An Effective and Adaptable K-means Algorithm for Big Data Cluster Analysis

•A novel k-means clustering algorithm based on Lévy flight trajectory (Lk-means) is proposed.•The defects of Xk-means clustering algorithm are analyzed.•Experiments are conducted to compare it with the baseline model on 10 open source data sets. Tradition K-means clustering algorithm is easy to fall...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition Vol. 139; p. 109404
Main Authors: Hu, Haize, Liu, Jianxun, Zhang, Xiangping, Fang, Mengge
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.07.2023
Subjects:
ISSN:0031-3203, 1873-5142
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A novel k-means clustering algorithm based on Lévy flight trajectory (Lk-means) is proposed.•The defects of Xk-means clustering algorithm are analyzed.•Experiments are conducted to compare it with the baseline model on 10 open source data sets. Tradition K-means clustering algorithm is easy to fall into local optimum, poor clustering effect on large capacity data and uneven distribution of clustering centroids. To solve these problems, a novel k-means clustering algorithm based on Lévy flight trajectory (Lk-means) is proposed in the paper. In the iterative process of LK-means algorithm, Lévy flight is used to search new positions to avoid premature convergence in clustering. It is also applied to increase the diversity of the cluster, strengthen the global search ability of K-means algorithm, and avoid falling into the local optimal value too early. Nevertheless, the complexity of hybrid algorithm is not increased in the process of Lévy flight optimization. To verify the data clustering effect of LK-means algorithm, experiments are conducted to compare it with the k-means algorithm, XK-means algorithm, DDKmeans algorithm and Canopyk-means algorithm on 10 open source data sets. The results show that LK-means algorithm has better search results and more evenly distributed cluster centroids, which greatly improves the global search ability, big data processing ability and uneven distribution centroids of cluster of K-means algorithm.
AbstractList •A novel k-means clustering algorithm based on Lévy flight trajectory (Lk-means) is proposed.•The defects of Xk-means clustering algorithm are analyzed.•Experiments are conducted to compare it with the baseline model on 10 open source data sets. Tradition K-means clustering algorithm is easy to fall into local optimum, poor clustering effect on large capacity data and uneven distribution of clustering centroids. To solve these problems, a novel k-means clustering algorithm based on Lévy flight trajectory (Lk-means) is proposed in the paper. In the iterative process of LK-means algorithm, Lévy flight is used to search new positions to avoid premature convergence in clustering. It is also applied to increase the diversity of the cluster, strengthen the global search ability of K-means algorithm, and avoid falling into the local optimal value too early. Nevertheless, the complexity of hybrid algorithm is not increased in the process of Lévy flight optimization. To verify the data clustering effect of LK-means algorithm, experiments are conducted to compare it with the k-means algorithm, XK-means algorithm, DDKmeans algorithm and Canopyk-means algorithm on 10 open source data sets. The results show that LK-means algorithm has better search results and more evenly distributed cluster centroids, which greatly improves the global search ability, big data processing ability and uneven distribution centroids of cluster of K-means algorithm.
ArticleNumber 109404
Author Hu, Haize
Liu, Jianxun
Zhang, Xiangping
Fang, Mengge
Author_xml – sequence: 1
  givenname: Haize
  orcidid: 0000-0002-1706-9691
  surname: Hu
  fullname: Hu, Haize
  organization: School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411100, China
– sequence: 2
  givenname: Jianxun
  surname: Liu
  fullname: Liu, Jianxun
  email: ljx529@gmail.com
  organization: School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411100, China
– sequence: 3
  givenname: Xiangping
  surname: Zhang
  fullname: Zhang, Xiangping
  organization: School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411100, China
– sequence: 4
  givenname: Mengge
  surname: Fang
  fullname: Fang, Mengge
  organization: State Grid Yiyang Power Supply Company, Yiyang, Hunan 413000, China
BookMark eNqFkMtOwzAQRS0EEm3hD1j4B1L8SJyUBVIo5VmJDaytiTMurlKnsk2l_j2pyooFrEa6o3Ole8bk1PceCbnibMoZV9fr6RaS6VdTwYQcolnO8hMy4lUps4Ln4pSMGJM8k4LJczKOcc0YL4fHiLzUni6sRZPcDin4ltYtbBM0HdLXbIPgI627VR9c-txQ2wd651b0HhLQefcVEwZae-j20cULcmahi3j5cyfk42HxPn_Klm-Pz_N6mRnJVMqUrWzTGAQGtsptYYE1RomqETMsZipXrZJGioqhZVBJhYVqpShRlUpaKbickJtjrwl9jAGtNi5Bcr1PAVynOdMHK3qtj1b0wYo-Whng_Be8DW4DYf8fdnvEcBi2cxh0NA69wdaFwZ1ue_d3wTeKvn9w
CitedBy_id crossref_primary_10_1080_08974438_2024_2427639
crossref_primary_10_1371_journal_pone_0326145
crossref_primary_10_1007_s10586_024_04664_4
crossref_primary_10_1097_NR9_0000000000000068
crossref_primary_10_1007_s00603_025_04516_6
crossref_primary_10_1016_j_rser_2024_114284
crossref_primary_10_3390_su16114840
crossref_primary_10_4018_IJAEIS_370560
crossref_primary_10_1016_j_asoc_2024_112182
crossref_primary_10_1016_j_compstruct_2024_118107
crossref_primary_10_1007_s10462_024_11015_7
crossref_primary_10_1016_j_jhydrol_2024_132227
crossref_primary_10_1016_j_patcog_2025_111548
crossref_primary_10_1109_MITP_2024_3405857
crossref_primary_10_1109_TIM_2024_3470047
crossref_primary_10_62425_jirs_1710192
crossref_primary_10_1049_ntw2_12134
crossref_primary_10_3390_su16072717
crossref_primary_10_1016_j_neucom_2025_131225
crossref_primary_10_1145_3715963
crossref_primary_10_1016_j_knosys_2025_113170
crossref_primary_10_1016_j_neucom_2024_128101
crossref_primary_10_2478_amns_2024_2620
crossref_primary_10_1016_j_partic_2023_10_010
crossref_primary_10_1016_j_patcog_2024_111158
crossref_primary_10_1002_cjce_25133
crossref_primary_10_1177_14727978251366492
crossref_primary_10_1016_j_energy_2024_133352
crossref_primary_10_1088_1361_6560_ad03d1
crossref_primary_10_1007_s40534_024_00338_4
crossref_primary_10_1007_s13042_023_01978_4
crossref_primary_10_1109_TKDE_2024_3401075
crossref_primary_10_3390_su17072969
crossref_primary_10_1016_j_asoc_2025_113757
crossref_primary_10_1007_s11227_024_06790_7
crossref_primary_10_1109_ACCESS_2023_3322929
crossref_primary_10_1016_j_inffus_2023_101964
crossref_primary_10_3390_app15020718
crossref_primary_10_1155_2023_5119602
crossref_primary_10_1007_s43926_025_00160_2
crossref_primary_10_1016_j_tws_2024_112274
crossref_primary_10_1039_D5EA00051C
crossref_primary_10_1016_j_compedu_2025_105453
crossref_primary_10_1016_j_ecolind_2024_112988
crossref_primary_10_1016_j_enconman_2024_119151
crossref_primary_10_1109_ACCESS_2024_3385628
crossref_primary_10_1038_s41598_025_13848_w
crossref_primary_10_1016_j_eswa_2024_125733
crossref_primary_10_1016_j_patcog_2025_111881
crossref_primary_10_1016_j_cam_2025_116921
crossref_primary_10_1186_s40494_024_01497_7
crossref_primary_10_3390_molecules29010197
crossref_primary_10_1016_j_ijpe_2025_109621
crossref_primary_10_1016_j_neucom_2024_127901
crossref_primary_10_1016_j_ijdrr_2025_105486
crossref_primary_10_1016_j_knosys_2024_112384
crossref_primary_10_1007_s12145_024_01540_y
crossref_primary_10_1016_j_tws_2025_113756
crossref_primary_10_1002_adts_202300693
crossref_primary_10_1016_j_engappai_2025_110768
crossref_primary_10_12677_csa_2025_152039
crossref_primary_10_1016_j_ergon_2025_103736
crossref_primary_10_1016_j_enbuild_2024_114460
crossref_primary_10_1016_j_jallcom_2024_175086
crossref_primary_10_1016_j_csite_2024_104898
crossref_primary_10_1186_s43251_024_00119_3
crossref_primary_10_1007_s40964_025_01358_0
crossref_primary_10_1080_17538947_2025_2491105
crossref_primary_10_1017_aer_2025_10034
crossref_primary_10_3390_su17072984
crossref_primary_10_3390_agronomy15092069
crossref_primary_10_1007_s10462_024_10920_1
crossref_primary_10_1016_j_est_2024_112900
crossref_primary_10_3390_computers14070271
crossref_primary_10_63556_tisej_2025_1545
crossref_primary_10_1080_0951192X_2025_2493630
crossref_primary_10_3390_electronics14102074
crossref_primary_10_3390_pr11123311
crossref_primary_10_1016_j_jhydrol_2024_131161
crossref_primary_10_3390_math11143195
crossref_primary_10_14201_adcaij_32508
crossref_primary_10_1007_s00521_024_10764_4
crossref_primary_10_1007_s10489_024_05267_7
crossref_primary_10_1007_s43926_025_00167_9
crossref_primary_10_1038_s41598_025_96314_x
crossref_primary_10_1142_S0129156424401153
crossref_primary_10_3390_math12142211
crossref_primary_10_1080_17517575_2025_2510350
crossref_primary_10_1016_j_swevo_2024_101842
crossref_primary_10_3390_agronomy15071545
crossref_primary_10_1016_j_patcog_2023_110062
crossref_primary_10_1108_COMPEL_05_2023_0207
Cites_doi 10.1049/iet-gtd.2018.6326
10.1016/j.knosys.2020.106731
10.1016/j.patcog.2019.107175
10.18421/TEM103-13
10.1016/j.asoc.2018.03.011
10.3390/app112311202
10.1016/j.patcog.2019.107014
10.1016/j.asoc.2019.105763
10.1016/j.patcog.2020.107560
10.5269/bspm.v35i1.27933
10.1504/IJCAT.2018.094576
10.1016/j.patcog.2020.107627
10.1134/S1063776118070142
10.1080/08839514.2018.1451214
10.3390/en11061336
10.1016/S1097-2765(00)80114-8
10.1093/biostatistics/kxr034
10.1007/s00484-019-01699-w
10.1109/TVT.2019.2963272
10.1016/j.patcog.2020.107207
10.1016/j.jksuci.2016.11.003
10.1016/j.patcog.2020.107625
10.1016/j.patcog.2020.107499
10.3390/ijerph18041919
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2023.109404
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2023_109404
S003132032300105X
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-6f8fbbcea0af84f5fa0bc628b29e59646d63c3280ef0a836e56d327e6763f3213
ISICitedReferencesCount 103
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000990892100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Tue Nov 18 22:03:35 EST 2025
Sat Nov 29 07:29:49 EST 2025
Fri Feb 23 02:37:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords K-means algorithm
Clustering centroids
Global search
Local optimization
Lévy flight
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-6f8fbbcea0af84f5fa0bc628b29e59646d63c3280ef0a836e56d327e6763f3213
ORCID 0000-0002-1706-9691
ParticipantIDs crossref_citationtrail_10_1016_j_patcog_2023_109404
crossref_primary_10_1016_j_patcog_2023_109404
elsevier_sciencedirect_doi_10_1016_j_patcog_2023_109404
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Borlea, Precup, Borlea (bib0020) 2021; 214
Vaulina, Sametov (bib0003) 2018; 74
medians clustering[C]//International conference on machine learning. PMLR, 2020: 7055-7065.
Salehnia, Salehnia, Ansari (bib0005) 2019; 283
Sadeghian, Oshnoei, Khezri (bib0004) 2019; 218
Zhao, Wang, Zuo (bib0017) 2020; 156
Saha, Mukherjee (bib0009) 2021; 110
Zhu, Zhu, Zheng (bib0013) 2020; 105
Xie, Zhang, Lim (bib0018) 2019; 84
Ghadiri, Samadi, Vempala (bib0011) 2021; vol. 224
means and
Yaying, Hazarika (bib0021) 2017; 35
Y.A. Wijaya, D.A. Kurniady, E. Setyanto, Davies Bouldin index algorithm for optimizing clustering case studies mapping school facilities 1099–1103 (2021).
Chumuang (bib0030) 2018; vol. 6
Labed, Fizazi, Mahi (bib0027) 2018; 32
KHRISSI, ELAKKAD, SATORI (bib0029) 2020; vol. 78
Gagnon-Bartsch, Speed (bib0032) 2012; 117
Hira, Gillies (bib0033) 2015; 109
Xu, Lange (bib0022) 2019; 22
X. Ran, X. Zhou, M. Lei, et al. A novel
Kang, Peng, Cheng (bib0015) 2021; 110
Nedyalkova, Madurga, Simeonov (bib0002) 2021; 12
Ghadiri, Samadi, Vempala (bib0024) 2021; vol. 234
Ismail, Reddy, Reddy (bib0026) 2018; 30
Song, Zhou, Qian (bib0001) 2018; vol. 9
Bouyer, Hatamlou (bib0008) 2018; 67
Isazadeh, Tarkhaneh, Khamnei (bib0010) 2018; 91
Song, Yao, Nie (bib0012) 2021; 109
Nie, Shi, Li (bib0014) 2020; 102
Tuba, Starnberger I, N (bib0019) 2018; vol. 9
Corso, Cerquitelli (bib0034) 2018; 110
means clustering algorithm with a noise algorithm for capturing urban hotspots[j], Appl. Sci. 2021, 11(23): 11202.
Cho, Campbell, Winzeler (bib0031) 1998; 31
M. Moshkovitz, S. Dasgupta, C, Rashtchian, et al. Explainable
Förster, Inderka, Gauterin (bib0007) 2020; 3
Soneji, Sanghvi (bib0025) 2012; vol. 18
Ma, Liu, Cao (bib0016) 2020; 107
Xie (10.1016/j.patcog.2023.109404_bib0018) 2019; 84
Förster (10.1016/j.patcog.2023.109404_bib0007) 2020; 3
Sadeghian (10.1016/j.patcog.2023.109404_bib0004) 2019; 218
KHRISSI (10.1016/j.patcog.2023.109404_bib0029) 2020; vol. 78
Saha (10.1016/j.patcog.2023.109404_bib0009) 2021; 110
Isazadeh (10.1016/j.patcog.2023.109404_bib0010) 2018; 91
Hira (10.1016/j.patcog.2023.109404_bib0033) 2015; 109
Song (10.1016/j.patcog.2023.109404_bib0012) 2021; 109
Zhao (10.1016/j.patcog.2023.109404_bib0017) 2020; 156
Gagnon-Bartsch (10.1016/j.patcog.2023.109404_bib0032) 2012; 117
Ghadiri (10.1016/j.patcog.2023.109404_bib0024) 2021; vol. 234
Ismail (10.1016/j.patcog.2023.109404_bib0026) 2018; 30
Salehnia (10.1016/j.patcog.2023.109404_bib0005) 2019; 283
Borlea (10.1016/j.patcog.2023.109404_bib0020) 2021; 214
Bouyer (10.1016/j.patcog.2023.109404_bib0008) 2018; 67
Nie (10.1016/j.patcog.2023.109404_bib0014) 2020; 102
Chumuang (10.1016/j.patcog.2023.109404_bib0030) 2018; vol. 6
Kang (10.1016/j.patcog.2023.109404_bib0015) 2021; 110
Nedyalkova (10.1016/j.patcog.2023.109404_bib0002) 2021; 12
Vaulina (10.1016/j.patcog.2023.109404_bib0003) 2018; 74
Zhu (10.1016/j.patcog.2023.109404_bib0013) 2020; 105
Soneji (10.1016/j.patcog.2023.109404_bib0025) 2012; vol. 18
Cho (10.1016/j.patcog.2023.109404_bib0031) 1998; 31
Corso (10.1016/j.patcog.2023.109404_bib0034) 2018; 110
10.1016/j.patcog.2023.109404_bib0023
Tuba (10.1016/j.patcog.2023.109404_bib0019) 2018; vol. 9
Xu (10.1016/j.patcog.2023.109404_bib0022) 2019; 22
Ghadiri (10.1016/j.patcog.2023.109404_bib0011) 2021; vol. 224
Ma (10.1016/j.patcog.2023.109404_bib0016) 2020; 107
Yaying (10.1016/j.patcog.2023.109404_bib0021) 2017; 35
10.1016/j.patcog.2023.109404_bib0006
10.1016/j.patcog.2023.109404_bib0028
Song (10.1016/j.patcog.2023.109404_bib0001) 2018; vol. 9
Labed (10.1016/j.patcog.2023.109404_bib0027) 2018; 32
References_xml – volume: vol. 9
  start-page: 531
  year: 2018
  end-page: 543
  ident: bib0001
  article-title: Graphr: accelerating graph processing using reRAM
  publication-title: 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA)
– reference: -means and
– volume: 32
  start-page: 96
  year: 2018
  end-page: 118
  ident: bib0027
  article-title: A comparative study of classical clustering method and cuckoo search approach for satellite image clustering: application to water body extraction
  publication-title: Appl. Artif. Intell.
– volume: 283
  start-page: 861
  year: 2019
  end-page: 872
  ident: bib0005
  article-title: Climate data clustering effects on arid and semi-arid rainfed wheat yield: a comparison of artificial intelligence and
  publication-title: Int. J. Biometeorol.
– volume: 67
  start-page: 172
  year: 2018
  end-page: 182
  ident: bib0008
  article-title: An efficient hybrid clustering method based on improved cuckoo optimization and modified particle swarm optimization algorithms
  publication-title: Appl. Soft Comput.
– volume: 214
  start-page: 106731
  year: 2021
  ident: bib0020
  article-title: A unified form of fuzzy c-means and
  publication-title: Knowledge-Based Syst.
– volume: 117
  start-page: 539
  year: 2012
  end-page: 552
  ident: bib0032
  article-title: Using control genes to correct for unwanted variation in microarray data
  publication-title: Biostatistics
– volume: 74
  start-page: 350
  year: 2018
  end-page: 356
  ident: bib0003
  article-title: Spectral and structural characteristics for cluster systems of charged Brownian particles
  publication-title: J. Exp. Theor. Phys.
– reference: M. Moshkovitz, S. Dasgupta, C, Rashtchian, et al. Explainable
– volume: 102
  start-page: 107207
  year: 2020
  ident: bib0014
  article-title: Auto-weighted multi-view co-clustering via fast matrix factorization
  publication-title: Pattern Recognit.
– volume: 3
  start-page: 2398
  year: 2020
  end-page: 2410
  ident: bib0007
  article-title: Data-driven identification of characteristic real-driving cycles based on
  publication-title: IEEE Trans. Veh. Technol.
– volume: 31
  start-page: 65
  year: 1998
  end-page: 73
  ident: bib0031
  article-title: A genome-wide transcriptional analysis of the mitotic cell cycle
  publication-title: Mol. Cell
– volume: 110
  start-page: 1336
  year: 2018
  end-page: 1342
  ident: bib0034
  article-title: METATECH: meteorological data analysis for thermal energy charac-terization by means of self-learning transparent models
  publication-title: Energies
– volume: 107
  start-page: 107499
  year: 2020
  ident: bib0016
  article-title: Cost-sensitive deep forest for price prediction
  publication-title: Pattern Recognit.
– volume: vol. 9
  start-page: 1
  year: 2018
  end-page: 5
  ident: bib0019
  article-title: Cooperative clustering algorithm based on brain storm optimization and
  publication-title: Proceedings of the 2018 ACM Conference on Fairness, Accountability, and Transparency
– volume: 35
  start-page: 139
  year: 2017
  end-page: 145
  ident: bib0021
  article-title: On arithmetic continuity
  publication-title: Bol. Soc. Parana. Mat.
– reference: X. Ran, X. Zhou, M. Lei, et al. A novel
– volume: 110
  start-page: 107625
  year: 2021
  ident: bib0009
  article-title: Cnak: cluster number assisted
  publication-title: Pattern Recognit.
– volume: vol. 18
  start-page: 3
  year: 2012
  end-page: 10
  ident: bib0025
  article-title: Towards the improvement of cuckoo search algorithm
  publication-title: 2012 World Congress on Information and Communication Technologies
– volume: 22
  start-page: 6921
  year: 2019
  end-page: 6931
  ident: bib0022
  article-title: Power
– volume: 91
  start-page: 137
  year: 2018
  end-page: 143
  ident: bib0010
  article-title: A new hybrid strategy for data clustering using cuckoo search based on Mantegna Lévy distribution, PSO and
  publication-title: Int. J. Comput. Appl. Technol.
– volume: 84
  start-page: 105763
  year: 2019
  ident: bib0018
  article-title: Improving
  publication-title: Appl. Soft Comput.
– volume: 109
  start-page: 107560
  year: 2015
  end-page: 107571
  ident: bib0033
  article-title: A review of feature selection and feature extraction methods applied on microarray data
  publication-title: Adv. Bioinform.
– volume: vol. 224
  start-page: 438
  year: 2021
  end-page: 448
  ident: bib0011
  article-title: Socially fair
  publication-title: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency
– volume: vol. 234
  start-page: 438
  year: 2021
  end-page: 448
  ident: bib0024
  article-title: Socially fair
  publication-title: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency
– volume: vol. 6
  start-page: 369
  year: 2018
  end-page: 374
  ident: bib0030
  article-title: Comparative algorithm for predicting the protein localization sites with yeast dataset
  publication-title: 2018 14th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)
– volume: 105
  start-page: 107175
  year: 2020
  ident: bib0013
  article-title: Spectral rotation for deep one-step clustering
  publication-title: Pattern Recognit.
– volume: 110
  start-page: 107627
  year: 2021
  ident: bib0015
  article-title: Structured graph learning for clustering and semi-supervised classification
  publication-title: Pattern Recognit.
– volume: 156
  start-page: 107014
  year: 2020
  ident: bib0017
  article-title: Similarity learning with joint transfer constraints for person re-identification
  publication-title: Pattern Recognit.
– reference: -medians clustering[C]//International conference on machine learning. PMLR, 2020: 7055-7065.
– reference: Y.A. Wijaya, D.A. Kurniady, E. Setyanto, Davies Bouldin index algorithm for optimizing clustering case studies mapping school facilities 1099–1103 (2021).
– volume: 30
  start-page: 462
  year: 2018
  end-page: 469
  ident: bib0026
  article-title: Cuckoo inspired fast search algorithm for fractal image encoding
  publication-title: J. King Saud University-Computer Inf. Sci.
– volume: 109
  start-page: 107560
  year: 2021
  ident: bib0012
  article-title: Weighted bilateral
  publication-title: Pattern Recognit.
– volume: 12
  start-page: 1919
  year: 2021
  ident: bib0002
  article-title: Combinatorial
  publication-title: Int. J. Environ. Res. Public Health
– volume: 218
  start-page: 3397
  year: 2019
  end-page: 3408
  ident: bib0004
  article-title: Data clustering-based approach for optimal capacitor allocation in distribution systems including wind farms
  publication-title: IET Gener., Transm. Distrib.
– volume: vol. 78
  start-page: 1
  year: 2020
  end-page: 6
  ident: bib0029
  article-title: Simple and efficient clustering approach based on cuckoo search algorithm
  publication-title: 2020 Fourth International Conference On Intelligent Computing in Data Sciences (ICDS)
– reference: -means clustering algorithm with a noise algorithm for capturing urban hotspots[j], Appl. Sci. 2021, 11(23): 11202.
– volume: 218
  start-page: 3397
  issue: May 1
  year: 2019
  ident: 10.1016/j.patcog.2023.109404_bib0004
  article-title: Data clustering-based approach for optimal capacitor allocation in distribution systems including wind farms
  publication-title: IET Gener., Transm. Distrib.
  doi: 10.1049/iet-gtd.2018.6326
– volume: 214
  start-page: 106731
  year: 2021
  ident: 10.1016/j.patcog.2023.109404_bib0020
  article-title: A unified form of fuzzy c-means and k-means algorithms and its partitional implementation
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2020.106731
– volume: vol. 6
  start-page: 369
  year: 2018
  ident: 10.1016/j.patcog.2023.109404_bib0030
  article-title: Comparative algorithm for predicting the protein localization sites with yeast dataset
– volume: 105
  start-page: 107175
  year: 2020
  ident: 10.1016/j.patcog.2023.109404_bib0013
  article-title: Spectral rotation for deep one-step clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107175
– ident: 10.1016/j.patcog.2023.109404_bib0028
  doi: 10.18421/TEM103-13
– volume: vol. 9
  start-page: 531
  year: 2018
  ident: 10.1016/j.patcog.2023.109404_bib0001
  article-title: Graphr: accelerating graph processing using reRAM
– volume: 67
  start-page: 172
  year: 2018
  ident: 10.1016/j.patcog.2023.109404_bib0008
  article-title: An efficient hybrid clustering method based on improved cuckoo optimization and modified particle swarm optimization algorithms
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.03.011
– ident: 10.1016/j.patcog.2023.109404_bib0023
– ident: 10.1016/j.patcog.2023.109404_bib0006
  doi: 10.3390/app112311202
– volume: 156
  start-page: 107014
  year: 2020
  ident: 10.1016/j.patcog.2023.109404_bib0017
  article-title: Similarity learning with joint transfer constraints for person re-identification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107014
– volume: 84
  start-page: 105763
  issue: 15
  year: 2019
  ident: 10.1016/j.patcog.2023.109404_bib0018
  article-title: Improving k-means clustering with enhanced firefly algorithms
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105763
– volume: vol. 78
  start-page: 1
  year: 2020
  ident: 10.1016/j.patcog.2023.109404_bib0029
  article-title: Simple and efficient clustering approach based on cuckoo search algorithm
– volume: 109
  start-page: 107560
  issue: 99
  year: 2021
  ident: 10.1016/j.patcog.2023.109404_bib0012
  article-title: Weighted bilateral k-means algorithm for fast co-clustering and fast spectral clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107560
– volume: 35
  start-page: 139
  year: 2017
  ident: 10.1016/j.patcog.2023.109404_bib0021
  article-title: On arithmetic continuity
  publication-title: Bol. Soc. Parana. Mat.
  doi: 10.5269/bspm.v35i1.27933
– volume: 91
  start-page: 137
  year: 2018
  ident: 10.1016/j.patcog.2023.109404_bib0010
  article-title: A new hybrid strategy for data clustering using cuckoo search based on Mantegna Lévy distribution, PSO and k-means
  publication-title: Int. J. Comput. Appl. Technol.
  doi: 10.1504/IJCAT.2018.094576
– volume: vol. 224
  start-page: 438
  year: 2021
  ident: 10.1016/j.patcog.2023.109404_bib0011
  article-title: Socially fair k-means clustering
– volume: 110
  start-page: 107627
  issue: 1
  year: 2021
  ident: 10.1016/j.patcog.2023.109404_bib0015
  article-title: Structured graph learning for clustering and semi-supervised classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107627
– volume: 74
  start-page: 350
  year: 2018
  ident: 10.1016/j.patcog.2023.109404_bib0003
  article-title: Spectral and structural characteristics for cluster systems of charged Brownian particles
  publication-title: J. Exp. Theor. Phys.
  doi: 10.1134/S1063776118070142
– volume: 109
  start-page: 107560
  year: 2015
  ident: 10.1016/j.patcog.2023.109404_bib0033
  article-title: A review of feature selection and feature extraction methods applied on microarray data
  publication-title: Adv. Bioinform.
– volume: 32
  start-page: 96
  issue: 1–6
  year: 2018
  ident: 10.1016/j.patcog.2023.109404_bib0027
  article-title: A comparative study of classical clustering method and cuckoo search approach for satellite image clustering: application to water body extraction
  publication-title: Appl. Artif. Intell.
  doi: 10.1080/08839514.2018.1451214
– volume: 110
  start-page: 1336
  year: 2018
  ident: 10.1016/j.patcog.2023.109404_bib0034
  article-title: METATECH: meteorological data analysis for thermal energy charac-terization by means of self-learning transparent models
  publication-title: Energies
  doi: 10.3390/en11061336
– volume: 31
  start-page: 65
  year: 1998
  ident: 10.1016/j.patcog.2023.109404_bib0031
  article-title: A genome-wide transcriptional analysis of the mitotic cell cycle
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)80114-8
– volume: 117
  start-page: 539
  year: 2012
  ident: 10.1016/j.patcog.2023.109404_bib0032
  article-title: Using control genes to correct for unwanted variation in microarray data
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxr034
– volume: 283
  start-page: 861
  issue: 6
  year: 2019
  ident: 10.1016/j.patcog.2023.109404_bib0005
  article-title: Climate data clustering effects on arid and semi-arid rainfed wheat yield: a comparison of artificial intelligence and k-means approaches
  publication-title: Int. J. Biometeorol.
  doi: 10.1007/s00484-019-01699-w
– volume: vol. 234
  start-page: 438
  year: 2021
  ident: 10.1016/j.patcog.2023.109404_bib0024
  article-title: Socially fair k-means clustering
– volume: 3
  start-page: 2398
  issue: 4
  year: 2020
  ident: 10.1016/j.patcog.2023.109404_bib0007
  article-title: Data-driven identification of characteristic real-driving cycles based on k-means clustering and mixed-integer optimization
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2963272
– volume: 102
  start-page: 107207
  year: 2020
  ident: 10.1016/j.patcog.2023.109404_bib0014
  article-title: Auto-weighted multi-view co-clustering via fast matrix factorization
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107207
– volume: 30
  start-page: 462
  year: 2018
  ident: 10.1016/j.patcog.2023.109404_bib0026
  article-title: Cuckoo inspired fast search algorithm for fractal image encoding
  publication-title: J. King Saud University-Computer Inf. Sci.
  doi: 10.1016/j.jksuci.2016.11.003
– volume: 110
  start-page: 107625
  issue: 110
  year: 2021
  ident: 10.1016/j.patcog.2023.109404_bib0009
  article-title: Cnak: cluster number assisted k-means
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107625
– volume: vol. 9
  start-page: 1
  year: 2018
  ident: 10.1016/j.patcog.2023.109404_bib0019
  article-title: Cooperative clustering algorithm based on brain storm optimization and k-means
– volume: vol. 18
  start-page: 3
  year: 2012
  ident: 10.1016/j.patcog.2023.109404_bib0025
  article-title: Towards the improvement of cuckoo search algorithm
– volume: 22
  start-page: 6921
  issue: 4
  year: 2019
  ident: 10.1016/j.patcog.2023.109404_bib0022
  article-title: Power k-means clustering
– volume: 107
  start-page: 107499
  issue: 9
  year: 2020
  ident: 10.1016/j.patcog.2023.109404_bib0016
  article-title: Cost-sensitive deep forest for price prediction
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107499
– volume: 12
  start-page: 1919
  year: 2021
  ident: 10.1016/j.patcog.2023.109404_bib0002
  article-title: Combinatorial k-means clustering as a machine learning tool applied to diabetes mellitus type 2
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph18041919
SSID ssj0017142
Score 2.6573973
Snippet •A novel k-means clustering algorithm based on Lévy flight trajectory (Lk-means) is proposed.•The defects of Xk-means clustering algorithm are...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109404
SubjectTerms [formula omitted]-means algorithm
Clustering centroids
Global search
Local optimization
Lévy flight
Title An Effective and Adaptable K-means Algorithm for Big Data Cluster Analysis
URI https://dx.doi.org/10.1016/j.patcog.2023.109404
Volume 139
WOSCitedRecordID wos000990892100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbtpode-i5JX-jQ26LgtWxZProhJd2WEGgKvhlZlrYOG6_ZeMvSX9_Rw9q0KX1BL2bRWraZ-Twzkme-Qei1qGVdpw0lrMklSeBZSS6alCRa11LWMkkkt80mstNTXpb5mU9rvrLtBLKu49tt3v9XVcMYKNuUzv6FusNFYQB-g9LhCGqH4x8pvuimjpLY5ASZbfGiEf1gK6Tek0sFrmlaLBerdTt8vrRJhm_aBSh_ENOj5cbQJgSikuuB65nl4TS1Lz7haPf5_mRj_ZdovwaQfGjt2Bywt92EE8PmdAnji350mpYK0v1hcmx9cpLfiYhpyFr122NjicwuH8maXDojNI6cFVPOyvKMEojUvjfDjtTohkl3uwsXhz24ptXi0NzYcGAlrmvxD2TZHx0XZURhZWV6f5a30V6cpTmfoL3i3XE5D1-YslnimOT9441llTb37-a9fh62XAtFzh-ge34NgQun-4foluoeoftjfw7szfVjNC86HKCAAQo4QAF7KOAABQxQwAAFbKCAPRTwCIUn6NPb4_OjE-J7ZxAJi8CBMM11XUslIqF5olMtolqymNdxrtKcJaxhVNKYR0pHglOmUtbQOFMM_I2m8Yw-RZNu1al9hE2th0opvNMwr9EyB9Gl4Jsi3aiMZeoA0VE0lfTE8qa_ybIaMwgvKifQygi0cgI9QCTM6h2xym_Oz0apVz44dEFfBUD55cxn_zzzObq7w_kLNBnWG_US3ZFfhvZq_coj6hv4yIny
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Effective+and+Adaptable+K-means+Algorithm+for+Big+Data+Cluster+Analysis&rft.jtitle=Pattern+recognition&rft.au=Hu%2C+Haize&rft.au=Liu%2C+Jianxun&rft.au=Zhang%2C+Xiangping&rft.au=Fang%2C+Mengge&rft.date=2023-07-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=139&rft_id=info:doi/10.1016%2Fj.patcog.2023.109404&rft.externalDocID=S003132032300105X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon