Improving performance of spectral subtraction in speech recognition using a model for additive noise

Addresses the problem of speech recognition with signals corrupted by additive noise at moderate signal-to-noise ratio (SNR). A model for additive noise is presented and used to compute the uncertainty about the hidden clean signal so as to weight the estimation provided by spectral subtraction. Wei...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on speech and audio processing Ročník 6; číslo 6; s. 579 - 582
Hlavní autoři: Yoma, N.B., McInnes, F.R., Jack, M.A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.11.1998
Institute of Electrical and Electronics Engineers
Témata:
ISSN:1063-6676
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Addresses the problem of speech recognition with signals corrupted by additive noise at moderate signal-to-noise ratio (SNR). A model for additive noise is presented and used to compute the uncertainty about the hidden clean signal so as to weight the estimation provided by spectral subtraction. Weighted dynamic time warping (DTW) and Viterbi (HMM) algorithms are tested, and the results show that weighting the information along the signal can substantially increase the performance of spectral subtraction, an easily implemented technique, even with a poor estimation for noise and without using any information about the speaker. It is also shown that the weighting procedure can reduce the error rate when cepstral mean normalization is also used to cancel the convolutional noise.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1063-6676
DOI:10.1109/89.725325