Cross-domain recommendation via knowledge distillation
Recommendation systems frequently suffer from data sparsity, resulting in less-than-ideal recommendations. A prominent solution to this problem is Cross-Domain Recommendation (CDR), which employs data from various domains to mitigate data sparsity and cold-start issues. Nevertheless, current mainstr...
Gespeichert in:
| Veröffentlicht in: | Knowledge-based systems Jg. 311; S. 113112 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
28.02.2025
|
| Schlagworte: | |
| ISSN: | 0950-7051 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Recommendation systems frequently suffer from data sparsity, resulting in less-than-ideal recommendations. A prominent solution to this problem is Cross-Domain Recommendation (CDR), which employs data from various domains to mitigate data sparsity and cold-start issues. Nevertheless, current mainstream methods, like feature mapping and co-training exploring domain relationships, overlook latent user–user and user–item similarities in the shared user–item interaction graph. Spurred by these deficiencies, this paper introduces KDCDR, a novel cross-domain recommendation framework that relies on knowledge distillation to utilize the data from the graph. KDCDR aims to improve the recommendation performance in both domains by efficiently utilizing information from the shared interaction graph. Furthermore, we enhance the effectiveness of user and item representations by exploring the relationships between user–user similarity and item–item similarity, as well as user–item interactions. The developed scheme utilizes the inner-domain graph as a teacher and the cross-domain graph as a student, where the student learns by distilling knowledge from the two teachers after undergoing a high-temperature distillation process. Furthermore, we introduce dynamic weight that regulates the learning process to prevent the student network from overly favoring learning from one domain and focusing on learning knowledge that the teachers have taught incorrectly. Through extensive experiments on four real-world datasets, KDCDR demonstrates significant improvements over state-of-the-art methods, proving the effectiveness of KDCDR in addressing data sparsity issues and enhancing cross-domain recommendation performance. Our code and data are available at https://github.com/pandas-bondage/KDCDR.
•Proposing a knowledge distillation based method to tackle the CDR problem.•Presenting a model to use dynamic weights to rectify teacher knowledge inaccuracies.•Designing a VGAE to structure superior user and item feature embeddings. |
|---|---|
| AbstractList | Recommendation systems frequently suffer from data sparsity, resulting in less-than-ideal recommendations. A prominent solution to this problem is Cross-Domain Recommendation (CDR), which employs data from various domains to mitigate data sparsity and cold-start issues. Nevertheless, current mainstream methods, like feature mapping and co-training exploring domain relationships, overlook latent user–user and user–item similarities in the shared user–item interaction graph. Spurred by these deficiencies, this paper introduces KDCDR, a novel cross-domain recommendation framework that relies on knowledge distillation to utilize the data from the graph. KDCDR aims to improve the recommendation performance in both domains by efficiently utilizing information from the shared interaction graph. Furthermore, we enhance the effectiveness of user and item representations by exploring the relationships between user–user similarity and item–item similarity, as well as user–item interactions. The developed scheme utilizes the inner-domain graph as a teacher and the cross-domain graph as a student, where the student learns by distilling knowledge from the two teachers after undergoing a high-temperature distillation process. Furthermore, we introduce dynamic weight that regulates the learning process to prevent the student network from overly favoring learning from one domain and focusing on learning knowledge that the teachers have taught incorrectly. Through extensive experiments on four real-world datasets, KDCDR demonstrates significant improvements over state-of-the-art methods, proving the effectiveness of KDCDR in addressing data sparsity issues and enhancing cross-domain recommendation performance. Our code and data are available at https://github.com/pandas-bondage/KDCDR.
•Proposing a knowledge distillation based method to tackle the CDR problem.•Presenting a model to use dynamic weights to rectify teacher knowledge inaccuracies.•Designing a VGAE to structure superior user and item feature embeddings. |
| ArticleNumber | 113112 |
| Author | Wu, Zhengyang Huang, Zhenhua Li, Xiuze Chen, Yunwen Wang, Changdong |
| Author_xml | – sequence: 1 givenname: Xiuze surname: Li fullname: Li, Xiuze email: 2022024933@m.scnu.edu.cn organization: School of Artificial Intelligence, South China Normal University, Foshan, 528225, Guangdong, China – sequence: 2 givenname: Zhenhua orcidid: 0000-0002-5491-1120 surname: Huang fullname: Huang, Zhenhua email: huangzhenhua@m.scnu.edu.cn organization: School of Artificial Intelligence, South China Normal University, Foshan, 528225, Guangdong, China – sequence: 3 givenname: Zhengyang surname: Wu fullname: Wu, Zhengyang email: wuzhengyang@m.scnu.edu.cn organization: School of Computer Science, South China Normal University, Guangzhou, 510631, Guangdong, China – sequence: 4 givenname: Changdong surname: Wang fullname: Wang, Changdong email: wangchd3@mail.sysu.edu.cn organization: School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China – sequence: 5 givenname: Yunwen surname: Chen fullname: Chen, Yunwen email: chenyunwen@datagrand.com organization: Research and Development Department, DataGrandInc., Shanghai, 201203, China |
| BookMark | eNqFkMtOwzAQRb0oEm3hD1jkBxL8yMNmgYQiXlIlNrC2XM8YuSQ2iqOi_j1pw4oFrGZxda7umRVZhBiQkCtGC0ZZfb0rPkJMh1RwyquCMcEYX5AlVRXNG1qxc7JKaUcp5ZzJJanbIaaUQ-yND9mANvY9BjCjjyHbe5NNbV8dwjtm4NPou-4UXZAzZ7qElz93Td4e7l_bp3zz8vjc3m1yK2g95o2UNQAIKS02dOscGAHOGCW4UnKrSrDS1WAbw7EpbclFLZys0DgFTqmtWJObudceZw7otPXjacE4GN9pRvXRWu_0bK2P1nq2nuDyF_w5-N4Mh_-w2xnDSWzvcdDJegwWwU__GTVE_3fBN-ATeeo |
| CitedBy_id | crossref_primary_10_1016_j_neunet_2025_108061 crossref_primary_10_1016_j_neunet_2025_107906 crossref_primary_10_1016_j_knosys_2025_113415 |
| Cites_doi | 10.24963/ijcai.2020/415 10.1145/3488560.3498388 10.1145/3485447.3512077 10.4249/scholarpedia.1658 10.1145/3543507.3583263 10.1145/3543507.3583402 10.1145/3038912.3052569 10.24963/ijcai.2022/285 10.18653/v1/2020.emnlp-main.101 10.1016/j.ipm.2023.103619 10.1145/3397271.3401063 10.1016/j.knosys.2023.111364 10.1109/TPAMI.2022.3153112 10.1145/3539597.3570472 10.1145/3357384.3357992 10.1145/3539597.3570477 10.1145/3357384.3357914 10.1016/j.ipm.2023.103331 10.1016/j.ipm.2024.103689 10.1145/3340531.3412012 10.1145/3580305.3599768 10.1145/3548776 10.1145/3539597.3570366 10.1186/s40649-019-0069-y 10.1145/3485447.3512104 10.1145/3477495.3531937 10.1145/3269206.3271684 10.1145/3331184.3331267 10.1109/TNNLS.2020.2978386 10.1145/3604915.3608802 10.1145/3357384.3358166 10.1145/3132847.3133107 10.1109/TKDE.2023.3324912 10.1145/3336191.3371793 10.1016/j.knosys.2020.106119 10.1016/j.ipm.2023.103494 10.1016/j.knosys.2023.110304 10.1145/3589335.3648341 10.1145/582415.582418 10.1145/3583780.3614676 10.1007/s11263-021-01453-z 10.1145/3477495.3531967 10.1016/j.neucom.2020.07.048 10.1109/TKDE.2023.3288135 10.1145/3477495.3532058 10.1016/j.knosys.2024.112054 10.1016/j.knosys.2024.111508 10.1145/3488560.3498392 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. |
| Copyright_xml | – notice: 2025 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.knosys.2025.113112 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_knosys_2025_113112 S0950705125001595 |
| GrantInformation_xml | – fundername: Guangdong Basic and Applied Basic Research Foundation, China grantid: 2022A1515011380; 2022B1515120059 – fundername: National Natural Science Foundation of China grantid: 62172166; 62377015; 61772366; 62276277 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABAOU ABBOA ABIVO ABJNI ABMAC ACDAQ ACGFS ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE ADGUI ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ARUGR AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSH SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L 77I 9DU AAQXK AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ADJOM ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET UHS WUQ ~HD |
| ID | FETCH-LOGICAL-c306t-7886ddd388ce70bffda3dfaa932998b94dc8f6dc7a2e74c42363f85eaf9df99b3 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001423843700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0950-7051 |
| IngestDate | Sat Nov 29 07:51:23 EST 2025 Tue Nov 18 22:35:34 EST 2025 Sat Jun 28 18:16:50 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Knowledge distillation Variational graph autoencoder Cross-domain recommendation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-7886ddd388ce70bffda3dfaa932998b94dc8f6dc7a2e74c42363f85eaf9df99b3 |
| ORCID | 0000-0002-5491-1120 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_knosys_2025_113112 crossref_primary_10_1016_j_knosys_2025_113112 elsevier_sciencedirect_doi_10_1016_j_knosys_2025_113112 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-28 |
| PublicationDateYYYYMMDD | 2025-02-28 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationTitle | Knowledge-based systems |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Zhang, Xu, Ma, Li, Yang, Lin (b61) 2023 Zhang, Pan, Liu, Jiang, Li (b60) 2024 Zhang, Chen, Wang (b51) 2022 S. Kang, J. Hwang, D. Lee, H. Yu, Semi-supervised learning for cross-domain recommendation to cold-start users, in: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 2019, pp. 1563–1572. G. Hu, Y. Zhang, Q. Yang, Conet: Collaborative cross networks for cross-domain recommendation, in: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, 2018, pp. 667–676. Wu, Tang, Zhu, Wang, Xie, Tan (b13) 2019; vol. 33 F. Zhu, C. Chen, Y. Wang, G. Liu, X. Zheng, Dtcdr: A framework for dual-target cross-domain recommendation, in: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 2019, pp. 1533–1542. X. Wang, X. He, M. Wang, F. Feng, T.-S. Chua, Neural graph collaborative filtering, in: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2019, pp. 165–174. Yu, Xia, Chen, Cui, Hung, Yin (b69) 2023 Wu, Pan, Chen, Long, Zhang, Philip (b54) 2020; 32 Chen, Zhang, Tsang, Pan, Su (b77) 2023; 41 G. Chen, J. Chen, F. Feng, S. Zhou, X. He, Unbiased Knowledge Distillation for Recommendation, in: Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, 2023, pp. 976–984. Wang, Zhu, Liu, Zang, Wang, Liu (b36) 2022 Y. Jiang, C. Huang, L. Huang, Adaptive graph contrastive learning for recommendation, in: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023, pp. 4252–4261. M. Liu, J. Li, G. Li, P. Pan, Cross domain recommendation via bi-directional transfer graph collaborative filtering networks, in: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, 2020, pp. 885–894. Zhang, Cheng, Liu, Yang, Peng (b6) 2024; 61 C. Zhao, C. Li, C. Fu, Cross-domain recommendation via preference propagation graphnet, in: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 2019, pp. 2165–2168. Z. Han, X. Zheng, C. Chen, W. Cheng, Y. Yao, Intra and Inter Domain HyperGraph Convolutional Network for Cross-Domain Recommendation, in: Proceedings of the ACM Web Conference 2023, 2023, pp. 449–459. J. Zheng, H. Gu, C. Song, D. Lin, L. Yi, C. Chen, Dual Interests-Aligned Graph Auto-Encoders for Cross-domain Recommendation in WeChat, in: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, 2023, pp. 4988–4994. Cao, Sheng, Cong, Liu, Wang (b45) 2022 Liu, Li, Guo, Li (b1) 2024; 290 Gou, Yu, Maybank, Tao (b26) 2021; 129 Xie, Yu, Jin, Cheng, Hu, Li (b48) 2024 Zhang, Li, Su, Zhu, Shen (b33) 2023; 41 Zhao, Zhao, Li, He, Wang, Fan (b75) 2024; 36 C. Zhao, H. Zhao, M. He, J. Zhang, J. Fan, Cross-domain recommendation via user interest alignment, in: Proceedings of the ACM Web Conference 2023, 2023, pp. 887–896. R. Tian, Y. Mao, R. Zhang, Learning VAE-LDA models with rounded reparameterization trick, in: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP, 2020, pp. 1315–1325. Li, Brost, Tuzhilin (b73) 2022; 14 Li, Xie, Zhang, Wang, Zou, Li, Luo, Li (b2) 2024; 61 Wang, Yan, Wu, Han, Zhou (b5) 2023; 264 S. Rendle, C. Freudenthaler, Z. Gantner, L. Schmidt-Thieme, BPR: Bayesian personalized ranking from implicit feedback, in: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, 2009, pp. 452–461. Rafailidis, Crestani (b39) 2016 X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, M. Wang, Lightgcn: Simplifying and powering graph convolution network for recommendation, in: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020, pp. 639–648. Guo, Zhang, Fan, Tian, Zhang, Chawla (b59) 2023; vol. 37 X. He, L. Liao, H. Zhang, L. Nie, X. Hu, T.-S. Chua, Neural collaborative filtering, in: Proceedings of the 26th International Conference on World Wide Web, 2017, pp. 173–182. Yuan, Shou, Pei, Lin, Gong, Fu, Jiang (b50) 2021; vol. 35 Loni, Shi, Larson, Hanjalic (b72) 2014 Ahn, Kim (b27) 2021 Yang, Pan, Gao, Jiang, Liu, Chen (b52) 2022; vol. 36 J. Cao, S. Li, B. Yu, X. Guo, T. Liu, B. Wang, Towards Universal Cross-Domain Recommendation, in: Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, 2023, pp. 78–86. C. Li, M. Zhao, H. Zhang, C. Yu, L. Cheng, G. Shu, B. Kong, D. Niu, RecGURU: Adversarial learning of generalized user representations for cross-domain recommendation, in: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, 2022, pp. 571–581. Kingma, Salimans, Welling (b56) 2015 Zhang, Zang, Zhu, Wang, Wang, Yu (b74) 2023 I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, A. Lerchner, beta-vae: Learning basic visual concepts with a constrained variational framework, in: International Conference on Learning Representations, 2016. Brockschmidt (b12) 2020; vol. 119 Zhu, Wang, Chen, Zhou, Li, Liu (b28) 2021 L. Xia, C. Huang, Y. Xu, J. Zhao, D. Yin, J. Huang, Hypergraph contrastive collaborative filtering, in: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022, pp. 70–79. Man, Shen, Jin, Cheng (b41) 2017; vol. 17 Li, Li, Yan, Li, Jiang, Luo, Yin (b15) 2023 F. Zhu, Y. Wang, C. Chen, G. Liu, X. Zheng, A graphical and attentional framework for dual-target cross-domain recommendation, in: IJCAI, 2020, pp. 3001–3008. S. Gu, X. Wang, C. Shi, D. Xiao, Self-supervised graph neural networks for multi-behavior recommendation, in: International Joint Conference on Artificial Intelligence, IJCAI, 2022. Zhang, Chen, Wang, GuoMember, Song (b31) 2023 Zhang, Tong, Xu, Maciejewski (b21) 2019; 6 Järvelin, Kekäläinen (b62) 2002; 20 X. Chen, Z. Cheng, J. Yao, C. Ju, W. Huang, J. Lan, X. Zeng, S. Xiao, Enhancing cross-domain click-through rate prediction via explicit feature augmentation, in: Companion Proceedings of the ACM on Web Conference 2024, 2024, pp. 423–432. Liu, Zhang, Wang (b49) 2020; 415 Cai, Huang, Xia, Ren (b70) 2023 Zhang, Liu, Ma, Gao (b47) 2022 Xiao, Zhu, Tang, Huang (b34) 2023 J. Zhu, Y. Wang, F. Zhu, Z. Sun, Domain Disentanglement with Interpolative Data Augmentation for Dual-Target Cross-Domain Recommendation, in: Proceedings of the 17th ACM Conference on Recommender Systems, 2023, pp. 515–527. Carratino, Cissé, Jenatton, Vert (b38) 2022; 23 Wang, Chen, Zhou, Ma, Zhu (b25) 2022; 45 Latham, Roudi (b24) 2009; 4 Y. Zhu, Z. Tang, Y. Liu, F. Zhuang, R. Xie, X. Zhang, L. Lin, Q. He, Personalized transfer of user preferences for cross-domain recommendation, in: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, 2022, pp. 1507–1515. Wu, Souza, Zhang, Fifty, Yu, Weinberger (b20) 2019 P. Li, A. Tuzhilin, Ddtcdr: Deep dual transfer cross domain recommendation, in: Proceedings of the 13th International Conference on Web Search and Data Mining, 2020, pp. 331–339. Z. Fan, Z. Liu, Y. Wang, A. Wang, Z. Nazari, L. Zheng, H. Peng, P.S. Yu, Sequential recommendation via stochastic self-attention, in: Proceedings of the ACM Web Conference 2022, 2022, pp. 2036–2047. Liu, Sun, Nie, Jing, Su (b37) 2024; vol. 38 L. Yang, S. Wang, Y. Tao, J. Sun, X. Liu, P.S. Yu, T. Wang, DGRec: Graph Neural Network for Recommendation with Diversified Embedding Generation, in: Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, 2023, pp. 661–669. Wang, Lv (b7) 2020; 203 Z. Lin, C. Tian, Y. Hou, W.X. Zhao, Improving graph collaborative filtering with neighborhood-enriched contrastive learning, in: Proceedings of the ACM Web Conference 2022, 2022, pp. 2320–2329. Deng, Hu (b3) 2024; 285 Ni, Zhou, Wen, Hu, Qiao (b4) 2023; 60 Ni, Nie, Zuo, Xie, Liang, Jiang, Xu, Yu, Liu (b8) 2023; 60 J. Yu, H. Yin, X. Xia, T. Chen, L. Cui, Q.V.H. Nguyen, Are graph augmentations necessary? Simple graph contrastive learning for recommendation, in: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022, pp. 1294–1303. J. Cao, X. Lin, X. Cong, J. Ya, T. Liu, B. Wang, Disencdr: Learning disentangled representations for cross-domain recommendation, in: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022, pp. 267–277. D. Rafailidis, F. Crestani, A collaborative ranking model for cross-domain recommendations, in: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, 2017, pp. 2263–2266. 10.1016/j.knosys.2025.113112_b10 10.1016/j.knosys.2025.113112_b53 Zhang (10.1016/j.knosys.2025.113112_b6) 2024; 61 10.1016/j.knosys.2025.113112_b11 10.1016/j.knosys.2025.113112_b55 10.1016/j.knosys.2025.113112_b14 10.1016/j.knosys.2025.113112_b58 10.1016/j.knosys.2025.113112_b57 10.1016/j.knosys.2025.113112_b16 Ahn (10.1016/j.knosys.2025.113112_b27) 2021 Zhang (10.1016/j.knosys.2025.113112_b21) 2019; 6 Zhang (10.1016/j.knosys.2025.113112_b47) 2022 Zhang (10.1016/j.knosys.2025.113112_b60) 2024 Cai (10.1016/j.knosys.2025.113112_b70) 2023 10.1016/j.knosys.2025.113112_b18 10.1016/j.knosys.2025.113112_b17 10.1016/j.knosys.2025.113112_b19 Yu (10.1016/j.knosys.2025.113112_b69) 2023 Cao (10.1016/j.knosys.2025.113112_b45) 2022 Zhang (10.1016/j.knosys.2025.113112_b74) 2023 Wang (10.1016/j.knosys.2025.113112_b7) 2020; 203 Zhu (10.1016/j.knosys.2025.113112_b28) 2021 10.1016/j.knosys.2025.113112_b63 Xie (10.1016/j.knosys.2025.113112_b48) 2024 10.1016/j.knosys.2025.113112_b65 Zhang (10.1016/j.knosys.2025.113112_b61) 2023 10.1016/j.knosys.2025.113112_b64 10.1016/j.knosys.2025.113112_b23 Yang (10.1016/j.knosys.2025.113112_b52) 2022; vol. 36 10.1016/j.knosys.2025.113112_b67 10.1016/j.knosys.2025.113112_b22 10.1016/j.knosys.2025.113112_b66 10.1016/j.knosys.2025.113112_b68 10.1016/j.knosys.2025.113112_b29 Wang (10.1016/j.knosys.2025.113112_b5) 2023; 264 Kingma (10.1016/j.knosys.2025.113112_b56) 2015 Liu (10.1016/j.knosys.2025.113112_b49) 2020; 415 Xiao (10.1016/j.knosys.2025.113112_b34) 2023 Man (10.1016/j.knosys.2025.113112_b41) 2017; vol. 17 Loni (10.1016/j.knosys.2025.113112_b72) 2014 10.1016/j.knosys.2025.113112_b71 10.1016/j.knosys.2025.113112_b30 Rafailidis (10.1016/j.knosys.2025.113112_b39) 2016 Wu (10.1016/j.knosys.2025.113112_b13) 2019; vol. 33 10.1016/j.knosys.2025.113112_b32 10.1016/j.knosys.2025.113112_b76 Brockschmidt (10.1016/j.knosys.2025.113112_b12) 2020; vol. 119 10.1016/j.knosys.2025.113112_b35 Wu (10.1016/j.knosys.2025.113112_b54) 2020; 32 Li (10.1016/j.knosys.2025.113112_b73) 2022; 14 10.1016/j.knosys.2025.113112_b9 Ni (10.1016/j.knosys.2025.113112_b8) 2023; 60 Li (10.1016/j.knosys.2025.113112_b15) 2023 Wang (10.1016/j.knosys.2025.113112_b36) 2022 Chen (10.1016/j.knosys.2025.113112_b77) 2023; 41 Gou (10.1016/j.knosys.2025.113112_b26) 2021; 129 Wang (10.1016/j.knosys.2025.113112_b25) 2022; 45 Yuan (10.1016/j.knosys.2025.113112_b50) 2021; vol. 35 Latham (10.1016/j.knosys.2025.113112_b24) 2009; 4 10.1016/j.knosys.2025.113112_b40 10.1016/j.knosys.2025.113112_b43 10.1016/j.knosys.2025.113112_b42 Guo (10.1016/j.knosys.2025.113112_b59) 2023; vol. 37 Zhang (10.1016/j.knosys.2025.113112_b51) 2022 10.1016/j.knosys.2025.113112_b44 10.1016/j.knosys.2025.113112_b46 Zhang (10.1016/j.knosys.2025.113112_b33) 2023; 41 Järvelin (10.1016/j.knosys.2025.113112_b62) 2002; 20 Zhang (10.1016/j.knosys.2025.113112_b31) 2023 Wu (10.1016/j.knosys.2025.113112_b20) 2019 Ni (10.1016/j.knosys.2025.113112_b4) 2023; 60 Deng (10.1016/j.knosys.2025.113112_b3) 2024; 285 Li (10.1016/j.knosys.2025.113112_b2) 2024; 61 Liu (10.1016/j.knosys.2025.113112_b37) 2024; vol. 38 Liu (10.1016/j.knosys.2025.113112_b1) 2024; 290 Carratino (10.1016/j.knosys.2025.113112_b38) 2022; 23 Zhao (10.1016/j.knosys.2025.113112_b75) 2024; 36 |
| References_xml | – reference: C. Li, M. Zhao, H. Zhang, C. Yu, L. Cheng, G. Shu, B. Kong, D. Niu, RecGURU: Adversarial learning of generalized user representations for cross-domain recommendation, in: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, 2022, pp. 571–581. – reference: S. Gu, X. Wang, C. Shi, D. Xiao, Self-supervised graph neural networks for multi-behavior recommendation, in: International Joint Conference on Artificial Intelligence, IJCAI, 2022. – volume: 36 start-page: 2401 year: 2024 end-page: 2415 ident: b75 article-title: Cross-domain recommendation via progressive structural alignment publication-title: IEEE Trans. Knowl. Data Eng. – reference: G. Chen, J. Chen, F. Feng, S. Zhou, X. He, Unbiased Knowledge Distillation for Recommendation, in: Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, 2023, pp. 976–984. – volume: 45 start-page: 408 year: 2022 end-page: 424 ident: b25 article-title: Disentangled representation learning for recommendation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: M. Liu, J. Li, G. Li, P. Pan, Cross domain recommendation via bi-directional transfer graph collaborative filtering networks, in: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, 2020, pp. 885–894. – volume: 60 year: 2023 ident: b4 article-title: Enhancing sequential recommendation with contrastive generative adversarial network publication-title: Inf. Process. Manage. – reference: X. Chen, Z. Cheng, J. Yao, C. Ju, W. Huang, J. Lan, X. Zeng, S. Xiao, Enhancing cross-domain click-through rate prediction via explicit feature augmentation, in: Companion Proceedings of the ACM on Web Conference 2024, 2024, pp. 423–432. – volume: 415 start-page: 106 year: 2020 end-page: 113 ident: b49 article-title: Adaptive multi-teacher multi-level knowledge distillation publication-title: Neurocomputing – volume: vol. 33 start-page: 346 year: 2019 end-page: 353 ident: b13 article-title: Session-based recommendation with graph neural networks publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – start-page: 163 year: 2023 end-page: 178 ident: b74 article-title: Disentangled contrastive learning for cross-domain recommendation publication-title: International Conference on Database Systems for Advanced Applications – volume: 41 start-page: 1 year: 2023 end-page: 31 ident: b77 article-title: Toward equivalent transformation of user preferences in cross domain recommendation publication-title: ACM Trans. Inf. Syst. – reference: Y. Zhu, Z. Tang, Y. Liu, F. Zhuang, R. Xie, X. Zhang, L. Lin, Q. He, Personalized transfer of user preferences for cross-domain recommendation, in: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, 2022, pp. 1507–1515. – volume: 264 year: 2023 ident: b5 article-title: Cross-view temporal graph contrastive learning for session-based recommendation publication-title: Knowl.-Based Syst. – reference: J. Zhu, Y. Wang, F. Zhu, Z. Sun, Domain Disentanglement with Interpolative Data Augmentation for Dual-Target Cross-Domain Recommendation, in: Proceedings of the 17th ACM Conference on Recommender Systems, 2023, pp. 515–527. – reference: J. Yu, H. Yin, X. Xia, T. Chen, L. Cui, Q.V.H. Nguyen, Are graph augmentations necessary? Simple graph contrastive learning for recommendation, in: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022, pp. 1294–1303. – reference: L. Xia, C. Huang, Y. Xu, J. Zhao, D. Yin, J. Huang, Hypergraph contrastive collaborative filtering, in: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022, pp. 70–79. – start-page: 2575 year: 2015 end-page: 2583 ident: b56 article-title: Variational dropout and the local reparameterization trick publication-title: Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2 – volume: 61 year: 2024 ident: b6 article-title: Decoupled domain-specific and domain-conditional representation learning for cross-domain recommendation publication-title: Inf. Process. Manage. – volume: vol. 38 start-page: 8769 year: 2024 end-page: 8777 ident: b37 article-title: Graph disentangled contrastive learning with personalized transfer for cross-domain recommendation publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – start-page: 1 year: 2022 end-page: 8 ident: b47 article-title: Multi-graph convolutional feature transfer for cross-domain recommendation publication-title: 2022 International Joint Conference on Neural Networks – year: 2024 ident: b48 article-title: Heterogeneous graph contrastive learning for cold start cross-domain recommendation publication-title: Knowl.-Based Syst. – reference: Y. Jiang, C. Huang, L. Huang, Adaptive graph contrastive learning for recommendation, in: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023, pp. 4252–4261. – year: 2023 ident: b61 article-title: Beyond Co-occurrence: Multi-modal session-based recommendation publication-title: IEEE Trans. Knowl. Data Eng. – volume: 129 start-page: 1789 year: 2021 end-page: 1819 ident: b26 article-title: Knowledge distillation: A survey publication-title: Int. J. Comput. Vis. – reference: I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, A. Lerchner, beta-vae: Learning basic visual concepts with a constrained variational framework, in: International Conference on Learning Representations, 2016. – reference: J. Zheng, H. Gu, C. Song, D. Lin, L. Yi, C. Chen, Dual Interests-Aligned Graph Auto-Encoders for Cross-domain Recommendation in WeChat, in: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, 2023, pp. 4988–4994. – reference: Z. Lin, C. Tian, Y. Hou, W.X. Zhao, Improving graph collaborative filtering with neighborhood-enriched contrastive learning, in: Proceedings of the ACM Web Conference 2022, 2022, pp. 2320–2329. – volume: 61 year: 2024 ident: b2 article-title: Disentangle interest trend and diversity for sequential recommendation publication-title: Inf. Process. Manage. – reference: Z. Han, X. Zheng, C. Chen, W. Cheng, Y. Yao, Intra and Inter Domain HyperGraph Convolutional Network for Cross-Domain Recommendation, in: Proceedings of the ACM Web Conference 2023, 2023, pp. 449–459. – volume: 285 year: 2024 ident: b3 article-title: SSE4Rec: Sequential recommendation with subsequence extraction publication-title: Knowl.-Based Syst. – reference: Z. Fan, Z. Liu, Y. Wang, A. Wang, Z. Nazari, L. Zheng, H. Peng, P.S. Yu, Sequential recommendation via stochastic self-attention, in: Proceedings of the ACM Web Conference 2022, 2022, pp. 2036–2047. – volume: 4 start-page: 1658 year: 2009 ident: b24 article-title: Mutual information publication-title: Scholarpedia – reference: F. Zhu, Y. Wang, C. Chen, G. Liu, X. Zheng, A graphical and attentional framework for dual-target cross-domain recommendation, in: IJCAI, 2020, pp. 3001–3008. – start-page: 53 year: 2022 end-page: 68 ident: b36 article-title: Inter- and intra-domain relation-aware heterogeneous graph convolutional networks for cross-domain recommendation publication-title: Database Systems for Advanced Applications: 27th International Conference, DASFAA 2022, Virtual Event, April 11–14, 2022, Proceedings, Part II – start-page: 93 year: 2023 end-page: 116 ident: b15 article-title: Deep learning attention mechanism in medical image analysis: Basics and beyonds publication-title: Int. J. Netw. Dyn. Intell. – start-page: 1189 year: 2024 end-page: 1199 ident: b60 article-title: Deep pattern network for click-through rate prediction publication-title: Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval – reference: X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, M. Wang, Lightgcn: Simplifying and powering graph convolution network for recommendation, in: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020, pp. 639–648. – volume: 14 start-page: 1 year: 2022 end-page: 25 ident: b73 article-title: Adversarial learning for cross domain recommendations publication-title: ACM Trans. Intell. Syst. Technol. – reference: S. Kang, J. Hwang, D. Lee, H. Yu, Semi-supervised learning for cross-domain recommendation to cold-start users, in: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 2019, pp. 1563–1572. – reference: J. Cao, S. Li, B. Yu, X. Guo, T. Liu, B. Wang, Towards Universal Cross-Domain Recommendation, in: Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, 2023, pp. 78–86. – volume: 290 year: 2024 ident: b1 article-title: Extracting latently overlapping users by graph neural network for non-overlapping cross-domain recommendation publication-title: Knowl.-Based Syst. – volume: vol. 36 start-page: 4318 year: 2022 end-page: 4326 ident: b52 article-title: Cross-task knowledge distillation in multi-task recommendation publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – reference: X. He, L. Liao, H. Zhang, L. Nie, X. Hu, T.-S. Chua, Neural collaborative filtering, in: Proceedings of the 26th International Conference on World Wide Web, 2017, pp. 173–182. – start-page: 656 year: 2014 end-page: 661 ident: b72 article-title: Cross-domain collaborative filtering with factorization machines publication-title: Advances in Information Retrieval: 36th European Conference on IR Research, ECIR 2014, Amsterdam, the Netherlands, April 13–16, 2014. Proceedings 36 – start-page: 426 year: 2016 end-page: 441 ident: b39 article-title: Top-n recommendation via joint cross-domain user clustering and similarity learning publication-title: Joint European Conference on Machine Learning and Knowledge Discovery in Databases – reference: R. Tian, Y. Mao, R. Zhang, Learning VAE-LDA models with rounded reparameterization trick, in: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP, 2020, pp. 1315–1325. – reference: X. Wang, X. He, M. Wang, F. Feng, T.-S. Chua, Neural graph collaborative filtering, in: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2019, pp. 165–174. – reference: C. Zhao, H. Zhao, M. He, J. Zhang, J. Fan, Cross-domain recommendation via user interest alignment, in: Proceedings of the ACM Web Conference 2023, 2023, pp. 887–896. – year: 2023 ident: b70 article-title: LightGCL: Simple yet effective graph contrastive learning for recommendation publication-title: The Eleventh International Conference on Learning Representations – start-page: 4721 year: 2021 end-page: 4728 ident: b28 article-title: Cross-domain recommendation: Challenges, progress, and prospects publication-title: 30th International Joint Conference on Artificial Intelligence, IJCAI 2021 – volume: vol. 35 start-page: 14284 year: 2021 end-page: 14291 ident: b50 article-title: Reinforced multi-teacher selection for knowledge distillation publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – volume: 60 year: 2023 ident: b8 article-title: DITN: User’s indirect side-information involved domain-invariant feature transfer network for cross-domain recommendation publication-title: Inf. Process. Manage. – volume: 6 start-page: 1 year: 2019 end-page: 23 ident: b21 article-title: Graph convolutional networks: A comprehensive review publication-title: Comput. Soc. Netw. – volume: vol. 37 start-page: 7793 year: 2023 end-page: 7801 ident: b59 article-title: Boosting graph neural networks via adaptive knowledge distillation publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – volume: 23 start-page: 1 year: 2022 end-page: 31 ident: b38 article-title: On mixup regularization publication-title: J. Mach. Learn. Res. – reference: S. Rendle, C. Freudenthaler, Z. Gantner, L. Schmidt-Thieme, BPR: Bayesian personalized ranking from implicit feedback, in: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, 2009, pp. 452–461. – volume: 20 start-page: 422 year: 2002 end-page: 446 ident: b62 article-title: Cumulated gain-based evaluation of IR techniques publication-title: ACM Trans. Inf. Syst. – start-page: 2209 year: 2022 end-page: 2223 ident: b45 article-title: Cross-domain recommendation to cold-start users via variational information bottleneck publication-title: 2022 IEEE 38th International Conference on Data Engineering – reference: C. Zhao, C. Li, C. Fu, Cross-domain recommendation via preference propagation graphnet, in: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 2019, pp. 2165–2168. – volume: 41 start-page: 1 year: 2023 end-page: 24 ident: b33 article-title: Multi-level attention-based domain disentanglement for BCDR publication-title: ACM Trans. Inf. Syst. – start-page: 6861 year: 2019 end-page: 6871 ident: b20 article-title: Simplifying graph convolutional networks publication-title: International Conference on Machine Learning – reference: P. Li, A. Tuzhilin, Ddtcdr: Deep dual transfer cross domain recommendation, in: Proceedings of the 13th International Conference on Web Search and Data Mining, 2020, pp. 331–339. – year: 2023 ident: b69 article-title: XSimGCL: Towards extremely simple graph contrastive learning for recommendation publication-title: IEEE Trans. Knowl. Data Eng. – reference: D. Rafailidis, F. Crestani, A collaborative ranking model for cross-domain recommendations, in: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, 2017, pp. 2263–2266. – volume: 32 start-page: 4 year: 2020 end-page: 24 ident: b54 article-title: A comprehensive survey on graph neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 4498 year: 2022 end-page: 4502 ident: b51 article-title: Confidence-aware multi-teacher knowledge distillation publication-title: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing – year: 2023 ident: b31 article-title: A VAE-based user preference learning and transfer framework for cross-domain recommendation publication-title: IEEE Trans. Knowl. Data Eng. – volume: 203 year: 2020 ident: b7 article-title: Tag-informed collaborative topic modeling for cross domain recommendations publication-title: Knowl.-Based Syst. – reference: G. Hu, Y. Zhang, Q. Yang, Conet: Collaborative cross networks for cross-domain recommendation, in: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, 2018, pp. 667–676. – start-page: 2827 year: 2021 end-page: 2831 ident: b27 article-title: Variational graph normalized AutoEncoders publication-title: Proceedings of the 30th ACM International Conference on Information & Knowledge Management – reference: J. Cao, X. Lin, X. Cong, J. Ya, T. Liu, B. Wang, Disencdr: Learning disentangled representations for cross-domain recommendation, in: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022, pp. 267–277. – start-page: 446 year: 2023 end-page: 461 ident: b34 article-title: CATCL: Joint cross-attention transfer and contrastive learning for cross-domain recommendation publication-title: International Conference on Database Systems for Advanced Applications – volume: vol. 17 start-page: 2464 year: 2017 end-page: 2470 ident: b41 article-title: Cross-domain recommendation: An embedding and mapping approach publication-title: IJCAI – reference: F. Zhu, C. Chen, Y. Wang, G. Liu, X. Zheng, Dtcdr: A framework for dual-target cross-domain recommendation, in: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 2019, pp. 1533–1542. – reference: L. Yang, S. Wang, Y. Tao, J. Sun, X. Liu, P.S. Yu, T. Wang, DGRec: Graph Neural Network for Recommendation with Diversified Embedding Generation, in: Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, 2023, pp. 661–669. – volume: vol. 119 start-page: 1144 year: 2020 end-page: 1152 ident: b12 article-title: GNN-FiLM: Graph neural networks with feature-wise linear modulation publication-title: Proceedings of the 37th International Conference on Machine Learning – ident: 10.1016/j.knosys.2025.113112_b11 doi: 10.24963/ijcai.2020/415 – ident: 10.1016/j.knosys.2025.113112_b22 doi: 10.1145/3488560.3498388 – ident: 10.1016/j.knosys.2025.113112_b16 doi: 10.1145/3485447.3512077 – ident: 10.1016/j.knosys.2025.113112_b63 – volume: 4 start-page: 1658 issue: 1 year: 2009 ident: 10.1016/j.knosys.2025.113112_b24 article-title: Mutual information publication-title: Scholarpedia doi: 10.4249/scholarpedia.1658 – volume: vol. 36 start-page: 4318 year: 2022 ident: 10.1016/j.knosys.2025.113112_b52 article-title: Cross-task knowledge distillation in multi-task recommendation – start-page: 1 year: 2022 ident: 10.1016/j.knosys.2025.113112_b47 article-title: Multi-graph convolutional feature transfer for cross-domain recommendation – ident: 10.1016/j.knosys.2025.113112_b46 doi: 10.1145/3543507.3583263 – ident: 10.1016/j.knosys.2025.113112_b30 doi: 10.1145/3543507.3583402 – volume: vol. 17 start-page: 2464 year: 2017 ident: 10.1016/j.knosys.2025.113112_b41 article-title: Cross-domain recommendation: An embedding and mapping approach – start-page: 2575 year: 2015 ident: 10.1016/j.knosys.2025.113112_b56 article-title: Variational dropout and the local reparameterization trick – ident: 10.1016/j.knosys.2025.113112_b64 doi: 10.1145/3038912.3052569 – ident: 10.1016/j.knosys.2025.113112_b55 doi: 10.24963/ijcai.2022/285 – ident: 10.1016/j.knosys.2025.113112_b57 doi: 10.18653/v1/2020.emnlp-main.101 – start-page: 446 year: 2023 ident: 10.1016/j.knosys.2025.113112_b34 article-title: CATCL: Joint cross-attention transfer and contrastive learning for cross-domain recommendation – volume: 61 issue: 3 year: 2024 ident: 10.1016/j.knosys.2025.113112_b2 article-title: Disentangle interest trend and diversity for sequential recommendation publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2023.103619 – ident: 10.1016/j.knosys.2025.113112_b58 – ident: 10.1016/j.knosys.2025.113112_b19 doi: 10.1145/3397271.3401063 – start-page: 2209 year: 2022 ident: 10.1016/j.knosys.2025.113112_b45 article-title: Cross-domain recommendation to cold-start users via variational information bottleneck – volume: 285 year: 2024 ident: 10.1016/j.knosys.2025.113112_b3 article-title: SSE4Rec: Sequential recommendation with subsequence extraction publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2023.111364 – year: 2023 ident: 10.1016/j.knosys.2025.113112_b70 article-title: LightGCL: Simple yet effective graph contrastive learning for recommendation – volume: 45 start-page: 408 issue: 1 year: 2022 ident: 10.1016/j.knosys.2025.113112_b25 article-title: Disentangled representation learning for recommendation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2022.3153112 – ident: 10.1016/j.knosys.2025.113112_b14 doi: 10.1145/3539597.3570472 – ident: 10.1016/j.knosys.2025.113112_b10 doi: 10.1145/3357384.3357992 – ident: 10.1016/j.knosys.2025.113112_b53 doi: 10.1145/3539597.3570477 – ident: 10.1016/j.knosys.2025.113112_b42 doi: 10.1145/3357384.3357914 – volume: 60 issue: 3 year: 2023 ident: 10.1016/j.knosys.2025.113112_b4 article-title: Enhancing sequential recommendation with contrastive generative adversarial network publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2023.103331 – volume: 61 issue: 3 year: 2024 ident: 10.1016/j.knosys.2025.113112_b6 article-title: Decoupled domain-specific and domain-conditional representation learning for cross-domain recommendation publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2024.103689 – ident: 10.1016/j.knosys.2025.113112_b18 doi: 10.1145/3340531.3412012 – ident: 10.1016/j.knosys.2025.113112_b68 doi: 10.1145/3580305.3599768 – volume: vol. 33 start-page: 346 year: 2019 ident: 10.1016/j.knosys.2025.113112_b13 article-title: Session-based recommendation with graph neural networks – volume: 14 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.knosys.2025.113112_b73 article-title: Adversarial learning for cross domain recommendations publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/3548776 – year: 2023 ident: 10.1016/j.knosys.2025.113112_b61 article-title: Beyond Co-occurrence: Multi-modal session-based recommendation publication-title: IEEE Trans. Knowl. Data Eng. – volume: vol. 35 start-page: 14284 year: 2021 ident: 10.1016/j.knosys.2025.113112_b50 article-title: Reinforced multi-teacher selection for knowledge distillation – ident: 10.1016/j.knosys.2025.113112_b76 doi: 10.1145/3539597.3570366 – volume: 6 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.knosys.2025.113112_b21 article-title: Graph convolutional networks: A comprehensive review publication-title: Comput. Soc. Netw. doi: 10.1186/s40649-019-0069-y – ident: 10.1016/j.knosys.2025.113112_b66 doi: 10.1145/3485447.3512104 – start-page: 1189 year: 2024 ident: 10.1016/j.knosys.2025.113112_b60 article-title: Deep pattern network for click-through rate prediction – ident: 10.1016/j.knosys.2025.113112_b67 doi: 10.1145/3477495.3531937 – volume: 23 start-page: 1 issue: 325 year: 2022 ident: 10.1016/j.knosys.2025.113112_b38 article-title: On mixup regularization publication-title: J. Mach. Learn. Res. – volume: vol. 119 start-page: 1144 year: 2020 ident: 10.1016/j.knosys.2025.113112_b12 article-title: GNN-FiLM: Graph neural networks with feature-wise linear modulation – start-page: 656 year: 2014 ident: 10.1016/j.knosys.2025.113112_b72 article-title: Cross-domain collaborative filtering with factorization machines – ident: 10.1016/j.knosys.2025.113112_b9 doi: 10.1145/3269206.3271684 – ident: 10.1016/j.knosys.2025.113112_b65 doi: 10.1145/3331184.3331267 – start-page: 4721 year: 2021 ident: 10.1016/j.knosys.2025.113112_b28 article-title: Cross-domain recommendation: Challenges, progress, and prospects – volume: 32 start-page: 4 issue: 1 year: 2020 ident: 10.1016/j.knosys.2025.113112_b54 article-title: A comprehensive survey on graph neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.2978386 – ident: 10.1016/j.knosys.2025.113112_b35 doi: 10.1145/3604915.3608802 – ident: 10.1016/j.knosys.2025.113112_b29 doi: 10.1145/3357384.3358166 – volume: vol. 37 start-page: 7793 year: 2023 ident: 10.1016/j.knosys.2025.113112_b59 article-title: Boosting graph neural networks via adaptive knowledge distillation – start-page: 53 year: 2022 ident: 10.1016/j.knosys.2025.113112_b36 article-title: Inter- and intra-domain relation-aware heterogeneous graph convolutional networks for cross-domain recommendation – ident: 10.1016/j.knosys.2025.113112_b40 doi: 10.1145/3132847.3133107 – volume: 36 start-page: 2401 issue: 6 year: 2024 ident: 10.1016/j.knosys.2025.113112_b75 article-title: Cross-domain recommendation via progressive structural alignment publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2023.3324912 – start-page: 6861 year: 2019 ident: 10.1016/j.knosys.2025.113112_b20 article-title: Simplifying graph convolutional networks – ident: 10.1016/j.knosys.2025.113112_b17 doi: 10.1145/3336191.3371793 – volume: vol. 38 start-page: 8769 year: 2024 ident: 10.1016/j.knosys.2025.113112_b37 article-title: Graph disentangled contrastive learning with personalized transfer for cross-domain recommendation – start-page: 426 year: 2016 ident: 10.1016/j.knosys.2025.113112_b39 article-title: Top-n recommendation via joint cross-domain user clustering and similarity learning – volume: 203 year: 2020 ident: 10.1016/j.knosys.2025.113112_b7 article-title: Tag-informed collaborative topic modeling for cross domain recommendations publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106119 – year: 2023 ident: 10.1016/j.knosys.2025.113112_b31 article-title: A VAE-based user preference learning and transfer framework for cross-domain recommendation publication-title: IEEE Trans. Knowl. Data Eng. – volume: 60 issue: 6 year: 2023 ident: 10.1016/j.knosys.2025.113112_b8 article-title: DITN: User’s indirect side-information involved domain-invariant feature transfer network for cross-domain recommendation publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2023.103494 – start-page: 163 year: 2023 ident: 10.1016/j.knosys.2025.113112_b74 article-title: Disentangled contrastive learning for cross-domain recommendation – volume: 264 year: 2023 ident: 10.1016/j.knosys.2025.113112_b5 article-title: Cross-view temporal graph contrastive learning for session-based recommendation publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2023.110304 – volume: 41 start-page: 1 issue: 4 year: 2023 ident: 10.1016/j.knosys.2025.113112_b33 article-title: Multi-level attention-based domain disentanglement for BCDR publication-title: ACM Trans. Inf. Syst. – ident: 10.1016/j.knosys.2025.113112_b44 doi: 10.1145/3589335.3648341 – start-page: 4498 year: 2022 ident: 10.1016/j.knosys.2025.113112_b51 article-title: Confidence-aware multi-teacher knowledge distillation – volume: 20 start-page: 422 issue: 4 year: 2002 ident: 10.1016/j.knosys.2025.113112_b62 article-title: Cumulated gain-based evaluation of IR techniques publication-title: ACM Trans. Inf. Syst. doi: 10.1145/582415.582418 – volume: 41 start-page: 1 issue: 1 year: 2023 ident: 10.1016/j.knosys.2025.113112_b77 article-title: Toward equivalent transformation of user preferences in cross domain recommendation publication-title: ACM Trans. Inf. Syst. – ident: 10.1016/j.knosys.2025.113112_b32 doi: 10.1145/3583780.3614676 – volume: 129 start-page: 1789 year: 2021 ident: 10.1016/j.knosys.2025.113112_b26 article-title: Knowledge distillation: A survey publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-021-01453-z – ident: 10.1016/j.knosys.2025.113112_b23 doi: 10.1145/3477495.3531967 – start-page: 2827 year: 2021 ident: 10.1016/j.knosys.2025.113112_b27 article-title: Variational graph normalized AutoEncoders – volume: 415 start-page: 106 year: 2020 ident: 10.1016/j.knosys.2025.113112_b49 article-title: Adaptive multi-teacher multi-level knowledge distillation publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.048 – year: 2023 ident: 10.1016/j.knosys.2025.113112_b69 article-title: XSimGCL: Towards extremely simple graph contrastive learning for recommendation publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2023.3288135 – ident: 10.1016/j.knosys.2025.113112_b71 doi: 10.1145/3477495.3532058 – start-page: 93 year: 2023 ident: 10.1016/j.knosys.2025.113112_b15 article-title: Deep learning attention mechanism in medical image analysis: Basics and beyonds publication-title: Int. J. Netw. Dyn. Intell. – year: 2024 ident: 10.1016/j.knosys.2025.113112_b48 article-title: Heterogeneous graph contrastive learning for cold start cross-domain recommendation publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2024.112054 – volume: 290 year: 2024 ident: 10.1016/j.knosys.2025.113112_b1 article-title: Extracting latently overlapping users by graph neural network for non-overlapping cross-domain recommendation publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2024.111508 – ident: 10.1016/j.knosys.2025.113112_b43 doi: 10.1145/3488560.3498392 |
| SSID | ssj0002218 |
| Score | 2.4611886 |
| Snippet | Recommendation systems frequently suffer from data sparsity, resulting in less-than-ideal recommendations. A prominent solution to this problem is Cross-Domain... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 113112 |
| SubjectTerms | Cross-domain recommendation Knowledge distillation Variational graph autoencoder |
| Title | Cross-domain recommendation via knowledge distillation |
| URI | https://dx.doi.org/10.1016/j.knosys.2025.113112 |
| Volume | 311 |
| WOSCitedRecordID | wos001423843700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0950-7051 databaseCode: AIEXJ dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0002218 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8QwFA5uBy_u4k4P3iQyNu2kOYoobojgwuClpFl0Bu2Izoj6631JX2tlxA28lCGTZfq-8PLlzVsIWbfWuIo0DcrNVkQjJRiVscyolaHKuFQ29FUiLo_5yUnSaolTrOL46MsJ8DxPnp_F_b9CDW0Atgud_QXc1aTQAJ8BdHgC7PD8EfA77tyjunsnfagKLHFnsHLSxlNbblRWNPfnTM8VHaqwQZJ6VPag7ozTmO25It_H3gGg1e6_1jYFmp2vbkx-039X9f2y8fpF4hnprfdFbx_aoLv4BdoewnostzeIDQTFoGURoG9gHllUsqxQqQMKu7AddDbh3eFlNt0irszMFvpWf0yFfeamdjMDbwMaI-JhMhryWIA2G90-2G0dVmdwGHrLbvVTyqBJ79k3uNbnpKRGNM6nyATeEILtAtlpMmTyGTJZVt8IUBnPkmYd6OAj0AEAHVRAB3Wg58jF3u75zj7FKhhUwXWu59w9m1prliTK8EZmrZZMWymBeMNVORORVoltasVlaHikgB43mU1iI63QVoiMzZORvJubBRIAn5NGsCxyafxCFSVMx1xrC4rcCKuSRcJKMaQKU8S7SiW3aekL2EkL4aVOeGkhvEVCq1H3RYqUb_rzUsIp0ryCvqWwKb4cufTnkctk_H3_rpCR3kPfrJIx9dRrPz6s4e55AxidfC0 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-domain+recommendation+via+knowledge+distillation&rft.jtitle=Knowledge-based+systems&rft.au=Li%2C+Xiuze&rft.au=Huang%2C+Zhenhua&rft.au=Wu%2C+Zhengyang&rft.au=Wang%2C+Changdong&rft.date=2025-02-28&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.volume=311&rft_id=info:doi/10.1016%2Fj.knosys.2025.113112&rft.externalDocID=S0950705125001595 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |