Improving performance of spectral subtraction in speech recognition using a model for additive noise

Addresses the problem of speech recognition with signals corrupted by additive noise at moderate signal-to-noise ratio (SNR). A model for additive noise is presented and used to compute the uncertainty about the hidden clean signal so as to weight the estimation provided by spectral subtraction. Wei...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on speech and audio processing Vol. 6; no. 6; pp. 579 - 582
Main Authors: Yoma, N.B., McInnes, F.R., Jack, M.A.
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.11.1998
Institute of Electrical and Electronics Engineers
Subjects:
ISSN:1063-6676
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Addresses the problem of speech recognition with signals corrupted by additive noise at moderate signal-to-noise ratio (SNR). A model for additive noise is presented and used to compute the uncertainty about the hidden clean signal so as to weight the estimation provided by spectral subtraction. Weighted dynamic time warping (DTW) and Viterbi (HMM) algorithms are tested, and the results show that weighting the information along the signal can substantially increase the performance of spectral subtraction, an easily implemented technique, even with a poor estimation for noise and without using any information about the speaker. It is also shown that the weighting procedure can reduce the error rate when cepstral mean normalization is also used to cancel the convolutional noise.
AbstractList Addresses the problem of speech recognition with signals corrupted by additive noise at moderate signal-to-noise ratio (SNR). A model for additive noise is presented and used to compute the uncertainty about the hidden clean signal so as to weight the estimation provided by spectral subtraction. Weighted dynamic time warping (DTW) and Viterbi (HMM) algorithms are tested, and the results show that weighting the information along the signal can substantially increase the performance of spectral subtraction, an easily implemented technique, even with a poor estimation for noise and without using any information about the speaker. It is also shown that the weighting procedure can reduce the error rate when cepstral mean normalization is also used to cancel the convolutional noise
Addresses the problem of speech recognition with signals corrupted by additive noise at moderate signal-to-noise ratio (SNR). A model for additive noise is presented and used to compute the uncertainty about the hidden clean signal so as to weight the estimation provided by spectral subtraction. Weighted dynamic time warping (DTW) and Viterbi (HMM) algorithms are tested, and the results show that weighting the information along the signal can substantially increase the performance of spectral subtraction, an easily implemented technique, even with a poor estimation for noise and without using any information about the speaker. It is also shown that the weighting procedure can reduce the error rate when cepstral mean normalization is also used to cancel the convolutional noise.
Author McInnes, F.R.
Jack, M.A.
Yoma, N.B.
Author_xml – sequence: 1
  givenname: N.B.
  surname: Yoma
  fullname: Yoma, N.B.
  organization: DECOM, UNICAMP, Sao Paulo, Brazil
– sequence: 2
  givenname: F.R.
  surname: McInnes
  fullname: McInnes, F.R.
– sequence: 3
  givenname: M.A.
  surname: Jack
  fullname: Jack, M.A.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2434140$$DView record in Pascal Francis
BookMark eNptkL1PwzAUxD0UibYwsDJ5QEgMae18OO6IKj4qIbHAbDnOczFK7GAnlfjvcUhhQExPuve7k-4WaGadBYQuKFlRSjZrvlmVaZGlxQzNKWFZwljJTtEihHdCCKdlPkf1ru28Oxi7xx147XwrrQLsNA4dqN7LBoehilf1xlls7KiDesMelNtb860OYfRL3LoaGhxDsKzr-DoAts4EOEMnWjYBzo93iV7v7162j8nT88Nue_uUqIywPikzmitCeak4B1LLSrKyplJxVm3qPC9iKUVYrTlkkqtSc6ILyWhacaU1qXi2RNdTbqz0MUDoRWuCgqaRFtwQRMozTlhJInh1BGVQstE-ljZBdN600n-KNM9ymo_YesKUdyF40EKZXo6V4yCmEZSIcWjBN2IaOjpu_jh-Mv9jLyfWAMAvd3x-AQnii0I
CODEN IESPEJ
CitedBy_id crossref_primary_10_1007_s11042_022_12152_3
crossref_primary_10_1016_j_specom_2008_01_003
crossref_primary_10_1007_s00034_022_01973_0
crossref_primary_10_1016_j_specom_2010_02_002
crossref_primary_10_1007_s11042_023_15350_9
crossref_primary_10_1007_s10772_011_9096_2
crossref_primary_10_1049_el_20030252
crossref_primary_10_1016_j_csl_2017_06_005
crossref_primary_10_1016_S0167_6393_00_00016_9
crossref_primary_10_1109_TSA_2002_1001980
crossref_primary_10_1109_JSTSP_2010_2057194
crossref_primary_10_1007_s11042_023_16100_7
crossref_primary_10_1016_j_specom_2008_03_004
crossref_primary_10_1016_j_specom_2012_09_005
Cites_doi 10.1109/ICASSP.1996.541099
10.1016/0885-2308(89)90027-2
10.1109/ICASSP.1994.389265
10.1109/ICASSP.1997.596151
ContentType Journal Article
Copyright 1998 INIST-CNRS
Copyright_xml – notice: 1998 INIST-CNRS
DBID RIA
RIE
AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/89.725325
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EndPage 582
ExternalDocumentID 2434140
10_1109_89_725325
725325
GroupedDBID -~X
0R~
29I
5GY
6IK
97E
AAJGR
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AETIX
AGQYO
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
AAYOK
IQODW
RIG
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c306t-7314c0187c88e0daba67d1ac86b9d445110c06df8e3a8c7f80f5a612b8cff0b83
IEDL.DBID RIE
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000076653000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6676
IngestDate Fri Sep 05 07:02:29 EDT 2025
Wed Apr 02 08:08:47 EDT 2025
Sat Nov 29 01:53:09 EST 2025
Tue Nov 18 21:49:38 EST 2025
Wed Aug 27 02:56:47 EDT 2025
IsPeerReviewed false
IsScholarly false
Issue 6
Keywords Additive noise
Viterbi algorithm
Fast Fourier transformation
Speech recognition
Error rate
Performance analysis
Covariance matrix
Markov model
Dynamic programming
Speech processing
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-7314c0187c88e0daba67d1ac86b9d445110c06df8e3a8c7f80f5a612b8cff0b83
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 28380670
PQPubID 23500
PageCount 4
ParticipantIDs ieee_primary_725325
pascalfrancis_primary_2434140
crossref_citationtrail_10_1109_89_725325
proquest_miscellaneous_28380670
crossref_primary_10_1109_89_725325
PublicationCentury 1900
PublicationDate 1998-11-01
PublicationDateYYYYMMDD 1998-11-01
PublicationDate_xml – month: 11
  year: 1998
  text: 1998-11-01
  day: 01
PublicationDecade 1990
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle IEEE transactions on speech and audio processing
PublicationTitleAbbrev T-SAP
PublicationYear 1998
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References varga (ref3) 1992
f gales (ref5) 1995
ref2
ref1
ref4
ref6
References_xml – ident: ref6
  doi: 10.1109/ICASSP.1996.541099
– ident: ref4
  doi: 10.1016/0885-2308(89)90027-2
– year: 1995
  ident: ref5
  publication-title: Model-based techniques for noise robust speech recognition
– ident: ref2
  doi: 10.1109/ICASSP.1994.389265
– year: 1992
  ident: ref3
  publication-title: The Noisex-92 study on the effect of additive noise in automatic speech recognition
– ident: ref1
  doi: 10.1109/ICASSP.1997.596151
SSID ssj0008174
Score 1.3011451
Snippet Addresses the problem of speech recognition with signals corrupted by additive noise at moderate signal-to-noise ratio (SNR). A model for additive noise is...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 579
SubjectTerms Additive noise
Applied sciences
Cepstral analysis
Error analysis
Exact sciences and technology
Hidden Markov models
Information, signal and communications theory
Noise cancellation
Signal processing
Signal to noise ratio
Speech processing
Speech recognition
Telecommunications and information theory
Testing
Uncertainty
Viterbi algorithm
Title Improving performance of spectral subtraction in speech recognition using a model for additive noise
URI https://ieeexplore.ieee.org/document/725325
https://www.proquest.com/docview/28380670
Volume 6
WOSCitedRecordID wos000076653000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  issn: 1063-6676
  databaseCode: RIE
  dateStart: 19930101
  customDbUrl:
  isFulltext: true
  dateEnd: 20051231
  titleUrlDefault: https://ieeexplore.ieee.org/
  omitProxy: false
  ssIdentifier: ssj0008174
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxQADjwKiQMFCDCxunacvI0JUTBUDSN0ix7GhEkqqJuH340caqOjCFjm2FZ0d-86-7_sQuoMYrKNKRCgDEnoqJiAoJ9pzZYpHNI9laMUm2GwG83ny0vJsWyyMlNImn8mxebR3-XkpGnNUNmF-FPhRD_UYYw6q1S264AiXdYATEJO22ZIIeTSZQDJ2DTe2HqulYjIheaWNoZyKxZ8F2e4y08N_fd8ROmidSfzgRv8Y7chigPZ_UQyeoLw7NcDLH4wALhW2GMuVbl41Wb1y-Aa8KEy5FB-4yyzSpSY5_h1zbGVzsO4EmzQks1DiolxU8hS9TZ9eH59Jq6xAhA4RasICLxRGjk8ASJrzjMcs97iAOEtyS1lGBY1zBTLgIJgCqiKufaEMhFI0g-AM9YuykOcIJ-bsSOUcdOxobpS59ENQ2g-kApQIgyG6Xxs9FS3tuFG_-Ext-EGTFJLUGW6IbruqS8e1sa3SwBi-q7AuHW0MZPfaD_U2HdIhulkPbKr_H3MpwgtZNlWq3SswWKWLrf1eoj0LQrTgwyvUr1eNHKFd8VUvqtW1nYLfuCnb_Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4QwEJ74StSDj1Xj-trGePCCW6DAcDRGo1E3HtbEGyml1U0MGGD9_baFRY178UZK25BpaWfa-b4P4AxDtI6qI5j0Heaq0EFBuaM910jxgGahZFZsIhqN8OUlfmp5ti0WRkppk8_khXm0d_lZIabmqGwYeYHvBYuwHDDmuQ1Yq1t2saFc1iGO75jEzZZGyKXxEOOLpumvzceqqZhcSF5pc6hGx-LPkmz3mZvNf33hFmy07iS5bMZ_GxZk3oP1HySDO5B15wbk4xslQApFLMqy1M2raVqXDcKBTHJTLsUb6XKLdKlJj38lnFjhHKI7ISYRySyVJC8mldyF55vr8dWt02orOEIHCbUT-S4TRpBPIEqa8ZSHUeZygWEaZ5a0jAoaZgqlz1FECqkKuPaGUhRK0RT9PVjKi1zuA4nN6ZHKOOro0dwpc-kxVNoTpAKVYH4fzmdGT0RLPG70L94TG4DQOME4aQzXh9Ou6kfDtjGvUs8YvqswKz3-NZDda4_pjZrRPgxmA5voP8hci_BcFtMq0Q4WGrTSwdx-B7B6O358SB7uRveHsGYhiRaKeARLdTmVx7AiPutJVZ7Y6fgFSlzfRA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+performance+of+spectral+subtraction+in+speech+recognition+using+a+model+for+additive+noise&rft.jtitle=IEEE+transactions+on+speech+and+audio+processing&rft.au=Yoma%2C+N.B.&rft.au=McInnes%2C+F.R.&rft.au=Jack%2C+M.A.&rft.date=1998-11-01&rft.pub=IEEE&rft.issn=1063-6676&rft.volume=6&rft.issue=6&rft.spage=579&rft.epage=582&rft_id=info:doi/10.1109%2F89.725325&rft.externalDocID=725325
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6676&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6676&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6676&client=summon