Cross-domain recommendation via knowledge distillation

Recommendation systems frequently suffer from data sparsity, resulting in less-than-ideal recommendations. A prominent solution to this problem is Cross-Domain Recommendation (CDR), which employs data from various domains to mitigate data sparsity and cold-start issues. Nevertheless, current mainstr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems Jg. 311; S. 113112
Hauptverfasser: Li, Xiuze, Huang, Zhenhua, Wu, Zhengyang, Wang, Changdong, Chen, Yunwen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 28.02.2025
Schlagworte:
ISSN:0950-7051
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Recommendation systems frequently suffer from data sparsity, resulting in less-than-ideal recommendations. A prominent solution to this problem is Cross-Domain Recommendation (CDR), which employs data from various domains to mitigate data sparsity and cold-start issues. Nevertheless, current mainstream methods, like feature mapping and co-training exploring domain relationships, overlook latent user–user and user–item similarities in the shared user–item interaction graph. Spurred by these deficiencies, this paper introduces KDCDR, a novel cross-domain recommendation framework that relies on knowledge distillation to utilize the data from the graph. KDCDR aims to improve the recommendation performance in both domains by efficiently utilizing information from the shared interaction graph. Furthermore, we enhance the effectiveness of user and item representations by exploring the relationships between user–user similarity and item–item similarity, as well as user–item interactions. The developed scheme utilizes the inner-domain graph as a teacher and the cross-domain graph as a student, where the student learns by distilling knowledge from the two teachers after undergoing a high-temperature distillation process. Furthermore, we introduce dynamic weight that regulates the learning process to prevent the student network from overly favoring learning from one domain and focusing on learning knowledge that the teachers have taught incorrectly. Through extensive experiments on four real-world datasets, KDCDR demonstrates significant improvements over state-of-the-art methods, proving the effectiveness of KDCDR in addressing data sparsity issues and enhancing cross-domain recommendation performance. Our code and data are available at https://github.com/pandas-bondage/KDCDR. •Proposing a knowledge distillation based method to tackle the CDR problem.•Presenting a model to use dynamic weights to rectify teacher knowledge inaccuracies.•Designing a VGAE to structure superior user and item feature embeddings.
AbstractList Recommendation systems frequently suffer from data sparsity, resulting in less-than-ideal recommendations. A prominent solution to this problem is Cross-Domain Recommendation (CDR), which employs data from various domains to mitigate data sparsity and cold-start issues. Nevertheless, current mainstream methods, like feature mapping and co-training exploring domain relationships, overlook latent user–user and user–item similarities in the shared user–item interaction graph. Spurred by these deficiencies, this paper introduces KDCDR, a novel cross-domain recommendation framework that relies on knowledge distillation to utilize the data from the graph. KDCDR aims to improve the recommendation performance in both domains by efficiently utilizing information from the shared interaction graph. Furthermore, we enhance the effectiveness of user and item representations by exploring the relationships between user–user similarity and item–item similarity, as well as user–item interactions. The developed scheme utilizes the inner-domain graph as a teacher and the cross-domain graph as a student, where the student learns by distilling knowledge from the two teachers after undergoing a high-temperature distillation process. Furthermore, we introduce dynamic weight that regulates the learning process to prevent the student network from overly favoring learning from one domain and focusing on learning knowledge that the teachers have taught incorrectly. Through extensive experiments on four real-world datasets, KDCDR demonstrates significant improvements over state-of-the-art methods, proving the effectiveness of KDCDR in addressing data sparsity issues and enhancing cross-domain recommendation performance. Our code and data are available at https://github.com/pandas-bondage/KDCDR. •Proposing a knowledge distillation based method to tackle the CDR problem.•Presenting a model to use dynamic weights to rectify teacher knowledge inaccuracies.•Designing a VGAE to structure superior user and item feature embeddings.
ArticleNumber 113112
Author Wu, Zhengyang
Huang, Zhenhua
Li, Xiuze
Chen, Yunwen
Wang, Changdong
Author_xml – sequence: 1
  givenname: Xiuze
  surname: Li
  fullname: Li, Xiuze
  email: 2022024933@m.scnu.edu.cn
  organization: School of Artificial Intelligence, South China Normal University, Foshan, 528225, Guangdong, China
– sequence: 2
  givenname: Zhenhua
  orcidid: 0000-0002-5491-1120
  surname: Huang
  fullname: Huang, Zhenhua
  email: huangzhenhua@m.scnu.edu.cn
  organization: School of Artificial Intelligence, South China Normal University, Foshan, 528225, Guangdong, China
– sequence: 3
  givenname: Zhengyang
  surname: Wu
  fullname: Wu, Zhengyang
  email: wuzhengyang@m.scnu.edu.cn
  organization: School of Computer Science, South China Normal University, Guangzhou, 510631, Guangdong, China
– sequence: 4
  givenname: Changdong
  surname: Wang
  fullname: Wang, Changdong
  email: wangchd3@mail.sysu.edu.cn
  organization: School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
– sequence: 5
  givenname: Yunwen
  surname: Chen
  fullname: Chen, Yunwen
  email: chenyunwen@datagrand.com
  organization: Research and Development Department, DataGrandInc., Shanghai, 201203, China
BookMark eNqFkMtOwzAQRb0oEm3hD1jkBxL8yMNmgYQiXlIlNrC2XM8YuSQ2iqOi_j1pw4oFrGZxda7umRVZhBiQkCtGC0ZZfb0rPkJMh1RwyquCMcEYX5AlVRXNG1qxc7JKaUcp5ZzJJanbIaaUQ-yND9mANvY9BjCjjyHbe5NNbV8dwjtm4NPou-4UXZAzZ7qElz93Td4e7l_bp3zz8vjc3m1yK2g95o2UNQAIKS02dOscGAHOGCW4UnKrSrDS1WAbw7EpbclFLZys0DgFTqmtWJObudceZw7otPXjacE4GN9pRvXRWu_0bK2P1nq2nuDyF_w5-N4Mh_-w2xnDSWzvcdDJegwWwU__GTVE_3fBN-ATeeo
CitedBy_id crossref_primary_10_1016_j_neunet_2025_108061
crossref_primary_10_1016_j_neunet_2025_107906
crossref_primary_10_1016_j_knosys_2025_113415
Cites_doi 10.24963/ijcai.2020/415
10.1145/3488560.3498388
10.1145/3485447.3512077
10.4249/scholarpedia.1658
10.1145/3543507.3583263
10.1145/3543507.3583402
10.1145/3038912.3052569
10.24963/ijcai.2022/285
10.18653/v1/2020.emnlp-main.101
10.1016/j.ipm.2023.103619
10.1145/3397271.3401063
10.1016/j.knosys.2023.111364
10.1109/TPAMI.2022.3153112
10.1145/3539597.3570472
10.1145/3357384.3357992
10.1145/3539597.3570477
10.1145/3357384.3357914
10.1016/j.ipm.2023.103331
10.1016/j.ipm.2024.103689
10.1145/3340531.3412012
10.1145/3580305.3599768
10.1145/3548776
10.1145/3539597.3570366
10.1186/s40649-019-0069-y
10.1145/3485447.3512104
10.1145/3477495.3531937
10.1145/3269206.3271684
10.1145/3331184.3331267
10.1109/TNNLS.2020.2978386
10.1145/3604915.3608802
10.1145/3357384.3358166
10.1145/3132847.3133107
10.1109/TKDE.2023.3324912
10.1145/3336191.3371793
10.1016/j.knosys.2020.106119
10.1016/j.ipm.2023.103494
10.1016/j.knosys.2023.110304
10.1145/3589335.3648341
10.1145/582415.582418
10.1145/3583780.3614676
10.1007/s11263-021-01453-z
10.1145/3477495.3531967
10.1016/j.neucom.2020.07.048
10.1109/TKDE.2023.3288135
10.1145/3477495.3532058
10.1016/j.knosys.2024.112054
10.1016/j.knosys.2024.111508
10.1145/3488560.3498392
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.knosys.2025.113112
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_knosys_2025_113112
S0950705125001595
GrantInformation_xml – fundername: Guangdong Basic and Applied Basic Research Foundation, China
  grantid: 2022A1515011380; 2022B1515120059
– fundername: National Natural Science Foundation of China
  grantid: 62172166; 62377015; 61772366; 62276277
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
UHS
WUQ
~HD
ID FETCH-LOGICAL-c306t-7886ddd388ce70bffda3dfaa932998b94dc8f6dc7a2e74c42363f85eaf9df99b3
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001423843700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Sat Nov 29 07:51:23 EST 2025
Tue Nov 18 22:35:34 EST 2025
Sat Jun 28 18:16:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Knowledge distillation
Variational graph autoencoder
Cross-domain recommendation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-7886ddd388ce70bffda3dfaa932998b94dc8f6dc7a2e74c42363f85eaf9df99b3
ORCID 0000-0002-5491-1120
ParticipantIDs crossref_citationtrail_10_1016_j_knosys_2025_113112
crossref_primary_10_1016_j_knosys_2025_113112
elsevier_sciencedirect_doi_10_1016_j_knosys_2025_113112
PublicationCentury 2000
PublicationDate 2025-02-28
PublicationDateYYYYMMDD 2025-02-28
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-28
  day: 28
PublicationDecade 2020
PublicationTitle Knowledge-based systems
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Xu, Ma, Li, Yang, Lin (b61) 2023
Zhang, Pan, Liu, Jiang, Li (b60) 2024
Zhang, Chen, Wang (b51) 2022
S. Kang, J. Hwang, D. Lee, H. Yu, Semi-supervised learning for cross-domain recommendation to cold-start users, in: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 2019, pp. 1563–1572.
G. Hu, Y. Zhang, Q. Yang, Conet: Collaborative cross networks for cross-domain recommendation, in: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, 2018, pp. 667–676.
Wu, Tang, Zhu, Wang, Xie, Tan (b13) 2019; vol. 33
F. Zhu, C. Chen, Y. Wang, G. Liu, X. Zheng, Dtcdr: A framework for dual-target cross-domain recommendation, in: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 2019, pp. 1533–1542.
X. Wang, X. He, M. Wang, F. Feng, T.-S. Chua, Neural graph collaborative filtering, in: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2019, pp. 165–174.
Yu, Xia, Chen, Cui, Hung, Yin (b69) 2023
Wu, Pan, Chen, Long, Zhang, Philip (b54) 2020; 32
Chen, Zhang, Tsang, Pan, Su (b77) 2023; 41
G. Chen, J. Chen, F. Feng, S. Zhou, X. He, Unbiased Knowledge Distillation for Recommendation, in: Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, 2023, pp. 976–984.
Wang, Zhu, Liu, Zang, Wang, Liu (b36) 2022
Y. Jiang, C. Huang, L. Huang, Adaptive graph contrastive learning for recommendation, in: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023, pp. 4252–4261.
M. Liu, J. Li, G. Li, P. Pan, Cross domain recommendation via bi-directional transfer graph collaborative filtering networks, in: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, 2020, pp. 885–894.
Zhang, Cheng, Liu, Yang, Peng (b6) 2024; 61
C. Zhao, C. Li, C. Fu, Cross-domain recommendation via preference propagation graphnet, in: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 2019, pp. 2165–2168.
Z. Han, X. Zheng, C. Chen, W. Cheng, Y. Yao, Intra and Inter Domain HyperGraph Convolutional Network for Cross-Domain Recommendation, in: Proceedings of the ACM Web Conference 2023, 2023, pp. 449–459.
J. Zheng, H. Gu, C. Song, D. Lin, L. Yi, C. Chen, Dual Interests-Aligned Graph Auto-Encoders for Cross-domain Recommendation in WeChat, in: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, 2023, pp. 4988–4994.
Cao, Sheng, Cong, Liu, Wang (b45) 2022
Liu, Li, Guo, Li (b1) 2024; 290
Gou, Yu, Maybank, Tao (b26) 2021; 129
Xie, Yu, Jin, Cheng, Hu, Li (b48) 2024
Zhang, Li, Su, Zhu, Shen (b33) 2023; 41
Zhao, Zhao, Li, He, Wang, Fan (b75) 2024; 36
C. Zhao, H. Zhao, M. He, J. Zhang, J. Fan, Cross-domain recommendation via user interest alignment, in: Proceedings of the ACM Web Conference 2023, 2023, pp. 887–896.
R. Tian, Y. Mao, R. Zhang, Learning VAE-LDA models with rounded reparameterization trick, in: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP, 2020, pp. 1315–1325.
Li, Brost, Tuzhilin (b73) 2022; 14
Li, Xie, Zhang, Wang, Zou, Li, Luo, Li (b2) 2024; 61
Wang, Yan, Wu, Han, Zhou (b5) 2023; 264
S. Rendle, C. Freudenthaler, Z. Gantner, L. Schmidt-Thieme, BPR: Bayesian personalized ranking from implicit feedback, in: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, 2009, pp. 452–461.
Rafailidis, Crestani (b39) 2016
X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, M. Wang, Lightgcn: Simplifying and powering graph convolution network for recommendation, in: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020, pp. 639–648.
Guo, Zhang, Fan, Tian, Zhang, Chawla (b59) 2023; vol. 37
X. He, L. Liao, H. Zhang, L. Nie, X. Hu, T.-S. Chua, Neural collaborative filtering, in: Proceedings of the 26th International Conference on World Wide Web, 2017, pp. 173–182.
Yuan, Shou, Pei, Lin, Gong, Fu, Jiang (b50) 2021; vol. 35
Loni, Shi, Larson, Hanjalic (b72) 2014
Ahn, Kim (b27) 2021
Yang, Pan, Gao, Jiang, Liu, Chen (b52) 2022; vol. 36
J. Cao, S. Li, B. Yu, X. Guo, T. Liu, B. Wang, Towards Universal Cross-Domain Recommendation, in: Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, 2023, pp. 78–86.
C. Li, M. Zhao, H. Zhang, C. Yu, L. Cheng, G. Shu, B. Kong, D. Niu, RecGURU: Adversarial learning of generalized user representations for cross-domain recommendation, in: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, 2022, pp. 571–581.
Kingma, Salimans, Welling (b56) 2015
Zhang, Zang, Zhu, Wang, Wang, Yu (b74) 2023
I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, A. Lerchner, beta-vae: Learning basic visual concepts with a constrained variational framework, in: International Conference on Learning Representations, 2016.
Brockschmidt (b12) 2020; vol. 119
Zhu, Wang, Chen, Zhou, Li, Liu (b28) 2021
L. Xia, C. Huang, Y. Xu, J. Zhao, D. Yin, J. Huang, Hypergraph contrastive collaborative filtering, in: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022, pp. 70–79.
Man, Shen, Jin, Cheng (b41) 2017; vol. 17
Li, Li, Yan, Li, Jiang, Luo, Yin (b15) 2023
F. Zhu, Y. Wang, C. Chen, G. Liu, X. Zheng, A graphical and attentional framework for dual-target cross-domain recommendation, in: IJCAI, 2020, pp. 3001–3008.
S. Gu, X. Wang, C. Shi, D. Xiao, Self-supervised graph neural networks for multi-behavior recommendation, in: International Joint Conference on Artificial Intelligence, IJCAI, 2022.
Zhang, Chen, Wang, GuoMember, Song (b31) 2023
Zhang, Tong, Xu, Maciejewski (b21) 2019; 6
Järvelin, Kekäläinen (b62) 2002; 20
X. Chen, Z. Cheng, J. Yao, C. Ju, W. Huang, J. Lan, X. Zeng, S. Xiao, Enhancing cross-domain click-through rate prediction via explicit feature augmentation, in: Companion Proceedings of the ACM on Web Conference 2024, 2024, pp. 423–432.
Liu, Zhang, Wang (b49) 2020; 415
Cai, Huang, Xia, Ren (b70) 2023
Zhang, Liu, Ma, Gao (b47) 2022
Xiao, Zhu, Tang, Huang (b34) 2023
J. Zhu, Y. Wang, F. Zhu, Z. Sun, Domain Disentanglement with Interpolative Data Augmentation for Dual-Target Cross-Domain Recommendation, in: Proceedings of the 17th ACM Conference on Recommender Systems, 2023, pp. 515–527.
Carratino, Cissé, Jenatton, Vert (b38) 2022; 23
Wang, Chen, Zhou, Ma, Zhu (b25) 2022; 45
Latham, Roudi (b24) 2009; 4
Y. Zhu, Z. Tang, Y. Liu, F. Zhuang, R. Xie, X. Zhang, L. Lin, Q. He, Personalized transfer of user preferences for cross-domain recommendation, in: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, 2022, pp. 1507–1515.
Wu, Souza, Zhang, Fifty, Yu, Weinberger (b20) 2019
P. Li, A. Tuzhilin, Ddtcdr: Deep dual transfer cross domain recommendation, in: Proceedings of the 13th International Conference on Web Search and Data Mining, 2020, pp. 331–339.
Z. Fan, Z. Liu, Y. Wang, A. Wang, Z. Nazari, L. Zheng, H. Peng, P.S. Yu, Sequential recommendation via stochastic self-attention, in: Proceedings of the ACM Web Conference 2022, 2022, pp. 2036–2047.
Liu, Sun, Nie, Jing, Su (b37) 2024; vol. 38
L. Yang, S. Wang, Y. Tao, J. Sun, X. Liu, P.S. Yu, T. Wang, DGRec: Graph Neural Network for Recommendation with Diversified Embedding Generation, in: Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, 2023, pp. 661–669.
Wang, Lv (b7) 2020; 203
Z. Lin, C. Tian, Y. Hou, W.X. Zhao, Improving graph collaborative filtering with neighborhood-enriched contrastive learning, in: Proceedings of the ACM Web Conference 2022, 2022, pp. 2320–2329.
Deng, Hu (b3) 2024; 285
Ni, Zhou, Wen, Hu, Qiao (b4) 2023; 60
Ni, Nie, Zuo, Xie, Liang, Jiang, Xu, Yu, Liu (b8) 2023; 60
J. Yu, H. Yin, X. Xia, T. Chen, L. Cui, Q.V.H. Nguyen, Are graph augmentations necessary? Simple graph contrastive learning for recommendation, in: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022, pp. 1294–1303.
J. Cao, X. Lin, X. Cong, J. Ya, T. Liu, B. Wang, Disencdr: Learning disentangled representations for cross-domain recommendation, in: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022, pp. 267–277.
D. Rafailidis, F. Crestani, A collaborative ranking model for cross-domain recommendations, in: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, 2017, pp. 2263–2266.
10.1016/j.knosys.2025.113112_b10
10.1016/j.knosys.2025.113112_b53
Zhang (10.1016/j.knosys.2025.113112_b6) 2024; 61
10.1016/j.knosys.2025.113112_b11
10.1016/j.knosys.2025.113112_b55
10.1016/j.knosys.2025.113112_b14
10.1016/j.knosys.2025.113112_b58
10.1016/j.knosys.2025.113112_b57
10.1016/j.knosys.2025.113112_b16
Ahn (10.1016/j.knosys.2025.113112_b27) 2021
Zhang (10.1016/j.knosys.2025.113112_b21) 2019; 6
Zhang (10.1016/j.knosys.2025.113112_b47) 2022
Zhang (10.1016/j.knosys.2025.113112_b60) 2024
Cai (10.1016/j.knosys.2025.113112_b70) 2023
10.1016/j.knosys.2025.113112_b18
10.1016/j.knosys.2025.113112_b17
10.1016/j.knosys.2025.113112_b19
Yu (10.1016/j.knosys.2025.113112_b69) 2023
Cao (10.1016/j.knosys.2025.113112_b45) 2022
Zhang (10.1016/j.knosys.2025.113112_b74) 2023
Wang (10.1016/j.knosys.2025.113112_b7) 2020; 203
Zhu (10.1016/j.knosys.2025.113112_b28) 2021
10.1016/j.knosys.2025.113112_b63
Xie (10.1016/j.knosys.2025.113112_b48) 2024
10.1016/j.knosys.2025.113112_b65
Zhang (10.1016/j.knosys.2025.113112_b61) 2023
10.1016/j.knosys.2025.113112_b64
10.1016/j.knosys.2025.113112_b23
Yang (10.1016/j.knosys.2025.113112_b52) 2022; vol. 36
10.1016/j.knosys.2025.113112_b67
10.1016/j.knosys.2025.113112_b22
10.1016/j.knosys.2025.113112_b66
10.1016/j.knosys.2025.113112_b68
10.1016/j.knosys.2025.113112_b29
Wang (10.1016/j.knosys.2025.113112_b5) 2023; 264
Kingma (10.1016/j.knosys.2025.113112_b56) 2015
Liu (10.1016/j.knosys.2025.113112_b49) 2020; 415
Xiao (10.1016/j.knosys.2025.113112_b34) 2023
Man (10.1016/j.knosys.2025.113112_b41) 2017; vol. 17
Loni (10.1016/j.knosys.2025.113112_b72) 2014
10.1016/j.knosys.2025.113112_b71
10.1016/j.knosys.2025.113112_b30
Rafailidis (10.1016/j.knosys.2025.113112_b39) 2016
Wu (10.1016/j.knosys.2025.113112_b13) 2019; vol. 33
10.1016/j.knosys.2025.113112_b32
10.1016/j.knosys.2025.113112_b76
Brockschmidt (10.1016/j.knosys.2025.113112_b12) 2020; vol. 119
10.1016/j.knosys.2025.113112_b35
Wu (10.1016/j.knosys.2025.113112_b54) 2020; 32
Li (10.1016/j.knosys.2025.113112_b73) 2022; 14
10.1016/j.knosys.2025.113112_b9
Ni (10.1016/j.knosys.2025.113112_b8) 2023; 60
Li (10.1016/j.knosys.2025.113112_b15) 2023
Wang (10.1016/j.knosys.2025.113112_b36) 2022
Chen (10.1016/j.knosys.2025.113112_b77) 2023; 41
Gou (10.1016/j.knosys.2025.113112_b26) 2021; 129
Wang (10.1016/j.knosys.2025.113112_b25) 2022; 45
Yuan (10.1016/j.knosys.2025.113112_b50) 2021; vol. 35
Latham (10.1016/j.knosys.2025.113112_b24) 2009; 4
10.1016/j.knosys.2025.113112_b40
10.1016/j.knosys.2025.113112_b43
10.1016/j.knosys.2025.113112_b42
Guo (10.1016/j.knosys.2025.113112_b59) 2023; vol. 37
Zhang (10.1016/j.knosys.2025.113112_b51) 2022
10.1016/j.knosys.2025.113112_b44
10.1016/j.knosys.2025.113112_b46
Zhang (10.1016/j.knosys.2025.113112_b33) 2023; 41
Järvelin (10.1016/j.knosys.2025.113112_b62) 2002; 20
Zhang (10.1016/j.knosys.2025.113112_b31) 2023
Wu (10.1016/j.knosys.2025.113112_b20) 2019
Ni (10.1016/j.knosys.2025.113112_b4) 2023; 60
Deng (10.1016/j.knosys.2025.113112_b3) 2024; 285
Li (10.1016/j.knosys.2025.113112_b2) 2024; 61
Liu (10.1016/j.knosys.2025.113112_b37) 2024; vol. 38
Liu (10.1016/j.knosys.2025.113112_b1) 2024; 290
Carratino (10.1016/j.knosys.2025.113112_b38) 2022; 23
Zhao (10.1016/j.knosys.2025.113112_b75) 2024; 36
References_xml – reference: C. Li, M. Zhao, H. Zhang, C. Yu, L. Cheng, G. Shu, B. Kong, D. Niu, RecGURU: Adversarial learning of generalized user representations for cross-domain recommendation, in: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, 2022, pp. 571–581.
– reference: S. Gu, X. Wang, C. Shi, D. Xiao, Self-supervised graph neural networks for multi-behavior recommendation, in: International Joint Conference on Artificial Intelligence, IJCAI, 2022.
– volume: 36
  start-page: 2401
  year: 2024
  end-page: 2415
  ident: b75
  article-title: Cross-domain recommendation via progressive structural alignment
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: G. Chen, J. Chen, F. Feng, S. Zhou, X. He, Unbiased Knowledge Distillation for Recommendation, in: Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, 2023, pp. 976–984.
– volume: 45
  start-page: 408
  year: 2022
  end-page: 424
  ident: b25
  article-title: Disentangled representation learning for recommendation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: M. Liu, J. Li, G. Li, P. Pan, Cross domain recommendation via bi-directional transfer graph collaborative filtering networks, in: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, 2020, pp. 885–894.
– volume: 60
  year: 2023
  ident: b4
  article-title: Enhancing sequential recommendation with contrastive generative adversarial network
  publication-title: Inf. Process. Manage.
– reference: X. Chen, Z. Cheng, J. Yao, C. Ju, W. Huang, J. Lan, X. Zeng, S. Xiao, Enhancing cross-domain click-through rate prediction via explicit feature augmentation, in: Companion Proceedings of the ACM on Web Conference 2024, 2024, pp. 423–432.
– volume: 415
  start-page: 106
  year: 2020
  end-page: 113
  ident: b49
  article-title: Adaptive multi-teacher multi-level knowledge distillation
  publication-title: Neurocomputing
– volume: vol. 33
  start-page: 346
  year: 2019
  end-page: 353
  ident: b13
  article-title: Session-based recommendation with graph neural networks
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– start-page: 163
  year: 2023
  end-page: 178
  ident: b74
  article-title: Disentangled contrastive learning for cross-domain recommendation
  publication-title: International Conference on Database Systems for Advanced Applications
– volume: 41
  start-page: 1
  year: 2023
  end-page: 31
  ident: b77
  article-title: Toward equivalent transformation of user preferences in cross domain recommendation
  publication-title: ACM Trans. Inf. Syst.
– reference: Y. Zhu, Z. Tang, Y. Liu, F. Zhuang, R. Xie, X. Zhang, L. Lin, Q. He, Personalized transfer of user preferences for cross-domain recommendation, in: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, 2022, pp. 1507–1515.
– volume: 264
  year: 2023
  ident: b5
  article-title: Cross-view temporal graph contrastive learning for session-based recommendation
  publication-title: Knowl.-Based Syst.
– reference: J. Zhu, Y. Wang, F. Zhu, Z. Sun, Domain Disentanglement with Interpolative Data Augmentation for Dual-Target Cross-Domain Recommendation, in: Proceedings of the 17th ACM Conference on Recommender Systems, 2023, pp. 515–527.
– reference: J. Yu, H. Yin, X. Xia, T. Chen, L. Cui, Q.V.H. Nguyen, Are graph augmentations necessary? Simple graph contrastive learning for recommendation, in: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022, pp. 1294–1303.
– reference: L. Xia, C. Huang, Y. Xu, J. Zhao, D. Yin, J. Huang, Hypergraph contrastive collaborative filtering, in: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022, pp. 70–79.
– start-page: 2575
  year: 2015
  end-page: 2583
  ident: b56
  article-title: Variational dropout and the local reparameterization trick
  publication-title: Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2
– volume: 61
  year: 2024
  ident: b6
  article-title: Decoupled domain-specific and domain-conditional representation learning for cross-domain recommendation
  publication-title: Inf. Process. Manage.
– volume: vol. 38
  start-page: 8769
  year: 2024
  end-page: 8777
  ident: b37
  article-title: Graph disentangled contrastive learning with personalized transfer for cross-domain recommendation
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– start-page: 1
  year: 2022
  end-page: 8
  ident: b47
  article-title: Multi-graph convolutional feature transfer for cross-domain recommendation
  publication-title: 2022 International Joint Conference on Neural Networks
– year: 2024
  ident: b48
  article-title: Heterogeneous graph contrastive learning for cold start cross-domain recommendation
  publication-title: Knowl.-Based Syst.
– reference: Y. Jiang, C. Huang, L. Huang, Adaptive graph contrastive learning for recommendation, in: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023, pp. 4252–4261.
– year: 2023
  ident: b61
  article-title: Beyond Co-occurrence: Multi-modal session-based recommendation
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 129
  start-page: 1789
  year: 2021
  end-page: 1819
  ident: b26
  article-title: Knowledge distillation: A survey
  publication-title: Int. J. Comput. Vis.
– reference: I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, A. Lerchner, beta-vae: Learning basic visual concepts with a constrained variational framework, in: International Conference on Learning Representations, 2016.
– reference: J. Zheng, H. Gu, C. Song, D. Lin, L. Yi, C. Chen, Dual Interests-Aligned Graph Auto-Encoders for Cross-domain Recommendation in WeChat, in: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, 2023, pp. 4988–4994.
– reference: Z. Lin, C. Tian, Y. Hou, W.X. Zhao, Improving graph collaborative filtering with neighborhood-enriched contrastive learning, in: Proceedings of the ACM Web Conference 2022, 2022, pp. 2320–2329.
– volume: 61
  year: 2024
  ident: b2
  article-title: Disentangle interest trend and diversity for sequential recommendation
  publication-title: Inf. Process. Manage.
– reference: Z. Han, X. Zheng, C. Chen, W. Cheng, Y. Yao, Intra and Inter Domain HyperGraph Convolutional Network for Cross-Domain Recommendation, in: Proceedings of the ACM Web Conference 2023, 2023, pp. 449–459.
– volume: 285
  year: 2024
  ident: b3
  article-title: SSE4Rec: Sequential recommendation with subsequence extraction
  publication-title: Knowl.-Based Syst.
– reference: Z. Fan, Z. Liu, Y. Wang, A. Wang, Z. Nazari, L. Zheng, H. Peng, P.S. Yu, Sequential recommendation via stochastic self-attention, in: Proceedings of the ACM Web Conference 2022, 2022, pp. 2036–2047.
– volume: 4
  start-page: 1658
  year: 2009
  ident: b24
  article-title: Mutual information
  publication-title: Scholarpedia
– reference: F. Zhu, Y. Wang, C. Chen, G. Liu, X. Zheng, A graphical and attentional framework for dual-target cross-domain recommendation, in: IJCAI, 2020, pp. 3001–3008.
– start-page: 53
  year: 2022
  end-page: 68
  ident: b36
  article-title: Inter- and intra-domain relation-aware heterogeneous graph convolutional networks for cross-domain recommendation
  publication-title: Database Systems for Advanced Applications: 27th International Conference, DASFAA 2022, Virtual Event, April 11–14, 2022, Proceedings, Part II
– start-page: 93
  year: 2023
  end-page: 116
  ident: b15
  article-title: Deep learning attention mechanism in medical image analysis: Basics and beyonds
  publication-title: Int. J. Netw. Dyn. Intell.
– start-page: 1189
  year: 2024
  end-page: 1199
  ident: b60
  article-title: Deep pattern network for click-through rate prediction
  publication-title: Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval
– reference: X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, M. Wang, Lightgcn: Simplifying and powering graph convolution network for recommendation, in: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020, pp. 639–648.
– volume: 14
  start-page: 1
  year: 2022
  end-page: 25
  ident: b73
  article-title: Adversarial learning for cross domain recommendations
  publication-title: ACM Trans. Intell. Syst. Technol.
– reference: S. Kang, J. Hwang, D. Lee, H. Yu, Semi-supervised learning for cross-domain recommendation to cold-start users, in: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 2019, pp. 1563–1572.
– reference: J. Cao, S. Li, B. Yu, X. Guo, T. Liu, B. Wang, Towards Universal Cross-Domain Recommendation, in: Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, 2023, pp. 78–86.
– volume: 290
  year: 2024
  ident: b1
  article-title: Extracting latently overlapping users by graph neural network for non-overlapping cross-domain recommendation
  publication-title: Knowl.-Based Syst.
– volume: vol. 36
  start-page: 4318
  year: 2022
  end-page: 4326
  ident: b52
  article-title: Cross-task knowledge distillation in multi-task recommendation
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– reference: X. He, L. Liao, H. Zhang, L. Nie, X. Hu, T.-S. Chua, Neural collaborative filtering, in: Proceedings of the 26th International Conference on World Wide Web, 2017, pp. 173–182.
– start-page: 656
  year: 2014
  end-page: 661
  ident: b72
  article-title: Cross-domain collaborative filtering with factorization machines
  publication-title: Advances in Information Retrieval: 36th European Conference on IR Research, ECIR 2014, Amsterdam, the Netherlands, April 13–16, 2014. Proceedings 36
– start-page: 426
  year: 2016
  end-page: 441
  ident: b39
  article-title: Top-n recommendation via joint cross-domain user clustering and similarity learning
  publication-title: Joint European Conference on Machine Learning and Knowledge Discovery in Databases
– reference: R. Tian, Y. Mao, R. Zhang, Learning VAE-LDA models with rounded reparameterization trick, in: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP, 2020, pp. 1315–1325.
– reference: X. Wang, X. He, M. Wang, F. Feng, T.-S. Chua, Neural graph collaborative filtering, in: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2019, pp. 165–174.
– reference: C. Zhao, H. Zhao, M. He, J. Zhang, J. Fan, Cross-domain recommendation via user interest alignment, in: Proceedings of the ACM Web Conference 2023, 2023, pp. 887–896.
– year: 2023
  ident: b70
  article-title: LightGCL: Simple yet effective graph contrastive learning for recommendation
  publication-title: The Eleventh International Conference on Learning Representations
– start-page: 4721
  year: 2021
  end-page: 4728
  ident: b28
  article-title: Cross-domain recommendation: Challenges, progress, and prospects
  publication-title: 30th International Joint Conference on Artificial Intelligence, IJCAI 2021
– volume: vol. 35
  start-page: 14284
  year: 2021
  end-page: 14291
  ident: b50
  article-title: Reinforced multi-teacher selection for knowledge distillation
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 60
  year: 2023
  ident: b8
  article-title: DITN: User’s indirect side-information involved domain-invariant feature transfer network for cross-domain recommendation
  publication-title: Inf. Process. Manage.
– volume: 6
  start-page: 1
  year: 2019
  end-page: 23
  ident: b21
  article-title: Graph convolutional networks: A comprehensive review
  publication-title: Comput. Soc. Netw.
– volume: vol. 37
  start-page: 7793
  year: 2023
  end-page: 7801
  ident: b59
  article-title: Boosting graph neural networks via adaptive knowledge distillation
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 23
  start-page: 1
  year: 2022
  end-page: 31
  ident: b38
  article-title: On mixup regularization
  publication-title: J. Mach. Learn. Res.
– reference: S. Rendle, C. Freudenthaler, Z. Gantner, L. Schmidt-Thieme, BPR: Bayesian personalized ranking from implicit feedback, in: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, 2009, pp. 452–461.
– volume: 20
  start-page: 422
  year: 2002
  end-page: 446
  ident: b62
  article-title: Cumulated gain-based evaluation of IR techniques
  publication-title: ACM Trans. Inf. Syst.
– start-page: 2209
  year: 2022
  end-page: 2223
  ident: b45
  article-title: Cross-domain recommendation to cold-start users via variational information bottleneck
  publication-title: 2022 IEEE 38th International Conference on Data Engineering
– reference: C. Zhao, C. Li, C. Fu, Cross-domain recommendation via preference propagation graphnet, in: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 2019, pp. 2165–2168.
– volume: 41
  start-page: 1
  year: 2023
  end-page: 24
  ident: b33
  article-title: Multi-level attention-based domain disentanglement for BCDR
  publication-title: ACM Trans. Inf. Syst.
– start-page: 6861
  year: 2019
  end-page: 6871
  ident: b20
  article-title: Simplifying graph convolutional networks
  publication-title: International Conference on Machine Learning
– reference: P. Li, A. Tuzhilin, Ddtcdr: Deep dual transfer cross domain recommendation, in: Proceedings of the 13th International Conference on Web Search and Data Mining, 2020, pp. 331–339.
– year: 2023
  ident: b69
  article-title: XSimGCL: Towards extremely simple graph contrastive learning for recommendation
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: D. Rafailidis, F. Crestani, A collaborative ranking model for cross-domain recommendations, in: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, 2017, pp. 2263–2266.
– volume: 32
  start-page: 4
  year: 2020
  end-page: 24
  ident: b54
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 4498
  year: 2022
  end-page: 4502
  ident: b51
  article-title: Confidence-aware multi-teacher knowledge distillation
  publication-title: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing
– year: 2023
  ident: b31
  article-title: A VAE-based user preference learning and transfer framework for cross-domain recommendation
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 203
  year: 2020
  ident: b7
  article-title: Tag-informed collaborative topic modeling for cross domain recommendations
  publication-title: Knowl.-Based Syst.
– reference: G. Hu, Y. Zhang, Q. Yang, Conet: Collaborative cross networks for cross-domain recommendation, in: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, 2018, pp. 667–676.
– start-page: 2827
  year: 2021
  end-page: 2831
  ident: b27
  article-title: Variational graph normalized AutoEncoders
  publication-title: Proceedings of the 30th ACM International Conference on Information & Knowledge Management
– reference: J. Cao, X. Lin, X. Cong, J. Ya, T. Liu, B. Wang, Disencdr: Learning disentangled representations for cross-domain recommendation, in: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022, pp. 267–277.
– start-page: 446
  year: 2023
  end-page: 461
  ident: b34
  article-title: CATCL: Joint cross-attention transfer and contrastive learning for cross-domain recommendation
  publication-title: International Conference on Database Systems for Advanced Applications
– volume: vol. 17
  start-page: 2464
  year: 2017
  end-page: 2470
  ident: b41
  article-title: Cross-domain recommendation: An embedding and mapping approach
  publication-title: IJCAI
– reference: F. Zhu, C. Chen, Y. Wang, G. Liu, X. Zheng, Dtcdr: A framework for dual-target cross-domain recommendation, in: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 2019, pp. 1533–1542.
– reference: L. Yang, S. Wang, Y. Tao, J. Sun, X. Liu, P.S. Yu, T. Wang, DGRec: Graph Neural Network for Recommendation with Diversified Embedding Generation, in: Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, 2023, pp. 661–669.
– volume: vol. 119
  start-page: 1144
  year: 2020
  end-page: 1152
  ident: b12
  article-title: GNN-FiLM: Graph neural networks with feature-wise linear modulation
  publication-title: Proceedings of the 37th International Conference on Machine Learning
– ident: 10.1016/j.knosys.2025.113112_b11
  doi: 10.24963/ijcai.2020/415
– ident: 10.1016/j.knosys.2025.113112_b22
  doi: 10.1145/3488560.3498388
– ident: 10.1016/j.knosys.2025.113112_b16
  doi: 10.1145/3485447.3512077
– ident: 10.1016/j.knosys.2025.113112_b63
– volume: 4
  start-page: 1658
  issue: 1
  year: 2009
  ident: 10.1016/j.knosys.2025.113112_b24
  article-title: Mutual information
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.1658
– volume: vol. 36
  start-page: 4318
  year: 2022
  ident: 10.1016/j.knosys.2025.113112_b52
  article-title: Cross-task knowledge distillation in multi-task recommendation
– start-page: 1
  year: 2022
  ident: 10.1016/j.knosys.2025.113112_b47
  article-title: Multi-graph convolutional feature transfer for cross-domain recommendation
– ident: 10.1016/j.knosys.2025.113112_b46
  doi: 10.1145/3543507.3583263
– ident: 10.1016/j.knosys.2025.113112_b30
  doi: 10.1145/3543507.3583402
– volume: vol. 17
  start-page: 2464
  year: 2017
  ident: 10.1016/j.knosys.2025.113112_b41
  article-title: Cross-domain recommendation: An embedding and mapping approach
– start-page: 2575
  year: 2015
  ident: 10.1016/j.knosys.2025.113112_b56
  article-title: Variational dropout and the local reparameterization trick
– ident: 10.1016/j.knosys.2025.113112_b64
  doi: 10.1145/3038912.3052569
– ident: 10.1016/j.knosys.2025.113112_b55
  doi: 10.24963/ijcai.2022/285
– ident: 10.1016/j.knosys.2025.113112_b57
  doi: 10.18653/v1/2020.emnlp-main.101
– start-page: 446
  year: 2023
  ident: 10.1016/j.knosys.2025.113112_b34
  article-title: CATCL: Joint cross-attention transfer and contrastive learning for cross-domain recommendation
– volume: 61
  issue: 3
  year: 2024
  ident: 10.1016/j.knosys.2025.113112_b2
  article-title: Disentangle interest trend and diversity for sequential recommendation
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2023.103619
– ident: 10.1016/j.knosys.2025.113112_b58
– ident: 10.1016/j.knosys.2025.113112_b19
  doi: 10.1145/3397271.3401063
– start-page: 2209
  year: 2022
  ident: 10.1016/j.knosys.2025.113112_b45
  article-title: Cross-domain recommendation to cold-start users via variational information bottleneck
– volume: 285
  year: 2024
  ident: 10.1016/j.knosys.2025.113112_b3
  article-title: SSE4Rec: Sequential recommendation with subsequence extraction
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2023.111364
– year: 2023
  ident: 10.1016/j.knosys.2025.113112_b70
  article-title: LightGCL: Simple yet effective graph contrastive learning for recommendation
– volume: 45
  start-page: 408
  issue: 1
  year: 2022
  ident: 10.1016/j.knosys.2025.113112_b25
  article-title: Disentangled representation learning for recommendation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2022.3153112
– ident: 10.1016/j.knosys.2025.113112_b14
  doi: 10.1145/3539597.3570472
– ident: 10.1016/j.knosys.2025.113112_b10
  doi: 10.1145/3357384.3357992
– ident: 10.1016/j.knosys.2025.113112_b53
  doi: 10.1145/3539597.3570477
– ident: 10.1016/j.knosys.2025.113112_b42
  doi: 10.1145/3357384.3357914
– volume: 60
  issue: 3
  year: 2023
  ident: 10.1016/j.knosys.2025.113112_b4
  article-title: Enhancing sequential recommendation with contrastive generative adversarial network
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2023.103331
– volume: 61
  issue: 3
  year: 2024
  ident: 10.1016/j.knosys.2025.113112_b6
  article-title: Decoupled domain-specific and domain-conditional representation learning for cross-domain recommendation
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2024.103689
– ident: 10.1016/j.knosys.2025.113112_b18
  doi: 10.1145/3340531.3412012
– ident: 10.1016/j.knosys.2025.113112_b68
  doi: 10.1145/3580305.3599768
– volume: vol. 33
  start-page: 346
  year: 2019
  ident: 10.1016/j.knosys.2025.113112_b13
  article-title: Session-based recommendation with graph neural networks
– volume: 14
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.knosys.2025.113112_b73
  article-title: Adversarial learning for cross domain recommendations
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/3548776
– year: 2023
  ident: 10.1016/j.knosys.2025.113112_b61
  article-title: Beyond Co-occurrence: Multi-modal session-based recommendation
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: vol. 35
  start-page: 14284
  year: 2021
  ident: 10.1016/j.knosys.2025.113112_b50
  article-title: Reinforced multi-teacher selection for knowledge distillation
– ident: 10.1016/j.knosys.2025.113112_b76
  doi: 10.1145/3539597.3570366
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.knosys.2025.113112_b21
  article-title: Graph convolutional networks: A comprehensive review
  publication-title: Comput. Soc. Netw.
  doi: 10.1186/s40649-019-0069-y
– ident: 10.1016/j.knosys.2025.113112_b66
  doi: 10.1145/3485447.3512104
– start-page: 1189
  year: 2024
  ident: 10.1016/j.knosys.2025.113112_b60
  article-title: Deep pattern network for click-through rate prediction
– ident: 10.1016/j.knosys.2025.113112_b67
  doi: 10.1145/3477495.3531937
– volume: 23
  start-page: 1
  issue: 325
  year: 2022
  ident: 10.1016/j.knosys.2025.113112_b38
  article-title: On mixup regularization
  publication-title: J. Mach. Learn. Res.
– volume: vol. 119
  start-page: 1144
  year: 2020
  ident: 10.1016/j.knosys.2025.113112_b12
  article-title: GNN-FiLM: Graph neural networks with feature-wise linear modulation
– start-page: 656
  year: 2014
  ident: 10.1016/j.knosys.2025.113112_b72
  article-title: Cross-domain collaborative filtering with factorization machines
– ident: 10.1016/j.knosys.2025.113112_b9
  doi: 10.1145/3269206.3271684
– ident: 10.1016/j.knosys.2025.113112_b65
  doi: 10.1145/3331184.3331267
– start-page: 4721
  year: 2021
  ident: 10.1016/j.knosys.2025.113112_b28
  article-title: Cross-domain recommendation: Challenges, progress, and prospects
– volume: 32
  start-page: 4
  issue: 1
  year: 2020
  ident: 10.1016/j.knosys.2025.113112_b54
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.2978386
– ident: 10.1016/j.knosys.2025.113112_b35
  doi: 10.1145/3604915.3608802
– ident: 10.1016/j.knosys.2025.113112_b29
  doi: 10.1145/3357384.3358166
– volume: vol. 37
  start-page: 7793
  year: 2023
  ident: 10.1016/j.knosys.2025.113112_b59
  article-title: Boosting graph neural networks via adaptive knowledge distillation
– start-page: 53
  year: 2022
  ident: 10.1016/j.knosys.2025.113112_b36
  article-title: Inter- and intra-domain relation-aware heterogeneous graph convolutional networks for cross-domain recommendation
– ident: 10.1016/j.knosys.2025.113112_b40
  doi: 10.1145/3132847.3133107
– volume: 36
  start-page: 2401
  issue: 6
  year: 2024
  ident: 10.1016/j.knosys.2025.113112_b75
  article-title: Cross-domain recommendation via progressive structural alignment
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2023.3324912
– start-page: 6861
  year: 2019
  ident: 10.1016/j.knosys.2025.113112_b20
  article-title: Simplifying graph convolutional networks
– ident: 10.1016/j.knosys.2025.113112_b17
  doi: 10.1145/3336191.3371793
– volume: vol. 38
  start-page: 8769
  year: 2024
  ident: 10.1016/j.knosys.2025.113112_b37
  article-title: Graph disentangled contrastive learning with personalized transfer for cross-domain recommendation
– start-page: 426
  year: 2016
  ident: 10.1016/j.knosys.2025.113112_b39
  article-title: Top-n recommendation via joint cross-domain user clustering and similarity learning
– volume: 203
  year: 2020
  ident: 10.1016/j.knosys.2025.113112_b7
  article-title: Tag-informed collaborative topic modeling for cross domain recommendations
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106119
– year: 2023
  ident: 10.1016/j.knosys.2025.113112_b31
  article-title: A VAE-based user preference learning and transfer framework for cross-domain recommendation
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 60
  issue: 6
  year: 2023
  ident: 10.1016/j.knosys.2025.113112_b8
  article-title: DITN: User’s indirect side-information involved domain-invariant feature transfer network for cross-domain recommendation
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2023.103494
– start-page: 163
  year: 2023
  ident: 10.1016/j.knosys.2025.113112_b74
  article-title: Disentangled contrastive learning for cross-domain recommendation
– volume: 264
  year: 2023
  ident: 10.1016/j.knosys.2025.113112_b5
  article-title: Cross-view temporal graph contrastive learning for session-based recommendation
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2023.110304
– volume: 41
  start-page: 1
  issue: 4
  year: 2023
  ident: 10.1016/j.knosys.2025.113112_b33
  article-title: Multi-level attention-based domain disentanglement for BCDR
  publication-title: ACM Trans. Inf. Syst.
– ident: 10.1016/j.knosys.2025.113112_b44
  doi: 10.1145/3589335.3648341
– start-page: 4498
  year: 2022
  ident: 10.1016/j.knosys.2025.113112_b51
  article-title: Confidence-aware multi-teacher knowledge distillation
– volume: 20
  start-page: 422
  issue: 4
  year: 2002
  ident: 10.1016/j.knosys.2025.113112_b62
  article-title: Cumulated gain-based evaluation of IR techniques
  publication-title: ACM Trans. Inf. Syst.
  doi: 10.1145/582415.582418
– volume: 41
  start-page: 1
  issue: 1
  year: 2023
  ident: 10.1016/j.knosys.2025.113112_b77
  article-title: Toward equivalent transformation of user preferences in cross domain recommendation
  publication-title: ACM Trans. Inf. Syst.
– ident: 10.1016/j.knosys.2025.113112_b32
  doi: 10.1145/3583780.3614676
– volume: 129
  start-page: 1789
  year: 2021
  ident: 10.1016/j.knosys.2025.113112_b26
  article-title: Knowledge distillation: A survey
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-021-01453-z
– ident: 10.1016/j.knosys.2025.113112_b23
  doi: 10.1145/3477495.3531967
– start-page: 2827
  year: 2021
  ident: 10.1016/j.knosys.2025.113112_b27
  article-title: Variational graph normalized AutoEncoders
– volume: 415
  start-page: 106
  year: 2020
  ident: 10.1016/j.knosys.2025.113112_b49
  article-title: Adaptive multi-teacher multi-level knowledge distillation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.048
– year: 2023
  ident: 10.1016/j.knosys.2025.113112_b69
  article-title: XSimGCL: Towards extremely simple graph contrastive learning for recommendation
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2023.3288135
– ident: 10.1016/j.knosys.2025.113112_b71
  doi: 10.1145/3477495.3532058
– start-page: 93
  year: 2023
  ident: 10.1016/j.knosys.2025.113112_b15
  article-title: Deep learning attention mechanism in medical image analysis: Basics and beyonds
  publication-title: Int. J. Netw. Dyn. Intell.
– year: 2024
  ident: 10.1016/j.knosys.2025.113112_b48
  article-title: Heterogeneous graph contrastive learning for cold start cross-domain recommendation
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2024.112054
– volume: 290
  year: 2024
  ident: 10.1016/j.knosys.2025.113112_b1
  article-title: Extracting latently overlapping users by graph neural network for non-overlapping cross-domain recommendation
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2024.111508
– ident: 10.1016/j.knosys.2025.113112_b43
  doi: 10.1145/3488560.3498392
SSID ssj0002218
Score 2.4611886
Snippet Recommendation systems frequently suffer from data sparsity, resulting in less-than-ideal recommendations. A prominent solution to this problem is Cross-Domain...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 113112
SubjectTerms Cross-domain recommendation
Knowledge distillation
Variational graph autoencoder
Title Cross-domain recommendation via knowledge distillation
URI https://dx.doi.org/10.1016/j.knosys.2025.113112
Volume 311
WOSCitedRecordID wos001423843700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002218
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8QwFA5uBy_u4k4P3iQyNu2kOYoobojgwuClpFl0Bu2Izoj6631JX2tlxA28lCGTZfq-8PLlzVsIWbfWuIo0DcrNVkQjJRiVscyolaHKuFQ29FUiLo_5yUnSaolTrOL46MsJ8DxPnp_F_b9CDW0Atgud_QXc1aTQAJ8BdHgC7PD8EfA77tyjunsnfagKLHFnsHLSxlNbblRWNPfnTM8VHaqwQZJ6VPag7ozTmO25It_H3gGg1e6_1jYFmp2vbkx-039X9f2y8fpF4hnprfdFbx_aoLv4BdoewnostzeIDQTFoGURoG9gHllUsqxQqQMKu7AddDbh3eFlNt0irszMFvpWf0yFfeamdjMDbwMaI-JhMhryWIA2G90-2G0dVmdwGHrLbvVTyqBJ79k3uNbnpKRGNM6nyATeEILtAtlpMmTyGTJZVt8IUBnPkmYd6OAj0AEAHVRAB3Wg58jF3u75zj7FKhhUwXWu59w9m1prliTK8EZmrZZMWymBeMNVORORVoltasVlaHikgB43mU1iI63QVoiMzZORvJubBRIAn5NGsCxyafxCFSVMx1xrC4rcCKuSRcJKMaQKU8S7SiW3aekL2EkL4aVOeGkhvEVCq1H3RYqUb_rzUsIp0ryCvqWwKb4cufTnkctk_H3_rpCR3kPfrJIx9dRrPz6s4e55AxidfC0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-domain+recommendation+via+knowledge+distillation&rft.jtitle=Knowledge-based+systems&rft.au=Li%2C+Xiuze&rft.au=Huang%2C+Zhenhua&rft.au=Wu%2C+Zhengyang&rft.au=Wang%2C+Changdong&rft.date=2025-02-28&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.volume=311&rft_id=info:doi/10.1016%2Fj.knosys.2025.113112&rft.externalDocID=S0950705125001595
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon