SA3D-L: A lightweight model for 3D object segmentation using neural radiance fields

The Segment Anything Model (SAM) has recently made significant progress in object segmentation within 2D images. However, the task of segmenting objects in a 3D space remains a primary hurdle in computer vision. The neural radiance field (NeRF) utilizes a multilayer perceptron (MLP) to effectively l...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) Vol. 623; p. 129420
Main Authors: Liu, Jian, Yu, Zhen
Format: Journal Article
Language:English
Published: Elsevier B.V 28.03.2025
Subjects:
ISSN:0925-2312
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The Segment Anything Model (SAM) has recently made significant progress in object segmentation within 2D images. However, the task of segmenting objects in a 3D space remains a primary hurdle in computer vision. The neural radiance field (NeRF) utilizes a multilayer perceptron (MLP) to effectively learn the continuous representation of a 3D scene. Due to its consistent 3D perspectives from various angles, SAM, originally designed for 2D segmentation, can be extended for 3D object segmentation by incorporating NeRF. However, a limitation of NeRF is that the MLP encapsulates the whole scene as a single representation, without distinguishing individual objects. This study introduces a lightweight 3D Segment Anything Model (SA3D-L), which separately represents each segmented object within a scene by modifying the MLP output. Experimental results on established benchmarks revealed that the 3D segmentation representations of objects can be derived from their 2D masks, allowing the independent manipulation of segmented objects and the reconstruction of a new scene. The code is available at: https://github.com/liujian0819/SA3D-L. •We proposed a method to learn the representation of 3D segmentation from 2D masks.•We utilized a single MLP to represent multiple objects in the scene simultaneously.•We can separately manipulate each segmented object and reconstruct a new scene.
AbstractList The Segment Anything Model (SAM) has recently made significant progress in object segmentation within 2D images. However, the task of segmenting objects in a 3D space remains a primary hurdle in computer vision. The neural radiance field (NeRF) utilizes a multilayer perceptron (MLP) to effectively learn the continuous representation of a 3D scene. Due to its consistent 3D perspectives from various angles, SAM, originally designed for 2D segmentation, can be extended for 3D object segmentation by incorporating NeRF. However, a limitation of NeRF is that the MLP encapsulates the whole scene as a single representation, without distinguishing individual objects. This study introduces a lightweight 3D Segment Anything Model (SA3D-L), which separately represents each segmented object within a scene by modifying the MLP output. Experimental results on established benchmarks revealed that the 3D segmentation representations of objects can be derived from their 2D masks, allowing the independent manipulation of segmented objects and the reconstruction of a new scene. The code is available at: https://github.com/liujian0819/SA3D-L. •We proposed a method to learn the representation of 3D segmentation from 2D masks.•We utilized a single MLP to represent multiple objects in the scene simultaneously.•We can separately manipulate each segmented object and reconstruct a new scene.
ArticleNumber 129420
Author Liu, Jian
Yu, Zhen
Author_xml – sequence: 1
  givenname: Jian
  orcidid: 0000-0003-2981-2128
  surname: Liu
  fullname: Liu, Jian
  email: liujian10@zzu.edu.cn
  organization: School of Computer and Artificial Intelligence, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan, 450001, China
– sequence: 2
  givenname: Zhen
  surname: Yu
  fullname: Yu, Zhen
  organization: Department of Electrical and Computer Engineering, California State Polytechnic University, Pomona, CA 91768, USA
BookMark eNqFkD1PwzAQhj0UiRb4Bwz-Awn-rJMOSFXLl1SJoTBbjn0pjpIY2SmIf0-qMDHAcjecnrt7nwWa9aEHhK4pySmhy5sm7-FoQ5czwmROWSkYmaE5KZnMGKfsHC1SagihapzN0X6_5ttst8Jr3PrD2_AJp4q74KDFdYiYb3GoGrADTnDooB_M4EOPj8n3BzyeiqbF0Thvegu49tC6dInOatMmuPrpF-j1_u5l85jtnh-eNutdZjlZDpmSxDJHSV0yVSmiyoJX3JWGlo6I2nAlDEjOSlkVxApWOHCVErYQBZdyKSW_QKtpr40hpQi1tn56b4jGt5oSfVKiGz0p0SclelIywuIX_B59Z-LXf9jthMEY7MND1Ml6GLM7H0dJ2gX_94JvhvaAEQ
CitedBy_id crossref_primary_10_1016_j_dsp_2025_105459
crossref_primary_10_1038_s40494_025_02031_z
Cites_doi 10.1109/TPAMI.2021.3098789
10.1109/TPAMI.2016.2572683
10.1109/TPAMI.2017.2699184
10.1109/TPAMI.2016.2577031
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2025.129420
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_neucom_2025_129420
S092523122500092X
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
LG9
R2-
SBC
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-750c2d10f927b707983b3d9a19d04fa374ae53295b80c428dedb74c8483556553
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001403321100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 08:19:13 EST 2025
Tue Nov 18 20:40:24 EST 2025
Sat Mar 01 15:45:19 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords 2D–3D segmentation
Multi-layer perceptron (MLP)
Neural radiation field (NeRF)
Segment Anything Model (SAM)
Novel view synthesis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-750c2d10f927b707983b3d9a19d04fa374ae53295b80c428dedb74c8483556553
ORCID 0000-0003-2981-2128
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2025_129420
crossref_primary_10_1016_j_neucom_2025_129420
elsevier_sciencedirect_doi_10_1016_j_neucom_2025_129420
PublicationCentury 2000
PublicationDate 2025-03-28
PublicationDateYYYYMMDD 2025-03-28
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-28
  day: 28
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yin, Zhou, Zhang, Fang, Xu, Shen, Wang (b33) 2022
Qi, Yi, Su, Guibas (b31) 2017
Kirillov, Mintun, Ravi, Mao, Rolland, Gustafson, Xiao, Whitehead, Berg, Lo (b6) 2023
Ren, Agarwala, Russell, Schwing, Wang (b54) 2022
Ravi, Gabeur, Hu, Hu, Ryali, Ma, Khedr, Rdle, Rolland, Gustafson (b25) 2024
Groueix, Fisher, Kim, Russell, Aubry (b43) 2018
Wu, Ji, Liu, Fu, Xu, Xu, Jin (b59) 2023
Feng, Wang, Wang, Yang, Zheng (b32) 2023
Goel, Sirikonda, Saini, Narayanan (b58) 2022
Feng, Wang, Ma, Yang (b26) 2024
Chen, Zhu, Papandreou, Schroff, Adam (b2) 2018
Salvador, Bellver, Campos, Baradad, Marques, Torres, Giro-I-Nieto (b22) 2017
Peng, Niemeyer, Mescheder, Pollefeys, Geiger (b48) 2020
Sitzmann, Zollhfer, Wetzstein (b51) 2019
Tewari, Thies, Mildenhall, Srinivasan, Tretschk, Wang, Lassner, Sitzmann, Martin-Brualla, Lombardi (b38) 2021
Liu, Zhang, Peng, Shi, Pollefeys, Cui (b49) 2019
Zhu, Zhou, Wang, Hong, Li, Ma, Li, Yang, Lin (b36) 2022; 44
Xiong, Liao, Zhao, Hu, Bai, Yumer, R. (b4) 2019
Rezende, Eslami, Mohamed, Battaglia, Jaderberg, Heess (b40) 2016
Tang, Liu, Zhao, Lin, Lin, Wang, Han (b35) 2020
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b5) 2017
Wang, Bochkovskiy, Liao (b12) 2022
Zou, Yang, Zhang, Li, Li, Wang, Wang, Gao, Lee (b7) 2023
Chen, Papandreou, Kokkinos, Murphy, Yuille (b19) 2018; 40
Kobayashi, Matsumoto, Sitzmann (b56) 2022
Cai, Vasconcelos (b21) 2017
Bolya, Zhou, Xiao, Lee (b14) 2019; PP
Liao, Donné, Geiger (b44) 2018
Berg, Fu, Szegedy, Anguelov, Erhan, Reed, Liu (b13) 2015
Xie, Yao, Sun, Zhou, Zhang (b52) 2020
Gosala, Valada (b37) 2021
Mirzaei, Aumentado-Armstrong, Derpanis, Kelly, Brubaker, Gilitschenski, Levinshtein (b63) 2023
Jiang, Sud, Makadia, Huang, Funkhouser (b47) 2020
Yasir, Ahn (b8) 2024
He, Gkioxari, Dollár, Girshick (b16) 2017
Newell, Huang, Deng (b20) 2016
Wang, Neumann (b28) 2018
Wang, Pan, Cuppens-Boulahia, Cuppens, Roux (b64) 2013
Wu, Allibert, Stolz, Demonceaux (b29) 2021
Cen, Fang, Yang, Xie, Zhang, Shen, Tian (b61) 2023
Hariharan, Arbeláez, Girshick, Malik (b3) 2014
Redmon, Farhadi (b24) 2018
Kerr, Kim, Goldberg, Kanazawa, Tancik (b57) 2023
Qi, Su, Mo, Guibas (b30) 2017
Meng, Wang, Zhou, Shen, Gool, Dai (b34) 2020
Pan, Han, Chen, Tang, Jia (b45) 2020
Zhi, Laidlow, Leutenegger, Davison (b53) 2021
Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, Ng (b9) 2020
Tschernezki, Laina, Larlus, Vedaldi (b55) 2022
Shelhamer, Long, Darrell (b11) 2017; 39
Brock, Lim, Ritchie, Weston (b39) 2016
Fang, Yang, Wang, Li, Fang, Shan, Feng, Liu (b23) 2021
Bolya, Zhou, Xiao, Lee (b15) 2020; PP
Riegler, Ulusoy, Geiger (b41) 2017
Barron, Mildenhall, Verbin, Srinivasan, Hedman (b62) 2021
Ren, He, Girshick, Sun (b17) 2017; 39
Wang, Zhang, Li, Fu, Liu, Jiang (b46) 2018
Feng, Wang, Quan, Yang (b27) 2024
Wu, Zhang, Xue, Freeman, Tenenbaum (b42) 2016
Gu, Bai, Kong (b1) 2022; 120
Arnab, Torr (b18) 2016
Niemeyer, Mescheder, Oechsle, Geiger (b50) 2020
Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly (b60) 2021
Cen, Zhou, Fang, Yang, Shen, Xie, Jiang, Zhang, Tian (b10) 2022
Zhu (10.1016/j.neucom.2025.129420_b36) 2022; 44
Tewari (10.1016/j.neucom.2025.129420_b38) 2021
Cen (10.1016/j.neucom.2025.129420_b10) 2022
Wang (10.1016/j.neucom.2025.129420_b12) 2022
Rezende (10.1016/j.neucom.2025.129420_b40) 2016
Wang (10.1016/j.neucom.2025.129420_b28) 2018
Barron (10.1016/j.neucom.2025.129420_b62) 2021
Wang (10.1016/j.neucom.2025.129420_b64) 2013
Tschernezki (10.1016/j.neucom.2025.129420_b55) 2022
Ren (10.1016/j.neucom.2025.129420_b17) 2017; 39
Mirzaei (10.1016/j.neucom.2025.129420_b63) 2023
Peng (10.1016/j.neucom.2025.129420_b48) 2020
Cai (10.1016/j.neucom.2025.129420_b21) 2017
Dosovitskiy (10.1016/j.neucom.2025.129420_b60) 2021
Mildenhall (10.1016/j.neucom.2025.129420_b9) 2020
Newell (10.1016/j.neucom.2025.129420_b20) 2016
Gu (10.1016/j.neucom.2025.129420_b1) 2022; 120
Riegler (10.1016/j.neucom.2025.129420_b41) 2017
Redmon (10.1016/j.neucom.2025.129420_b24) 2018
Shelhamer (10.1016/j.neucom.2025.129420_b11) 2017; 39
Feng (10.1016/j.neucom.2025.129420_b32) 2023
Xie (10.1016/j.neucom.2025.129420_b52) 2020
Groueix (10.1016/j.neucom.2025.129420_b43) 2018
Jiang (10.1016/j.neucom.2025.129420_b47) 2020
Bolya (10.1016/j.neucom.2025.129420_b14) 2019; PP
Niemeyer (10.1016/j.neucom.2025.129420_b50) 2020
Feng (10.1016/j.neucom.2025.129420_b27) 2024
Wu (10.1016/j.neucom.2025.129420_b42) 2016
Yasir (10.1016/j.neucom.2025.129420_b8) 2024
Cen (10.1016/j.neucom.2025.129420_b61) 2023
Zou (10.1016/j.neucom.2025.129420_b7) 2023
Hariharan (10.1016/j.neucom.2025.129420_b3) 2014
Bolya (10.1016/j.neucom.2025.129420_b15) 2020; PP
Qi (10.1016/j.neucom.2025.129420_b31) 2017
Brock (10.1016/j.neucom.2025.129420_b39) 2016
Berg (10.1016/j.neucom.2025.129420_b13) 2015
Goel (10.1016/j.neucom.2025.129420_b58) 2022
Wu (10.1016/j.neucom.2025.129420_b59) 2023
Fang (10.1016/j.neucom.2025.129420_b23) 2021
Salvador (10.1016/j.neucom.2025.129420_b22) 2017
Arnab (10.1016/j.neucom.2025.129420_b18) 2016
Tang (10.1016/j.neucom.2025.129420_b35) 2020
Feng (10.1016/j.neucom.2025.129420_b26) 2024
He (10.1016/j.neucom.2025.129420_b16) 2017
Meng (10.1016/j.neucom.2025.129420_b34) 2020
Zhi (10.1016/j.neucom.2025.129420_b53) 2021
Gosala (10.1016/j.neucom.2025.129420_b37) 2021
Vaswani (10.1016/j.neucom.2025.129420_b5) 2017
Liao (10.1016/j.neucom.2025.129420_b44) 2018
Pan (10.1016/j.neucom.2025.129420_b45) 2020
Ravi (10.1016/j.neucom.2025.129420_b25) 2024
Liu (10.1016/j.neucom.2025.129420_b49) 2019
Xiong (10.1016/j.neucom.2025.129420_b4) 2019
Chen (10.1016/j.neucom.2025.129420_b19) 2018; 40
Kirillov (10.1016/j.neucom.2025.129420_b6) 2023
Kobayashi (10.1016/j.neucom.2025.129420_b56) 2022
Qi (10.1016/j.neucom.2025.129420_b30) 2017
Chen (10.1016/j.neucom.2025.129420_b2) 2018
Ren (10.1016/j.neucom.2025.129420_b54) 2022
Yin (10.1016/j.neucom.2025.129420_b33) 2022
Kerr (10.1016/j.neucom.2025.129420_b57) 2023
Wang (10.1016/j.neucom.2025.129420_b46) 2018
Wu (10.1016/j.neucom.2025.129420_b29) 2021
Sitzmann (10.1016/j.neucom.2025.129420_b51) 2019
References_xml – volume: PP
  year: 2019
  ident: b14
  article-title: YOLACT: Real-time instance segmentation
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– year: 2021
  ident: b38
  article-title: Advances in neural rendering
– year: 2018
  ident: b28
  article-title: Depth-aware CNN for RGB-D segmentation
– year: 2022
  ident: b33
  article-title: ProposalContrast: Unsupervised pre-training for lidar-based 3D object detection
  publication-title: Proceedings of the European Conference on Computer Vision
– volume: 44
  start-page: 6807
  year: 2022
  end-page: 6822
  ident: b36
  article-title: Cylindrical and asymmetrical 3D convolution networks for LiDAR-based perception
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: PP
  year: 2020
  ident: b15
  article-title: YOLACT++: Better real-time instance segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2016
  ident: b40
  article-title: Unsupervised learning of 3D structure from images
  publication-title: Proceedings of the Conference on Neural Information Processing Systems
– year: 2021
  ident: b23
  article-title: Instances as queries
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– year: 2019
  ident: b49
  article-title: DIST: Rendering deep implicit signed distance function with differentiable sphere tracing
  publication-title: Proceedings of the Conference on Computer Vision and Pattern Recognition
– start-page: 297
  year: 2014
  end-page: 312
  ident: b3
  article-title: Simultaneous detection and segmentation
  publication-title: European Conference on Computer Vision
– volume: 39
  start-page: 1137
  year: 2017
  end-page: 1149
  ident: b17
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2017
  ident: b31
  article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space
– year: 2023
  ident: b32
  article-title: Clustering based point cloud representation learning for 3D analysis
  publication-title: Proceedings of the International Conference on Computer Vision
– year: 2022
  ident: b58
  article-title: Interactive segmentation of radiance fields
– year: 2015
  ident: b13
  article-title: SSD: Single shot MultiBox detector
– year: 2023
  ident: b7
  article-title: Segment everything everywhere all at once
  publication-title: Proceedings of the International Conference on Computer Vision and Pattern Recognition
– volume: 39
  start-page: 640
  year: 2017
  end-page: 651
  ident: b11
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2016
  ident: b42
  article-title: Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling
  publication-title: Proceedings of the Conference in Neural Information Processing Systems
– year: 2023
  ident: b63
  article-title: SPIn-NeRF: Multiview segmentation and perceptual inpainting with neural radiance fields.
  publication-title: Procceding of the Conference on Computer Vision and Pattern Recognition
– year: 2023
  ident: b57
  article-title: Lerf:Language embedded radiance fields
– year: 2020
  ident: b35
  article-title: Searching efficient 3D architectures with sparse point-voxel convolution
– year: 2024
  ident: b26
  article-title: LSK3Dnet: Towards effective and efficient 3D perception with large sparse kernels
  publication-title: Proceedings of the Conference on Computer Vision and Pattern Recognition
– volume: 120
  year: 2022
  ident: b1
  article-title: A review on 2D instance segmentation based on deep neural networks
  publication-title: Image Vis. Comput.
– year: 2019
  ident: b51
  article-title: Scene representation networks: Continuous 3D-structure-aware neural scene representations
  publication-title: Proceedings of the Conference in Neural Information Processing Systems
– year: 2017
  ident: b5
  article-title: Attention is all you need
– year: 2022
  ident: b54
  article-title: Neural volumetric object selection
  publication-title: Procceding of the Conference on Computer Vision and Pattern Recognition
– year: 2020
  ident: b34
  article-title: Weakly Supervised 3D Object Detection from Lidar Point Cloud
– year: 2018
  ident: b43
  article-title: AtlasNet: A papier-mché approach to learning 3D surface generation
  publication-title: Proceedings of the Conference on Computer Vision and Pattern Recognition
– year: 2020
  ident: b45
  article-title: Deep mesh reconstruction from single RGB images via topology modification networks
  publication-title: Proceedings of the International Conference on Computer Vision
– year: 2024
  ident: b25
  article-title: SAM 2: Segment anything in images and videos
– year: 2022
  ident: b55
  article-title: Neural feature fusion fields:3d distillation of self-supervised 2d image representations
  publication-title: International Conference on 3D Vision
– year: 2017
  ident: b21
  article-title: Cascade R-CNN: Delving into high quality object detection
– year: 2016
  ident: b18
  article-title: Bottom-up instance segmentation using deep higher-order CRFs
  publication-title: British Machine Vision Conference
– year: 2017
  ident: b30
  article-title: PointNet: Deep learning on point sets for 3D classification and segmentation
  publication-title: Proceedings of the Conference on Computer Vision and Pattern Recognition
– year: 2022
  ident: b12
  article-title: YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
– year: 2020
  ident: b47
  article-title: Local implicit grid representations for 3D scenes
  publication-title: Proceedings of the Conference on Computer Vision and Pattern Recognition
– year: 2024
  ident: b8
  article-title: Deep learning-based 3D instance and semantic segmentation: A review
– year: 2021
  ident: b62
  article-title: Mip-NeRF 360: Unbounded anti-aliased neural radiance fields
– year: 2013
  ident: b64
  article-title: Image quality assessment: From error visibility to structural similarity
– start-page: 6620
  year: 2017
  end-page: 6629
  ident: b41
  article-title: OctNet: Learning deep 3D representations at high resolutions
  publication-title: The Conference on Computer Vision and Pattern Recognition
– year: 2021
  ident: b29
  article-title: Depth-adapted CNN for RGB-D cameras
  publication-title: Proceedings of the Asian Conference on Computer Vision
– year: 2018
  ident: b44
  article-title: Deep marching cubes: Learning explicit surface representations
  publication-title: Proceedings of the Conference on Computer Vision and Pattern Recognition
– year: 2022
  ident: b56
  article-title: Decomposing nerf for editing via feature field distillation
  publication-title: The conference on Neural Information Processing Systems
– year: 2017
  ident: b22
  article-title: Recurrent neural networks for semantic instance segmentation
– year: 2023
  ident: b6
  article-title: Segment anything
  publication-title: Proceedings of the International Conference on Computer Vision
– year: 2023
  ident: b59
  article-title: Medical SAM adapter: Adapting segment anything model for medical image segmentation
– start-page: 9404
  year: 2019
  end-page: 9413
  ident: b4
  article-title: UPSNet: A unified panoptic segmentation network
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 801
  year: 2018
  end-page: 818
  ident: b2
  article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation
  publication-title: Proceedings of the European Conference on Computer Vision
– year: 2018
  ident: b46
  article-title: Pixel2Mesh: Generating 3D mesh models from single RGB images
  publication-title: Proceedings of the European Conference on Computer Vision
– year: 2020
  ident: b52
  article-title: Pix2Vox: Context-aware 3D reconstruction from single and multi-view images
  publication-title: Proceedings of the International Conference on Computer Vision
– volume: 40
  start-page: 834
  year: 2018
  end-page: 848
  ident: b19
  article-title: DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2018
  ident: b24
  article-title: YOLOv3: An incremental improvement
– year: 2021
  ident: b37
  article-title: Bird’s-eye-view panoptic segmentation using monocular frontal view images
  publication-title: IEEE Robot. Autom. Lett.
– year: 2017
  ident: b16
  article-title: Mask R-CNN
  publication-title: International Conference on Computer Vision
– year: 2020
  ident: b48
  article-title: Convolutional occupancy networks
  publication-title: Proceedings of the European Conference on Computer Vision
– year: 2023
  ident: b61
  article-title: Segment any 3D Gaussians
  publication-title: Preceedings of the conference on Neural Information Processing Systems
– year: 2021
  ident: b53
  article-title: In-place scene labelling and understanding with implicit scene representation
– year: 2022
  ident: b10
  article-title: Segment anything in 3d with nerfs
  publication-title: Preceedings of the conference on Neural Information Processing Systems
– year: 2020
  ident: b9
  article-title: NeRF: Representing scenes as neural radiance fields for view synthesis
– year: 2024
  ident: b27
  article-title: Shape2Scene: 3D scene representation learning through pre-training on shape data
– year: 2020
  ident: b50
  article-title: Differentiable volumetric rendering: Learning implicit 3D representations without 3D supervision
  publication-title: Proceedings of Conference on Computer Vision and Pattern Recognition
– year: 2021
  ident: b60
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
  publication-title: Proceedings of the International Conference on Learning Representations
– year: 2016
  ident: b20
  article-title: Associative embedding: End-to-end learning for joint detection and grouping
– year: 2016
  ident: b39
  article-title: Generative and discriminative voxel modeling with convolutional neural networks
  publication-title: Comput. Sci.
– year: 2017
  ident: 10.1016/j.neucom.2025.129420_b31
– year: 2020
  ident: 10.1016/j.neucom.2025.129420_b35
– year: 2023
  ident: 10.1016/j.neucom.2025.129420_b6
  article-title: Segment anything
– year: 2020
  ident: 10.1016/j.neucom.2025.129420_b45
  article-title: Deep mesh reconstruction from single RGB images via topology modification networks
– year: 2023
  ident: 10.1016/j.neucom.2025.129420_b59
– year: 2021
  ident: 10.1016/j.neucom.2025.129420_b62
– year: 2022
  ident: 10.1016/j.neucom.2025.129420_b55
  article-title: Neural feature fusion fields:3d distillation of self-supervised 2d image representations
– year: 2023
  ident: 10.1016/j.neucom.2025.129420_b61
  article-title: Segment any 3D Gaussians
– start-page: 801
  year: 2018
  ident: 10.1016/j.neucom.2025.129420_b2
  article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation
– volume: 120
  issue: C
  year: 2022
  ident: 10.1016/j.neucom.2025.129420_b1
  article-title: A review on 2D instance segmentation based on deep neural networks
  publication-title: Image Vis. Comput.
– year: 2022
  ident: 10.1016/j.neucom.2025.129420_b56
  article-title: Decomposing nerf for editing via feature field distillation
– year: 2018
  ident: 10.1016/j.neucom.2025.129420_b43
  article-title: AtlasNet: A papier-mché approach to learning 3D surface generation
– year: 2017
  ident: 10.1016/j.neucom.2025.129420_b21
– volume: 44
  start-page: 6807
  issue: 10
  year: 2022
  ident: 10.1016/j.neucom.2025.129420_b36
  article-title: Cylindrical and asymmetrical 3D convolution networks for LiDAR-based perception
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2021.3098789
– year: 2017
  ident: 10.1016/j.neucom.2025.129420_b16
  article-title: Mask R-CNN
– volume: PP
  year: 2019
  ident: 10.1016/j.neucom.2025.129420_b14
  article-title: YOLACT: Real-time instance segmentation
– year: 2024
  ident: 10.1016/j.neucom.2025.129420_b27
– year: 2016
  ident: 10.1016/j.neucom.2025.129420_b20
– year: 2021
  ident: 10.1016/j.neucom.2025.129420_b53
– year: 2017
  ident: 10.1016/j.neucom.2025.129420_b30
  article-title: PointNet: Deep learning on point sets for 3D classification and segmentation
– start-page: 9404
  year: 2019
  ident: 10.1016/j.neucom.2025.129420_b4
  article-title: UPSNet: A unified panoptic segmentation network
– year: 2015
  ident: 10.1016/j.neucom.2025.129420_b13
– volume: PP
  issue: 99
  year: 2020
  ident: 10.1016/j.neucom.2025.129420_b15
  article-title: YOLACT++: Better real-time instance segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2013
  ident: 10.1016/j.neucom.2025.129420_b64
– year: 2019
  ident: 10.1016/j.neucom.2025.129420_b49
  article-title: DIST: Rendering deep implicit signed distance function with differentiable sphere tracing
– year: 2020
  ident: 10.1016/j.neucom.2025.129420_b47
  article-title: Local implicit grid representations for 3D scenes
– year: 2016
  ident: 10.1016/j.neucom.2025.129420_b39
  article-title: Generative and discriminative voxel modeling with convolutional neural networks
  publication-title: Comput. Sci.
– year: 2024
  ident: 10.1016/j.neucom.2025.129420_b25
– year: 2021
  ident: 10.1016/j.neucom.2025.129420_b29
  article-title: Depth-adapted CNN for RGB-D cameras
– year: 2020
  ident: 10.1016/j.neucom.2025.129420_b34
– year: 2021
  ident: 10.1016/j.neucom.2025.129420_b23
  article-title: Instances as queries
– year: 2021
  ident: 10.1016/j.neucom.2025.129420_b38
– year: 2024
  ident: 10.1016/j.neucom.2025.129420_b8
– year: 2018
  ident: 10.1016/j.neucom.2025.129420_b44
  article-title: Deep marching cubes: Learning explicit surface representations
– year: 2022
  ident: 10.1016/j.neucom.2025.129420_b54
  article-title: Neural volumetric object selection
– year: 2023
  ident: 10.1016/j.neucom.2025.129420_b32
  article-title: Clustering based point cloud representation learning for 3D analysis
– year: 2023
  ident: 10.1016/j.neucom.2025.129420_b63
  article-title: SPIn-NeRF: Multiview segmentation and perceptual inpainting with neural radiance fields.
– volume: 39
  start-page: 640
  issue: 4
  year: 2017
  ident: 10.1016/j.neucom.2025.129420_b11
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2572683
– year: 2018
  ident: 10.1016/j.neucom.2025.129420_b24
– year: 2018
  ident: 10.1016/j.neucom.2025.129420_b46
  article-title: Pixel2Mesh: Generating 3D mesh models from single RGB images
– year: 2022
  ident: 10.1016/j.neucom.2025.129420_b58
– start-page: 6620
  year: 2017
  ident: 10.1016/j.neucom.2025.129420_b41
  article-title: OctNet: Learning deep 3D representations at high resolutions
– year: 2020
  ident: 10.1016/j.neucom.2025.129420_b50
  article-title: Differentiable volumetric rendering: Learning implicit 3D representations without 3D supervision
– start-page: 297
  year: 2014
  ident: 10.1016/j.neucom.2025.129420_b3
  article-title: Simultaneous detection and segmentation
– year: 2020
  ident: 10.1016/j.neucom.2025.129420_b52
  article-title: Pix2Vox: Context-aware 3D reconstruction from single and multi-view images
– year: 2019
  ident: 10.1016/j.neucom.2025.129420_b51
  article-title: Scene representation networks: Continuous 3D-structure-aware neural scene representations
– year: 2023
  ident: 10.1016/j.neucom.2025.129420_b57
– year: 2020
  ident: 10.1016/j.neucom.2025.129420_b9
– year: 2022
  ident: 10.1016/j.neucom.2025.129420_b33
  article-title: ProposalContrast: Unsupervised pre-training for lidar-based 3D object detection
– year: 2016
  ident: 10.1016/j.neucom.2025.129420_b40
  article-title: Unsupervised learning of 3D structure from images
– year: 2016
  ident: 10.1016/j.neucom.2025.129420_b42
  article-title: Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling
– volume: 40
  start-page: 834
  issue: 4
  year: 2018
  ident: 10.1016/j.neucom.2025.129420_b19
  article-title: DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– year: 2018
  ident: 10.1016/j.neucom.2025.129420_b28
– year: 2023
  ident: 10.1016/j.neucom.2025.129420_b7
  article-title: Segment everything everywhere all at once
– year: 2017
  ident: 10.1016/j.neucom.2025.129420_b22
– year: 2017
  ident: 10.1016/j.neucom.2025.129420_b5
– year: 2016
  ident: 10.1016/j.neucom.2025.129420_b18
  article-title: Bottom-up instance segmentation using deep higher-order CRFs
– year: 2024
  ident: 10.1016/j.neucom.2025.129420_b26
  article-title: LSK3Dnet: Towards effective and efficient 3D perception with large sparse kernels
– year: 2020
  ident: 10.1016/j.neucom.2025.129420_b48
  article-title: Convolutional occupancy networks
– year: 2021
  ident: 10.1016/j.neucom.2025.129420_b60
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
– year: 2021
  ident: 10.1016/j.neucom.2025.129420_b37
  article-title: Bird’s-eye-view panoptic segmentation using monocular frontal view images
  publication-title: IEEE Robot. Autom. Lett.
– year: 2022
  ident: 10.1016/j.neucom.2025.129420_b12
– year: 2022
  ident: 10.1016/j.neucom.2025.129420_b10
  article-title: Segment anything in 3d with nerfs
– volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  ident: 10.1016/j.neucom.2025.129420_b17
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
SSID ssj0017129
Score 2.4500718
Snippet The Segment Anything Model (SAM) has recently made significant progress in object segmentation within 2D images. However, the task of segmenting objects in a...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 129420
SubjectTerms 2D–3D segmentation
Multi-layer perceptron (MLP)
Neural radiation field (NeRF)
Novel view synthesis
Segment Anything Model (SAM)
Title SA3D-L: A lightweight model for 3D object segmentation using neural radiance fields
URI https://dx.doi.org/10.1016/j.neucom.2025.129420
Volume 623
WOSCitedRecordID wos001403321100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017129
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbY5YEXBmOIcpMf9lZ5SnzB8d4iOgSompA6UNlL5MQObNrSaW3Hfv6OL8mCioAh7SWqrNhp_Z263zk95zsI7YKDY03CDBGZFoRrVZMMiDNJtRKJi-wrL9f0dSwPD7PpVH2Ovcrnvp2AbJrs-lpd3CvUMAZgu9LZO8DdLQoD8BpAhyvADtd_An6SsxEZh4rzM-d6__TRz9DzxmcVstFwVrr4y3Buv5_H4qNmuPRhAydw6cT-vWYBfOl9itu8z2G9nkflu0HEOEN-7uQWjLOtLq4wPll6C-mZ3zc_cvwjVp_FWAMVLtkq1m77ANhKEUyIJMKNQBN_OVTfhirilQM6xApO9-DDuGwd95A9oBycJrc_SF2a4MQt7Vamvm0Dna6hDSqFgtNrI_94MP3U_V8kUxpUFeNbaYskfSbf6rN-T0J6xOLoMXoUPQKcBySfoAe22UZbbbcNHA_fp2gSgN3HOe7Bij2sGGDFbIQDrLgPK_aw4gArbmHFAdYd9OX9wdG7DyS2xCAV-HYLAvyuoiZNakVl6cQNM1Yyo3SqTMJrzSTXVjCqRJklFXiWxppS8irjQLSBugv2DK03s8Y-R1iXNjWai6Q0nAuuNac1NbWwRlam1HyAWLtHRRX14l3bkrOiTQw8LcLOFm5ni7CzA0S6WRdBL-Uv98t2-4vI-QKXK8Bi_jjzxX_PfIke3hr3K7S-uFza12izulqczC_fRNO6ASL7eaU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SA3D-L%3A+A+lightweight+model+for+3D+object+segmentation+using+neural+radiance+fields&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Liu%2C+Jian&rft.au=Yu%2C+Zhen&rft.date=2025-03-28&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.volume=623&rft_id=info:doi/10.1016%2Fj.neucom.2025.129420&rft.externalDocID=S092523122500092X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon