Performance of soft limiters in the LMS algorithm for cyclostationary white Gaussian inputs
The analysis of saturation-type nonlinearities on the input and the error in the weight update equation for LMS adaptation were obtained for a stationary white Gaussian data model in [28] for system identification. Here the input signal is modeled by a cyclostationary white Gaussian random process w...
Uloženo v:
| Vydáno v: | Signal processing Ročník 152; s. 197 - 205 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.11.2018
|
| Témata: | |
| ISSN: | 0165-1684, 1872-7557 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The analysis of saturation-type nonlinearities on the input and the error in the weight update equation for LMS adaptation were obtained for a stationary white Gaussian data model in [28] for system identification. Here the input signal is modeled by a cyclostationary white Gaussian random process with periodically time-varying power. The system parameters vary according to a random-walk. Using the previous analysis results, nonlinear recursions are presented for the transient and steady-state weight first and second moments that include the effect of the soft limiters. Monte Carlo simulations of the algorithms provide strong support for the theory. |
|---|---|
| ISSN: | 0165-1684 1872-7557 |
| DOI: | 10.1016/j.sigpro.2018.05.023 |