: IEEE Trans. Image Process.
– volume: 47
  start-page: B44
  year: 2008
  end-page: B51
  ident: bib3
  article-title: Single disperser design for coded aperture snapshot spectral imaging
  publication-title: Appl. Opt.
– volume: 16
  start-page: 2992
  year: 2007
  end-page: 3004
  ident: bib12
  article-title: A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration
  publication-title: IEEE Trans. Image Process.
– ident: bib30
  article-title: Cave multispectral image database
– volume: 66
  year: 2019
  ident: bib27
  article-title: Convolutional sparse coding framework for compressive spectral imaging
  publication-title: J. Vis. Commun. Image Represent.
– volume: 9
  start-page: 964
  year: 2015
  end-page: 976
  ident: bib39
  article-title: Compressive hyperspectral imaging with side information
  publication-title: IEEE J. Sel. Top. Sign. Proces.
– volume: 38
  start-page: 65
  year: 2021
  end-page: 88
  ident: bib18
  article-title: Snapshot compressive imaging: theory, algorithms, and applications
  publication-title: IEEE Signal Process. Mag.
– volume: 40
  start-page: 85
  year: Jan. 2023
  end-page: 97
  ident: bib22
  article-title: Plug-and-Play methods for integrating physical and learned models in computational imaging: theory, algorithms, and applications
  publication-title: IEEE Signal Process. Mag.
– start-page: 57
  year: 2016
  end-page: 60
  ident: bib26
  article-title: Convolutional sparse representation of color images
  publication-title: Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation, 2016-April
– volume: 6
  start-page: 921
  year: 2019
  end-page: 943
  ident: bib19
  article-title: On the use of deep learning for computational imaging
  publication-title: Optica
– start-page: 2862
  year: 2014
  end-page: 2869
  ident: bib16
  article-title: Weighted nuclear norm minimization with application to image denoising
  publication-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 25
  start-page: 21
  year: 2008
  end-page: 30
  ident: bib6
  article-title: An introduction to compressive sampling
  publication-title: IEEE Signal Process. Mag.
– volume: 36
  start-page: 380
  year: 2017
  end-page: 389
  ident: bib33
  article-title: Convolutional sparse coding for capturing high-speed video content
  publication-title: Comput. Graph. Forum
– start-page: 6009
  year: 2013
  end-page: 6013
  ident: bib35
  article-title: A nonconvex ADMM algorithm for group sparsity with sparse groups
  publication-title: IEEE International Conference on Acoustics, Speech and Signal Processing
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: bib37
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. on image processing
– volume: 15
  start-page: 14013
  year: 2007
  end-page: 14027
  ident: bib4
  article-title: Single-shot compressive spectral imaging with a dual-disperser architecture
  publication-title: Opt Express
– start-page: 4058
  year: 2019
  end-page: 4068
  ident: bib21
  article-title: λ-net: reconstruct hyperspectral images from a snapshot measurement
  publication-title: IEEE/CVF Conference on Computer Vision (ICCV)
– start-page: 5135
  year: 2015
  end-page: 5143
  ident: bib32
  article-title: Fast and flexible convolutional sparse coding
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 1
  year: 2019
  ident: bib29
  article-title: Convolutional sparse coding for compressed sensing CT reconstruction
  publication-title: IEEE Trans. Med. Imag.
– volume: 25
  start-page: 83
  year: 2008
  end-page: 91
  ident: bib8
  article-title: Single-pixel imaging via compressive sampling
  publication-title: IEEE Signal Process. Mag.
– volume: 40
  start-page: 352
  year: 2016
  end-page: 385
  ident: bib7
  article-title: From compression to compressed sensing
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 23
  start-page: 4863
  year: 2014
  end-page: 4878
  ident: bib10
  article-title: Video compressive sensing using Gaussian mixture models
  publication-title: IEEE Trans. Image Process.
– volume: 24
  start-page: 106
  year: 2015
  end-page: 119
  ident: bib11
  article-title: Compressive sensing by learning a Gaussian mixture model from measurements
  publication-title: IEEE Trans. Image Process.
– volume: 5
  year: 2020
  ident: bib20
  article-title: Deep learning for video compressive sensing
  publication-title: APL Photonics
– start-page: 1090
  year: 2010
  end-page: 1098
  ident: bib25
  article-title: Learning convolutional feature hierarchiesfor visual recognition
  publication-title: Advances in Neural InformationProcessing Systems
– volume: 25
  start-page: 301
  year: Jan. 2016
  end-page: 315
  ident: bib31
  article-title: Efficient algorithms for convolutional sparse representations
  publication-title: IEEE Trans. Image Process.
– year: 2014
  ident: bib36
  article-title: Compressive Coded Aperture Spectral Imaging: an Introduction
– volume: 25
  start-page: 83
  issue: 2
  year: 2008
  ident: 10.1016/j.optcom.2023.130010_bib8
  article-title: Single-pixel imaging via compressive sampling
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2007.914730
– volume: 44
  start-page: 7093
  issue: 10
  year: 2022
  ident: 10.1016/j.optcom.2023.130010_bib23
  article-title: Plug-and-Play algorithms for video snapshot compressive imaging
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2021.3099035
– volume: 41
  start-page: 2990
  issue: 12
  year: 2019
  ident: 10.1016/j.optcom.2023.130010_bib17
  article-title: Rank minimization for snapshot compressive imaging
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2873587
– volume: 38
  start-page: 65
  issue: 2
  year: 2021
  ident: 10.1016/j.optcom.2023.130010_bib18
  article-title: Snapshot compressive imaging: theory, algorithms, and applications
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2020.3023869
– volume: 12
  start-page: 1231
  year: 2019
  ident: 10.1016/j.optcom.2023.130010_bib38
  article-title: Noniterative hyperspectral image reconstruction from compressive fused measurements
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens.
  doi: 10.1109/JSTARS.2019.2902332
– volume: 45
  start-page: 2965
  issue: 13
  year: 2006
  ident: 10.1016/j.optcom.2023.130010_bib2
  article-title: Static two-dimensional aperture coding for multimodal, multiplex spectroscopy
  publication-title: Appl. Opt.
  doi: 10.1364/AO.45.002965
– year: 2009
  ident: 10.1016/j.optcom.2023.130010_bib1
– start-page: 2539
  year: 2016
  ident: 10.1016/j.optcom.2023.130010_bib14
  article-title: Generalized alternating projection based total variation minimization for compressive sensing
– volume: 5
  issue: 3
  year: 2020
  ident: 10.1016/j.optcom.2023.130010_bib20
  article-title: Deep learning for video compressive sensing
  publication-title: APL Photonics
  doi: 10.1063/1.5140721
– volume: 40
  start-page: 85
  issue: 1
  year: 2023
  ident: 10.1016/j.optcom.2023.130010_bib22
  article-title: Plug-and-Play methods for integrating physical and learned models in computational imaging: theory, algorithms, and applications
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2022.3199595
– volume: 25
  start-page: 21
  year: 2008
  ident: 10.1016/j.optcom.2023.130010_bib6
  article-title: An introduction to compressive sampling
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2007.914731
– volume: 16
  start-page: 2992
  issue: 12
  year: 2007
  ident: 10.1016/j.optcom.2023.130010_bib12
  article-title: A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2007.909319
– start-page: 4058
  year: 2019
  ident: 10.1016/j.optcom.2023.130010_bib21
  article-title: λ-net: reconstruct hyperspectral images from a snapshot measurement
– volume: 60
  start-page: 4197
  year: 2021
  ident: 10.1016/j.optcom.2023.130010_bib24
  article-title: Compressive spectral image reconstruction using deep prior and low-rank tensor representation
  publication-title: Appl. Opt.
  doi: 10.1364/AO.420305
– volume: 66
  year: 2019
  ident: 10.1016/j.optcom.2023.130010_bib27
  article-title: Convolutional sparse coding framework for compressive spectral imaging
  publication-title: J. Vis. Commun. Image Represent.
– start-page: 6009
  year: 2013
  ident: 10.1016/j.optcom.2023.130010_bib35
  article-title: A nonconvex ADMM algorithm for group sparsity with sparse groups
– start-page: 57
  year: 2016
  ident: 10.1016/j.optcom.2023.130010_bib26
  article-title: Convolutional sparse representation of color images
– volume: 23
  start-page: 4863
  issue: 11
  year: 2014
  ident: 10.1016/j.optcom.2023.130010_bib10
  article-title: Video compressive sensing using Gaussian mixture models
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2344294
– volume: 3
  start-page: 1
  year: 2011
  ident: 10.1016/j.optcom.2023.130010_bib15
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000016
– volume: 25
  start-page: 301
  issue: 1
  year: 2016
  ident: 10.1016/j.optcom.2023.130010_bib31
  article-title: Efficient algorithms for convolutional sparse representations
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2495260
– start-page: 1090
  year: 2010
  ident: 10.1016/j.optcom.2023.130010_bib25
  article-title: Learning convolutional feature hierarchiesfor visual recognition
– start-page: 2862
  year: 2014
  ident: 10.1016/j.optcom.2023.130010_bib16
  article-title: Weighted nuclear norm minimization with application to image denoising
– volume: 33
  start-page: 1
  issue: 6
  year: 2014
  ident: 10.1016/j.optcom.2023.130010_bib5
  article-title: Spatial-spectral encoded compressive hyperspectral imaging
  publication-title: ACM Trans. Graph.
  doi: 10.1145/2661229.2661262
– start-page: 1
  year: 2019
  ident: 10.1016/j.optcom.2023.130010_bib29
  article-title: Convolutional sparse coding for compressed sensing CT reconstruction
  publication-title: IEEE Trans. Med. Imag.
– volume: 30
  start-page: 5819
  year: 2021
  ident: 10.1016/j.optcom.2023.130010_bib34
  article-title: Triply complementary priors for image restoration
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3086049
– volume: 1
  start-page: 586
  issue: 4
  year: 2007
  ident: 10.1016/j.optcom.2023.130010_bib9
  article-title: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2007.910281
– volume: 40
  start-page: 352
  issue: 2
  year: 2016
  ident: 10.1016/j.optcom.2023.130010_bib7
  article-title: From compression to compressed sensing
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2015.03.003
– year: 2014
  ident: 10.1016/j.optcom.2023.130010_bib36
– volume: 13
  start-page: 600
  year: 2004
  ident: 10.1016/j.optcom.2023.130010_bib37
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. on image processing
  doi: 10.1109/TIP.2003.819861
– volume: 24
  start-page: 106
  issue: 1
  year: 2015
  ident: 10.1016/j.optcom.2023.130010_bib11
  article-title: Compressive sensing by learning a Gaussian mixture model from measurements
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2365720
– start-page: 5135
  year: 2015
  ident: 10.1016/j.optcom.2023.130010_bib32
  article-title: Fast and flexible convolutional sparse coding
– volume: 15
  start-page: 14013
  issue: 21
  year: 2007
  ident: 10.1016/j.optcom.2023.130010_bib4
  article-title: Single-shot compressive spectral imaging with a dual-disperser architecture
  publication-title: Opt Express
  doi: 10.1364/OE.15.014013
– volume: 9
  start-page: 964
  issue: 6
  year: 2015
  ident: 10.1016/j.optcom.2023.130010_bib39
  article-title: Compressive hyperspectral imaging with side information
  publication-title: IEEE J. Sel. Top. Sign. Proces.
  doi: 10.1109/JSTSP.2015.2411575
– year: 2019
  ident: 10.1016/j.optcom.2023.130010_bib28
  article-title: Tridimensional convolutional sparse coding of spectral images
– volume: 47
  start-page: B44
  issue: 10
  year: 2008
  ident: 10.1016/j.optcom.2023.130010_bib3
  article-title: Single disperser design for coded aperture snapshot spectral imaging
  publication-title: Appl. Opt.
  doi: 10.1364/AO.47.000B44
– volume: 36
  start-page: 380
  issue: 8
  year: 2017
  ident: 10.1016/j.optcom.2023.130010_bib33
  article-title: Convolutional sparse coding for capturing high-speed video content
  publication-title: Comput. Graph. Forum
  doi: 10.1111/cgf.13086
– volume: 20
  start-page: 89
  issue: 1/2
  year: 2004
  ident: 10.1016/j.optcom.2023.130010_bib13
  article-title: An algorithm for total variation minimization and applications
  publication-title: J. Math. Imag. Vis.
  doi: 10.1023/B:JMIV.0000011325.36760.1e
– volume: 6
  start-page: 921
  issue: 8
  year: 2019
  ident: 10.1016/j.optcom.2023.130010_bib19
  article-title: On the use of deep learning for computational imaging
  publication-title: Optica
  doi: 10.1364/OPTICA.6.000921
SSID ssj0001438
Score 2.418004
Snippet Compressed spectral imaging (CSI) is a technique for acquiring a cube of spectral image data in a single snapshot. In this paper, we propose a reconstruction...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 130010
SubjectTerms Compressive spectral imaging
Convolutional sparse coding
Plug-and-Play
Title A method of reconstructing compressive spectral imaging with a complementary prior constraint
URI https://dx.doi.org/10.1016/j.optcom.2023.130010
Volume 550
WOSCitedRecordID wos001098281400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-0310
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001438
  issn: 0030-4018
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZp0kIvpemDJm2DDr0tDl7LlqzjUlLaEPKAlO6lGFmSwaH1mt1tSP99RhrZ601KmhxyMcZYY-H5GM-Mv5kh5JMYay7zOI9EaeMoTSoeKZmzSOrSpipmKjWpHzYhjo_z6VSehlT2wo8TEE2TX13J9lFVDddA2a509gHq7oXCBTgHpcMR1A7Heyl-EqZCOzfQh7uhRSwW1yLv9dKOfImlb7nxGwcVYZUbcsyRUj7_O2rn9Ww-QiGqbtYS-Setb_GshyUmvYf-I-ShTwecH08cOKx7KJ3V-MP_T3Nz1VHoBx7SEUk6SEcEE8tA53EwqsHEZthcNhhJ9wcNuay37DemEi72Z-3SkXncbPf91e3r7bJvfMZ6cmHHW7soUErhpBQo5QnZSkQmwSBuTb4dTA_7j7abAo8dPHH3XZWlpwLe3s2_vZiBZ3L-krwIIQWdIBS2yYZtXpFnntqrF6_JzwlFQNBZRdcBQQeAoB0gaAAEdYCgiq4BgnpA0BUg3pDvXw7OP3-NwlCNSEN0uIyEgpi_zGwyNlL75KrNMiZ5ZSF05W7ivOWsTLjWJVelGRslDQMXpsrTRPPYsLdks5k19h2hNjFcM2GYyk2apCLnMqtcZbPUEGbYbIew7iUVOnScd3v7Vdyloh0S9ata7Ljyn_tF9_6L4DWiN1gAqO5cufvAJ70nz1eI_0A2QVn2I3mqL5f1Yr4XEHUNjhSRJQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+method+of+reconstructing+compressive+spectral+imaging+with+a+complementary+prior+constraint&rft.jtitle=Optics+communications&rft.au=Wang%2C+Pan&rft.au=Li%2C+Jie&rft.au=Qi%2C+Chun&rft.au=Wang%2C+Lin&rft.date=2024-01-01&rft.issn=0030-4018&rft.volume=550&rft.spage=130010&rft_id=info:doi/10.1016%2Fj.optcom.2023.130010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_optcom_2023_130010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-4018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-4018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-4018&client=summon