Improving performance of spectral subtraction in speech recognition using a model for additive noise
Addresses the problem of speech recognition with signals corrupted by additive noise at moderate signal-to-noise ratio (SNR). A model for additive noise is presented and used to compute the uncertainty about the hidden clean signal so as to weight the estimation provided by spectral subtraction. Wei...
Saved in:
| Published in: | IEEE transactions on speech and audio processing Vol. 6; no. 6; pp. 579 - 582 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York, NY
IEEE
01.11.1998
Institute of Electrical and Electronics Engineers |
| Subjects: | |
| ISSN: | 1063-6676 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Addresses the problem of speech recognition with signals corrupted by additive noise at moderate signal-to-noise ratio (SNR). A model for additive noise is presented and used to compute the uncertainty about the hidden clean signal so as to weight the estimation provided by spectral subtraction. Weighted dynamic time warping (DTW) and Viterbi (HMM) algorithms are tested, and the results show that weighting the information along the signal can substantially increase the performance of spectral subtraction, an easily implemented technique, even with a poor estimation for noise and without using any information about the speaker. It is also shown that the weighting procedure can reduce the error rate when cepstral mean normalization is also used to cancel the convolutional noise. |
|---|---|
| AbstractList | Addresses the problem of speech recognition with signals corrupted by additive noise at moderate signal-to-noise ratio (SNR). A model for additive noise is presented and used to compute the uncertainty about the hidden clean signal so as to weight the estimation provided by spectral subtraction. Weighted dynamic time warping (DTW) and Viterbi (HMM) algorithms are tested, and the results show that weighting the information along the signal can substantially increase the performance of spectral subtraction, an easily implemented technique, even with a poor estimation for noise and without using any information about the speaker. It is also shown that the weighting procedure can reduce the error rate when cepstral mean normalization is also used to cancel the convolutional noise Addresses the problem of speech recognition with signals corrupted by additive noise at moderate signal-to-noise ratio (SNR). A model for additive noise is presented and used to compute the uncertainty about the hidden clean signal so as to weight the estimation provided by spectral subtraction. Weighted dynamic time warping (DTW) and Viterbi (HMM) algorithms are tested, and the results show that weighting the information along the signal can substantially increase the performance of spectral subtraction, an easily implemented technique, even with a poor estimation for noise and without using any information about the speaker. It is also shown that the weighting procedure can reduce the error rate when cepstral mean normalization is also used to cancel the convolutional noise. |
| Author | McInnes, F.R. Jack, M.A. Yoma, N.B. |
| Author_xml | – sequence: 1 givenname: N.B. surname: Yoma fullname: Yoma, N.B. organization: DECOM, UNICAMP, Sao Paulo, Brazil – sequence: 2 givenname: F.R. surname: McInnes fullname: McInnes, F.R. – sequence: 3 givenname: M.A. surname: Jack fullname: Jack, M.A. |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2434140$$DView record in Pascal Francis |
| BookMark | eNptkL1PwzAUxD0UibYwsDJ5QEgMae18OO6IKj4qIbHAbDnOczFK7GAnlfjvcUhhQExPuve7k-4WaGadBYQuKFlRSjZrvlmVaZGlxQzNKWFZwljJTtEihHdCCKdlPkf1ru28Oxi7xx147XwrrQLsNA4dqN7LBoehilf1xlls7KiDesMelNtb860OYfRL3LoaGhxDsKzr-DoAts4EOEMnWjYBzo93iV7v7162j8nT88Nue_uUqIywPikzmitCeak4B1LLSrKyplJxVm3qPC9iKUVYrTlkkqtSc6ILyWhacaU1qXi2RNdTbqz0MUDoRWuCgqaRFtwQRMozTlhJInh1BGVQstE-ljZBdN600n-KNM9ymo_YesKUdyF40EKZXo6V4yCmEZSIcWjBN2IaOjpu_jh-Mv9jLyfWAMAvd3x-AQnii0I |
| CODEN | IESPEJ |
| CitedBy_id | crossref_primary_10_1007_s11042_022_12152_3 crossref_primary_10_1016_j_specom_2008_01_003 crossref_primary_10_1007_s00034_022_01973_0 crossref_primary_10_1016_j_specom_2010_02_002 crossref_primary_10_1007_s11042_023_15350_9 crossref_primary_10_1007_s10772_011_9096_2 crossref_primary_10_1049_el_20030252 crossref_primary_10_1016_j_csl_2017_06_005 crossref_primary_10_1016_S0167_6393_00_00016_9 crossref_primary_10_1109_TSA_2002_1001980 crossref_primary_10_1109_JSTSP_2010_2057194 crossref_primary_10_1007_s11042_023_16100_7 crossref_primary_10_1016_j_specom_2008_03_004 crossref_primary_10_1016_j_specom_2012_09_005 |
| Cites_doi | 10.1109/ICASSP.1996.541099 10.1016/0885-2308(89)90027-2 10.1109/ICASSP.1994.389265 10.1109/ICASSP.1997.596151 |
| ContentType | Journal Article |
| Copyright | 1998 INIST-CNRS |
| Copyright_xml | – notice: 1998 INIST-CNRS |
| DBID | RIA RIE AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/89.725325 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences |
| EndPage | 582 |
| ExternalDocumentID | 2434140 10_1109_89_725325 725325 |
| GroupedDBID | -~X 0R~ 29I 5GY 6IK 97E AAJGR AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AETIX AGQYO AHBIQ AI. AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL RIA RIE RNS TN5 VH1 AAYXX CITATION AAYOK IQODW RIG 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c306t-7314c0187c88e0daba67d1ac86b9d445110c06df8e3a8c7f80f5a612b8cff0b83 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000076653000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-6676 |
| IngestDate | Fri Sep 05 07:02:29 EDT 2025 Wed Apr 02 08:08:47 EDT 2025 Sat Nov 29 01:53:09 EST 2025 Tue Nov 18 21:49:38 EST 2025 Wed Aug 27 02:56:47 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Issue | 6 |
| Keywords | Additive noise Viterbi algorithm Fast Fourier transformation Speech recognition Error rate Performance analysis Covariance matrix Markov model Dynamic programming Speech processing |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c306t-7314c0187c88e0daba67d1ac86b9d445110c06df8e3a8c7f80f5a612b8cff0b83 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 28380670 |
| PQPubID | 23500 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_725325 pascalfrancis_primary_2434140 crossref_citationtrail_10_1109_89_725325 proquest_miscellaneous_28380670 crossref_primary_10_1109_89_725325 |
| PublicationCentury | 1900 |
| PublicationDate | 1998-11-01 |
| PublicationDateYYYYMMDD | 1998-11-01 |
| PublicationDate_xml | – month: 11 year: 1998 text: 1998-11-01 day: 01 |
| PublicationDecade | 1990 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY |
| PublicationTitle | IEEE transactions on speech and audio processing |
| PublicationTitleAbbrev | T-SAP |
| PublicationYear | 1998 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
| References | varga (ref3) 1992 f gales (ref5) 1995 ref2 ref1 ref4 ref6 |
| References_xml | – ident: ref6 doi: 10.1109/ICASSP.1996.541099 – ident: ref4 doi: 10.1016/0885-2308(89)90027-2 – year: 1995 ident: ref5 publication-title: Model-based techniques for noise robust speech recognition – ident: ref2 doi: 10.1109/ICASSP.1994.389265 – year: 1992 ident: ref3 publication-title: The Noisex-92 study on the effect of additive noise in automatic speech recognition – ident: ref1 doi: 10.1109/ICASSP.1997.596151 |
| SSID | ssj0008174 |
| Score | 1.3011451 |
| Snippet | Addresses the problem of speech recognition with signals corrupted by additive noise at moderate signal-to-noise ratio (SNR). A model for additive noise is... |
| SourceID | proquest pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 579 |
| SubjectTerms | Additive noise Applied sciences Cepstral analysis Error analysis Exact sciences and technology Hidden Markov models Information, signal and communications theory Noise cancellation Signal processing Signal to noise ratio Speech processing Speech recognition Telecommunications and information theory Testing Uncertainty Viterbi algorithm |
| Title | Improving performance of spectral subtraction in speech recognition using a model for additive noise |
| URI | https://ieeexplore.ieee.org/document/725325 https://www.proquest.com/docview/28380670 |
| Volume | 6 |
| WOSCitedRecordID | wos000076653000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) issn: 1063-6676 databaseCode: RIE dateStart: 19930101 customDbUrl: isFulltext: true dateEnd: 20051231 titleUrlDefault: https://ieeexplore.ieee.org/ omitProxy: false ssIdentifier: ssj0008174 providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxQADjwKiQMFCDCxunacvI0JUTBUDSN0ix7GhEkqqJuH340caqOjCFjm2FZ0d-86-7_sQuoMYrKNKRCgDEnoqJiAoJ9pzZYpHNI9laMUm2GwG83ny0vJsWyyMlNImn8mxebR3-XkpGnNUNmF-FPhRD_UYYw6q1S264AiXdYATEJO22ZIIeTSZQDJ2DTe2HqulYjIheaWNoZyKxZ8F2e4y08N_fd8ROmidSfzgRv8Y7chigPZ_UQyeoLw7NcDLH4wALhW2GMuVbl41Wb1y-Aa8KEy5FB-4yyzSpSY5_h1zbGVzsO4EmzQks1DiolxU8hS9TZ9eH59Jq6xAhA4RasICLxRGjk8ASJrzjMcs97iAOEtyS1lGBY1zBTLgIJgCqiKufaEMhFI0g-AM9YuykOcIJ-bsSOUcdOxobpS59ENQ2g-kApQIgyG6Xxs9FS3tuFG_-Ext-EGTFJLUGW6IbruqS8e1sa3SwBi-q7AuHW0MZPfaD_U2HdIhulkPbKr_H3MpwgtZNlWq3SswWKWLrf1eoj0LQrTgwyvUr1eNHKFd8VUvqtW1nYLfuCnb_Q |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4QwEJ74StSDj1Xj-trGePCCW6DAcDRGo1E3HtbEGyml1U0MGGD9_baFRY178UZK25BpaWfa-b4P4AxDtI6qI5j0Heaq0EFBuaM910jxgGahZFZsIhqN8OUlfmp5ti0WRkppk8_khXm0d_lZIabmqGwYeYHvBYuwHDDmuQ1Yq1t2saFc1iGO75jEzZZGyKXxEOOLpumvzceqqZhcSF5pc6hGx-LPkmz3mZvNf33hFmy07iS5bMZ_GxZk3oP1HySDO5B15wbk4xslQApFLMqy1M2raVqXDcKBTHJTLsUb6XKLdKlJj38lnFjhHKI7ISYRySyVJC8mldyF55vr8dWt02orOEIHCbUT-S4TRpBPIEqa8ZSHUeZygWEaZ5a0jAoaZgqlz1FECqkKuPaGUhRK0RT9PVjKi1zuA4nN6ZHKOOro0dwpc-kxVNoTpAKVYH4fzmdGT0RLPG70L94TG4DQOME4aQzXh9Ou6kfDtjGvUs8YvqswKz3-NZDda4_pjZrRPgxmA5voP8hci_BcFtMq0Q4WGrTSwdx-B7B6O358SB7uRveHsGYhiRaKeARLdTmVx7AiPutJVZ7Y6fgFSlzfRA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+performance+of+spectral+subtraction+in+speech+recognition+using+a+model+for+additive+noise&rft.jtitle=IEEE+transactions+on+speech+and+audio+processing&rft.au=Yoma%2C+N.B.&rft.au=McInnes%2C+F.R.&rft.au=Jack%2C+M.A.&rft.date=1998-11-01&rft.pub=IEEE&rft.issn=1063-6676&rft.volume=6&rft.issue=6&rft.spage=579&rft.epage=582&rft_id=info:doi/10.1109%2F89.725325&rft.externalDocID=725325 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6676&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6676&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6676&client=summon |