An Effective and Adaptable K-means Algorithm for Big Data Cluster Analysis
•A novel k-means clustering algorithm based on Lévy flight trajectory (Lk-means) is proposed.•The defects of Xk-means clustering algorithm are analyzed.•Experiments are conducted to compare it with the baseline model on 10 open source data sets. Tradition K-means clustering algorithm is easy to fall...
Saved in:
| Published in: | Pattern recognition Vol. 139; p. 109404 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.07.2023
|
| Subjects: | |
| ISSN: | 0031-3203, 1873-5142 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A novel k-means clustering algorithm based on Lévy flight trajectory (Lk-means) is proposed.•The defects of Xk-means clustering algorithm are analyzed.•Experiments are conducted to compare it with the baseline model on 10 open source data sets.
Tradition K-means clustering algorithm is easy to fall into local optimum, poor clustering effect on large capacity data and uneven distribution of clustering centroids. To solve these problems, a novel k-means clustering algorithm based on Lévy flight trajectory (Lk-means) is proposed in the paper. In the iterative process of LK-means algorithm, Lévy flight is used to search new positions to avoid premature convergence in clustering. It is also applied to increase the diversity of the cluster, strengthen the global search ability of K-means algorithm, and avoid falling into the local optimal value too early. Nevertheless, the complexity of hybrid algorithm is not increased in the process of Lévy flight optimization. To verify the data clustering effect of LK-means algorithm, experiments are conducted to compare it with the k-means algorithm, XK-means algorithm, DDKmeans algorithm and Canopyk-means algorithm on 10 open source data sets. The results show that LK-means algorithm has better search results and more evenly distributed cluster centroids, which greatly improves the global search ability, big data processing ability and uneven distribution centroids of cluster of K-means algorithm. |
|---|---|
| AbstractList | •A novel k-means clustering algorithm based on Lévy flight trajectory (Lk-means) is proposed.•The defects of Xk-means clustering algorithm are analyzed.•Experiments are conducted to compare it with the baseline model on 10 open source data sets.
Tradition K-means clustering algorithm is easy to fall into local optimum, poor clustering effect on large capacity data and uneven distribution of clustering centroids. To solve these problems, a novel k-means clustering algorithm based on Lévy flight trajectory (Lk-means) is proposed in the paper. In the iterative process of LK-means algorithm, Lévy flight is used to search new positions to avoid premature convergence in clustering. It is also applied to increase the diversity of the cluster, strengthen the global search ability of K-means algorithm, and avoid falling into the local optimal value too early. Nevertheless, the complexity of hybrid algorithm is not increased in the process of Lévy flight optimization. To verify the data clustering effect of LK-means algorithm, experiments are conducted to compare it with the k-means algorithm, XK-means algorithm, DDKmeans algorithm and Canopyk-means algorithm on 10 open source data sets. The results show that LK-means algorithm has better search results and more evenly distributed cluster centroids, which greatly improves the global search ability, big data processing ability and uneven distribution centroids of cluster of K-means algorithm. |
| ArticleNumber | 109404 |
| Author | Hu, Haize Liu, Jianxun Zhang, Xiangping Fang, Mengge |
| Author_xml | – sequence: 1 givenname: Haize orcidid: 0000-0002-1706-9691 surname: Hu fullname: Hu, Haize organization: School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411100, China – sequence: 2 givenname: Jianxun surname: Liu fullname: Liu, Jianxun email: ljx529@gmail.com organization: School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411100, China – sequence: 3 givenname: Xiangping surname: Zhang fullname: Zhang, Xiangping organization: School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411100, China – sequence: 4 givenname: Mengge surname: Fang fullname: Fang, Mengge organization: State Grid Yiyang Power Supply Company, Yiyang, Hunan 413000, China |
| BookMark | eNqFkMtOwzAQRS0EEm3hD1j4B1L8SJyUBVIo5VmJDaytiTMurlKnsk2l_j2pyooFrEa6o3Ole8bk1PceCbnibMoZV9fr6RaS6VdTwYQcolnO8hMy4lUps4Ln4pSMGJM8k4LJczKOcc0YL4fHiLzUni6sRZPcDin4ltYtbBM0HdLXbIPgI627VR9c-txQ2wd651b0HhLQefcVEwZae-j20cULcmahi3j5cyfk42HxPn_Klm-Pz_N6mRnJVMqUrWzTGAQGtsptYYE1RomqETMsZipXrZJGioqhZVBJhYVqpShRlUpaKbickJtjrwl9jAGtNi5Bcr1PAVynOdMHK3qtj1b0wYo-Whng_Be8DW4DYf8fdnvEcBi2cxh0NA69wdaFwZ1ue_d3wTeKvn9w |
| CitedBy_id | crossref_primary_10_1080_08974438_2024_2427639 crossref_primary_10_1371_journal_pone_0326145 crossref_primary_10_1007_s10586_024_04664_4 crossref_primary_10_1097_NR9_0000000000000068 crossref_primary_10_1007_s00603_025_04516_6 crossref_primary_10_1016_j_rser_2024_114284 crossref_primary_10_3390_su16114840 crossref_primary_10_4018_IJAEIS_370560 crossref_primary_10_1016_j_asoc_2024_112182 crossref_primary_10_1016_j_compstruct_2024_118107 crossref_primary_10_1007_s10462_024_11015_7 crossref_primary_10_1016_j_jhydrol_2024_132227 crossref_primary_10_1016_j_patcog_2025_111548 crossref_primary_10_1109_MITP_2024_3405857 crossref_primary_10_1109_TIM_2024_3470047 crossref_primary_10_62425_jirs_1710192 crossref_primary_10_1049_ntw2_12134 crossref_primary_10_3390_su16072717 crossref_primary_10_1016_j_neucom_2025_131225 crossref_primary_10_1145_3715963 crossref_primary_10_1016_j_knosys_2025_113170 crossref_primary_10_1016_j_neucom_2024_128101 crossref_primary_10_2478_amns_2024_2620 crossref_primary_10_1016_j_partic_2023_10_010 crossref_primary_10_1016_j_patcog_2024_111158 crossref_primary_10_1002_cjce_25133 crossref_primary_10_1177_14727978251366492 crossref_primary_10_1016_j_energy_2024_133352 crossref_primary_10_1088_1361_6560_ad03d1 crossref_primary_10_1007_s40534_024_00338_4 crossref_primary_10_1007_s13042_023_01978_4 crossref_primary_10_1109_TKDE_2024_3401075 crossref_primary_10_3390_su17072969 crossref_primary_10_1016_j_asoc_2025_113757 crossref_primary_10_1007_s11227_024_06790_7 crossref_primary_10_1109_ACCESS_2023_3322929 crossref_primary_10_1016_j_inffus_2023_101964 crossref_primary_10_3390_app15020718 crossref_primary_10_1155_2023_5119602 crossref_primary_10_1007_s43926_025_00160_2 crossref_primary_10_1016_j_tws_2024_112274 crossref_primary_10_1039_D5EA00051C crossref_primary_10_1016_j_compedu_2025_105453 crossref_primary_10_1016_j_ecolind_2024_112988 crossref_primary_10_1016_j_enconman_2024_119151 crossref_primary_10_1109_ACCESS_2024_3385628 crossref_primary_10_1038_s41598_025_13848_w crossref_primary_10_1016_j_eswa_2024_125733 crossref_primary_10_1016_j_patcog_2025_111881 crossref_primary_10_1016_j_cam_2025_116921 crossref_primary_10_1186_s40494_024_01497_7 crossref_primary_10_3390_molecules29010197 crossref_primary_10_1016_j_ijpe_2025_109621 crossref_primary_10_1016_j_neucom_2024_127901 crossref_primary_10_1016_j_ijdrr_2025_105486 crossref_primary_10_1016_j_knosys_2024_112384 crossref_primary_10_1007_s12145_024_01540_y crossref_primary_10_1016_j_tws_2025_113756 crossref_primary_10_1002_adts_202300693 crossref_primary_10_1016_j_engappai_2025_110768 crossref_primary_10_12677_csa_2025_152039 crossref_primary_10_1016_j_ergon_2025_103736 crossref_primary_10_1016_j_enbuild_2024_114460 crossref_primary_10_1016_j_jallcom_2024_175086 crossref_primary_10_1016_j_csite_2024_104898 crossref_primary_10_1186_s43251_024_00119_3 crossref_primary_10_1007_s40964_025_01358_0 crossref_primary_10_1080_17538947_2025_2491105 crossref_primary_10_1017_aer_2025_10034 crossref_primary_10_3390_su17072984 crossref_primary_10_3390_agronomy15092069 crossref_primary_10_1007_s10462_024_10920_1 crossref_primary_10_1016_j_est_2024_112900 crossref_primary_10_3390_computers14070271 crossref_primary_10_63556_tisej_2025_1545 crossref_primary_10_1080_0951192X_2025_2493630 crossref_primary_10_3390_electronics14102074 crossref_primary_10_3390_pr11123311 crossref_primary_10_1016_j_jhydrol_2024_131161 crossref_primary_10_3390_math11143195 crossref_primary_10_14201_adcaij_32508 crossref_primary_10_1007_s00521_024_10764_4 crossref_primary_10_1007_s10489_024_05267_7 crossref_primary_10_1007_s43926_025_00167_9 crossref_primary_10_1038_s41598_025_96314_x crossref_primary_10_1142_S0129156424401153 crossref_primary_10_3390_math12142211 crossref_primary_10_1080_17517575_2025_2510350 crossref_primary_10_1016_j_swevo_2024_101842 crossref_primary_10_3390_agronomy15071545 crossref_primary_10_1016_j_patcog_2023_110062 crossref_primary_10_1108_COMPEL_05_2023_0207 |
| Cites_doi | 10.1049/iet-gtd.2018.6326 10.1016/j.knosys.2020.106731 10.1016/j.patcog.2019.107175 10.18421/TEM103-13 10.1016/j.asoc.2018.03.011 10.3390/app112311202 10.1016/j.patcog.2019.107014 10.1016/j.asoc.2019.105763 10.1016/j.patcog.2020.107560 10.5269/bspm.v35i1.27933 10.1504/IJCAT.2018.094576 10.1016/j.patcog.2020.107627 10.1134/S1063776118070142 10.1080/08839514.2018.1451214 10.3390/en11061336 10.1016/S1097-2765(00)80114-8 10.1093/biostatistics/kxr034 10.1007/s00484-019-01699-w 10.1109/TVT.2019.2963272 10.1016/j.patcog.2020.107207 10.1016/j.jksuci.2016.11.003 10.1016/j.patcog.2020.107625 10.1016/j.patcog.2020.107499 10.3390/ijerph18041919 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.patcog.2023.109404 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-5142 |
| ExternalDocumentID | 10_1016_j_patcog_2023_109404 S003132032300105X |
| GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c306t-6f8fbbcea0af84f5fa0bc628b29e59646d63c3280ef0a836e56d327e6763f3213 |
| ISICitedReferencesCount | 103 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000990892100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-3203 |
| IngestDate | Tue Nov 18 22:03:35 EST 2025 Sat Nov 29 07:29:49 EST 2025 Fri Feb 23 02:37:16 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | K-means algorithm Clustering centroids Global search Local optimization Lévy flight |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-6f8fbbcea0af84f5fa0bc628b29e59646d63c3280ef0a836e56d327e6763f3213 |
| ORCID | 0000-0002-1706-9691 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_patcog_2023_109404 crossref_primary_10_1016_j_patcog_2023_109404 elsevier_sciencedirect_doi_10_1016_j_patcog_2023_109404 |
| PublicationCentury | 2000 |
| PublicationDate | July 2023 2023-07-00 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Pattern recognition |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Borlea, Precup, Borlea (bib0020) 2021; 214 Vaulina, Sametov (bib0003) 2018; 74 medians clustering[C]//International conference on machine learning. PMLR, 2020: 7055-7065. Salehnia, Salehnia, Ansari (bib0005) 2019; 283 Sadeghian, Oshnoei, Khezri (bib0004) 2019; 218 Zhao, Wang, Zuo (bib0017) 2020; 156 Saha, Mukherjee (bib0009) 2021; 110 Zhu, Zhu, Zheng (bib0013) 2020; 105 Xie, Zhang, Lim (bib0018) 2019; 84 Ghadiri, Samadi, Vempala (bib0011) 2021; vol. 224 means and Yaying, Hazarika (bib0021) 2017; 35 Y.A. Wijaya, D.A. Kurniady, E. Setyanto, Davies Bouldin index algorithm for optimizing clustering case studies mapping school facilities 1099–1103 (2021). Chumuang (bib0030) 2018; vol. 6 Labed, Fizazi, Mahi (bib0027) 2018; 32 KHRISSI, ELAKKAD, SATORI (bib0029) 2020; vol. 78 Gagnon-Bartsch, Speed (bib0032) 2012; 117 Hira, Gillies (bib0033) 2015; 109 Xu, Lange (bib0022) 2019; 22 X. Ran, X. Zhou, M. Lei, et al. A novel Kang, Peng, Cheng (bib0015) 2021; 110 Nedyalkova, Madurga, Simeonov (bib0002) 2021; 12 Ghadiri, Samadi, Vempala (bib0024) 2021; vol. 234 Ismail, Reddy, Reddy (bib0026) 2018; 30 Song, Zhou, Qian (bib0001) 2018; vol. 9 Bouyer, Hatamlou (bib0008) 2018; 67 Isazadeh, Tarkhaneh, Khamnei (bib0010) 2018; 91 Song, Yao, Nie (bib0012) 2021; 109 Nie, Shi, Li (bib0014) 2020; 102 Tuba, Starnberger I, N (bib0019) 2018; vol. 9 Corso, Cerquitelli (bib0034) 2018; 110 means clustering algorithm with a noise algorithm for capturing urban hotspots[j], Appl. Sci. 2021, 11(23): 11202. Cho, Campbell, Winzeler (bib0031) 1998; 31 M. Moshkovitz, S. Dasgupta, C, Rashtchian, et al. Explainable Förster, Inderka, Gauterin (bib0007) 2020; 3 Soneji, Sanghvi (bib0025) 2012; vol. 18 Ma, Liu, Cao (bib0016) 2020; 107 Xie (10.1016/j.patcog.2023.109404_bib0018) 2019; 84 Förster (10.1016/j.patcog.2023.109404_bib0007) 2020; 3 Sadeghian (10.1016/j.patcog.2023.109404_bib0004) 2019; 218 KHRISSI (10.1016/j.patcog.2023.109404_bib0029) 2020; vol. 78 Saha (10.1016/j.patcog.2023.109404_bib0009) 2021; 110 Isazadeh (10.1016/j.patcog.2023.109404_bib0010) 2018; 91 Hira (10.1016/j.patcog.2023.109404_bib0033) 2015; 109 Song (10.1016/j.patcog.2023.109404_bib0012) 2021; 109 Zhao (10.1016/j.patcog.2023.109404_bib0017) 2020; 156 Gagnon-Bartsch (10.1016/j.patcog.2023.109404_bib0032) 2012; 117 Ghadiri (10.1016/j.patcog.2023.109404_bib0024) 2021; vol. 234 Ismail (10.1016/j.patcog.2023.109404_bib0026) 2018; 30 Salehnia (10.1016/j.patcog.2023.109404_bib0005) 2019; 283 Borlea (10.1016/j.patcog.2023.109404_bib0020) 2021; 214 Bouyer (10.1016/j.patcog.2023.109404_bib0008) 2018; 67 Nie (10.1016/j.patcog.2023.109404_bib0014) 2020; 102 Chumuang (10.1016/j.patcog.2023.109404_bib0030) 2018; vol. 6 Kang (10.1016/j.patcog.2023.109404_bib0015) 2021; 110 Nedyalkova (10.1016/j.patcog.2023.109404_bib0002) 2021; 12 Vaulina (10.1016/j.patcog.2023.109404_bib0003) 2018; 74 Zhu (10.1016/j.patcog.2023.109404_bib0013) 2020; 105 Soneji (10.1016/j.patcog.2023.109404_bib0025) 2012; vol. 18 Cho (10.1016/j.patcog.2023.109404_bib0031) 1998; 31 Corso (10.1016/j.patcog.2023.109404_bib0034) 2018; 110 10.1016/j.patcog.2023.109404_bib0023 Tuba (10.1016/j.patcog.2023.109404_bib0019) 2018; vol. 9 Xu (10.1016/j.patcog.2023.109404_bib0022) 2019; 22 Ghadiri (10.1016/j.patcog.2023.109404_bib0011) 2021; vol. 224 Ma (10.1016/j.patcog.2023.109404_bib0016) 2020; 107 Yaying (10.1016/j.patcog.2023.109404_bib0021) 2017; 35 10.1016/j.patcog.2023.109404_bib0006 10.1016/j.patcog.2023.109404_bib0028 Song (10.1016/j.patcog.2023.109404_bib0001) 2018; vol. 9 Labed (10.1016/j.patcog.2023.109404_bib0027) 2018; 32 |
| References_xml | – volume: vol. 9 start-page: 531 year: 2018 end-page: 543 ident: bib0001 article-title: Graphr: accelerating graph processing using reRAM publication-title: 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA) – reference: -means and – volume: 32 start-page: 96 year: 2018 end-page: 118 ident: bib0027 article-title: A comparative study of classical clustering method and cuckoo search approach for satellite image clustering: application to water body extraction publication-title: Appl. Artif. Intell. – volume: 283 start-page: 861 year: 2019 end-page: 872 ident: bib0005 article-title: Climate data clustering effects on arid and semi-arid rainfed wheat yield: a comparison of artificial intelligence and publication-title: Int. J. Biometeorol. – volume: 67 start-page: 172 year: 2018 end-page: 182 ident: bib0008 article-title: An efficient hybrid clustering method based on improved cuckoo optimization and modified particle swarm optimization algorithms publication-title: Appl. Soft Comput. – volume: 214 start-page: 106731 year: 2021 ident: bib0020 article-title: A unified form of fuzzy c-means and publication-title: Knowledge-Based Syst. – volume: 117 start-page: 539 year: 2012 end-page: 552 ident: bib0032 article-title: Using control genes to correct for unwanted variation in microarray data publication-title: Biostatistics – volume: 74 start-page: 350 year: 2018 end-page: 356 ident: bib0003 article-title: Spectral and structural characteristics for cluster systems of charged Brownian particles publication-title: J. Exp. Theor. Phys. – reference: M. Moshkovitz, S. Dasgupta, C, Rashtchian, et al. Explainable – volume: 102 start-page: 107207 year: 2020 ident: bib0014 article-title: Auto-weighted multi-view co-clustering via fast matrix factorization publication-title: Pattern Recognit. – volume: 3 start-page: 2398 year: 2020 end-page: 2410 ident: bib0007 article-title: Data-driven identification of characteristic real-driving cycles based on publication-title: IEEE Trans. Veh. Technol. – volume: 31 start-page: 65 year: 1998 end-page: 73 ident: bib0031 article-title: A genome-wide transcriptional analysis of the mitotic cell cycle publication-title: Mol. Cell – volume: 110 start-page: 1336 year: 2018 end-page: 1342 ident: bib0034 article-title: METATECH: meteorological data analysis for thermal energy charac-terization by means of self-learning transparent models publication-title: Energies – volume: 107 start-page: 107499 year: 2020 ident: bib0016 article-title: Cost-sensitive deep forest for price prediction publication-title: Pattern Recognit. – volume: vol. 9 start-page: 1 year: 2018 end-page: 5 ident: bib0019 article-title: Cooperative clustering algorithm based on brain storm optimization and publication-title: Proceedings of the 2018 ACM Conference on Fairness, Accountability, and Transparency – volume: 35 start-page: 139 year: 2017 end-page: 145 ident: bib0021 article-title: On arithmetic continuity publication-title: Bol. Soc. Parana. Mat. – reference: X. Ran, X. Zhou, M. Lei, et al. A novel – volume: 110 start-page: 107625 year: 2021 ident: bib0009 article-title: Cnak: cluster number assisted publication-title: Pattern Recognit. – volume: vol. 18 start-page: 3 year: 2012 end-page: 10 ident: bib0025 article-title: Towards the improvement of cuckoo search algorithm publication-title: 2012 World Congress on Information and Communication Technologies – volume: 22 start-page: 6921 year: 2019 end-page: 6931 ident: bib0022 article-title: Power – volume: 91 start-page: 137 year: 2018 end-page: 143 ident: bib0010 article-title: A new hybrid strategy for data clustering using cuckoo search based on Mantegna Lévy distribution, PSO and publication-title: Int. J. Comput. Appl. Technol. – volume: 84 start-page: 105763 year: 2019 ident: bib0018 article-title: Improving publication-title: Appl. Soft Comput. – volume: 109 start-page: 107560 year: 2015 end-page: 107571 ident: bib0033 article-title: A review of feature selection and feature extraction methods applied on microarray data publication-title: Adv. Bioinform. – volume: vol. 224 start-page: 438 year: 2021 end-page: 448 ident: bib0011 article-title: Socially fair publication-title: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency – volume: vol. 234 start-page: 438 year: 2021 end-page: 448 ident: bib0024 article-title: Socially fair publication-title: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency – volume: vol. 6 start-page: 369 year: 2018 end-page: 374 ident: bib0030 article-title: Comparative algorithm for predicting the protein localization sites with yeast dataset publication-title: 2018 14th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS) – volume: 105 start-page: 107175 year: 2020 ident: bib0013 article-title: Spectral rotation for deep one-step clustering publication-title: Pattern Recognit. – volume: 110 start-page: 107627 year: 2021 ident: bib0015 article-title: Structured graph learning for clustering and semi-supervised classification publication-title: Pattern Recognit. – volume: 156 start-page: 107014 year: 2020 ident: bib0017 article-title: Similarity learning with joint transfer constraints for person re-identification publication-title: Pattern Recognit. – reference: -medians clustering[C]//International conference on machine learning. PMLR, 2020: 7055-7065. – reference: Y.A. Wijaya, D.A. Kurniady, E. Setyanto, Davies Bouldin index algorithm for optimizing clustering case studies mapping school facilities 1099–1103 (2021). – volume: 30 start-page: 462 year: 2018 end-page: 469 ident: bib0026 article-title: Cuckoo inspired fast search algorithm for fractal image encoding publication-title: J. King Saud University-Computer Inf. Sci. – volume: 109 start-page: 107560 year: 2021 ident: bib0012 article-title: Weighted bilateral publication-title: Pattern Recognit. – volume: 12 start-page: 1919 year: 2021 ident: bib0002 article-title: Combinatorial publication-title: Int. J. Environ. Res. Public Health – volume: 218 start-page: 3397 year: 2019 end-page: 3408 ident: bib0004 article-title: Data clustering-based approach for optimal capacitor allocation in distribution systems including wind farms publication-title: IET Gener., Transm. Distrib. – volume: vol. 78 start-page: 1 year: 2020 end-page: 6 ident: bib0029 article-title: Simple and efficient clustering approach based on cuckoo search algorithm publication-title: 2020 Fourth International Conference On Intelligent Computing in Data Sciences (ICDS) – reference: -means clustering algorithm with a noise algorithm for capturing urban hotspots[j], Appl. Sci. 2021, 11(23): 11202. – volume: 218 start-page: 3397 issue: May 1 year: 2019 ident: 10.1016/j.patcog.2023.109404_bib0004 article-title: Data clustering-based approach for optimal capacitor allocation in distribution systems including wind farms publication-title: IET Gener., Transm. Distrib. doi: 10.1049/iet-gtd.2018.6326 – volume: 214 start-page: 106731 year: 2021 ident: 10.1016/j.patcog.2023.109404_bib0020 article-title: A unified form of fuzzy c-means and k-means algorithms and its partitional implementation publication-title: Knowledge-Based Syst. doi: 10.1016/j.knosys.2020.106731 – volume: vol. 6 start-page: 369 year: 2018 ident: 10.1016/j.patcog.2023.109404_bib0030 article-title: Comparative algorithm for predicting the protein localization sites with yeast dataset – volume: 105 start-page: 107175 year: 2020 ident: 10.1016/j.patcog.2023.109404_bib0013 article-title: Spectral rotation for deep one-step clustering publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.107175 – ident: 10.1016/j.patcog.2023.109404_bib0028 doi: 10.18421/TEM103-13 – volume: vol. 9 start-page: 531 year: 2018 ident: 10.1016/j.patcog.2023.109404_bib0001 article-title: Graphr: accelerating graph processing using reRAM – volume: 67 start-page: 172 year: 2018 ident: 10.1016/j.patcog.2023.109404_bib0008 article-title: An efficient hybrid clustering method based on improved cuckoo optimization and modified particle swarm optimization algorithms publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.03.011 – ident: 10.1016/j.patcog.2023.109404_bib0023 – ident: 10.1016/j.patcog.2023.109404_bib0006 doi: 10.3390/app112311202 – volume: 156 start-page: 107014 year: 2020 ident: 10.1016/j.patcog.2023.109404_bib0017 article-title: Similarity learning with joint transfer constraints for person re-identification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.107014 – volume: 84 start-page: 105763 issue: 15 year: 2019 ident: 10.1016/j.patcog.2023.109404_bib0018 article-title: Improving k-means clustering with enhanced firefly algorithms publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105763 – volume: vol. 78 start-page: 1 year: 2020 ident: 10.1016/j.patcog.2023.109404_bib0029 article-title: Simple and efficient clustering approach based on cuckoo search algorithm – volume: 109 start-page: 107560 issue: 99 year: 2021 ident: 10.1016/j.patcog.2023.109404_bib0012 article-title: Weighted bilateral k-means algorithm for fast co-clustering and fast spectral clustering publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107560 – volume: 35 start-page: 139 year: 2017 ident: 10.1016/j.patcog.2023.109404_bib0021 article-title: On arithmetic continuity publication-title: Bol. Soc. Parana. Mat. doi: 10.5269/bspm.v35i1.27933 – volume: 91 start-page: 137 year: 2018 ident: 10.1016/j.patcog.2023.109404_bib0010 article-title: A new hybrid strategy for data clustering using cuckoo search based on Mantegna Lévy distribution, PSO and k-means publication-title: Int. J. Comput. Appl. Technol. doi: 10.1504/IJCAT.2018.094576 – volume: vol. 224 start-page: 438 year: 2021 ident: 10.1016/j.patcog.2023.109404_bib0011 article-title: Socially fair k-means clustering – volume: 110 start-page: 107627 issue: 1 year: 2021 ident: 10.1016/j.patcog.2023.109404_bib0015 article-title: Structured graph learning for clustering and semi-supervised classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107627 – volume: 74 start-page: 350 year: 2018 ident: 10.1016/j.patcog.2023.109404_bib0003 article-title: Spectral and structural characteristics for cluster systems of charged Brownian particles publication-title: J. Exp. Theor. Phys. doi: 10.1134/S1063776118070142 – volume: 109 start-page: 107560 year: 2015 ident: 10.1016/j.patcog.2023.109404_bib0033 article-title: A review of feature selection and feature extraction methods applied on microarray data publication-title: Adv. Bioinform. – volume: 32 start-page: 96 issue: 1–6 year: 2018 ident: 10.1016/j.patcog.2023.109404_bib0027 article-title: A comparative study of classical clustering method and cuckoo search approach for satellite image clustering: application to water body extraction publication-title: Appl. Artif. Intell. doi: 10.1080/08839514.2018.1451214 – volume: 110 start-page: 1336 year: 2018 ident: 10.1016/j.patcog.2023.109404_bib0034 article-title: METATECH: meteorological data analysis for thermal energy charac-terization by means of self-learning transparent models publication-title: Energies doi: 10.3390/en11061336 – volume: 31 start-page: 65 year: 1998 ident: 10.1016/j.patcog.2023.109404_bib0031 article-title: A genome-wide transcriptional analysis of the mitotic cell cycle publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80114-8 – volume: 117 start-page: 539 year: 2012 ident: 10.1016/j.patcog.2023.109404_bib0032 article-title: Using control genes to correct for unwanted variation in microarray data publication-title: Biostatistics doi: 10.1093/biostatistics/kxr034 – volume: 283 start-page: 861 issue: 6 year: 2019 ident: 10.1016/j.patcog.2023.109404_bib0005 article-title: Climate data clustering effects on arid and semi-arid rainfed wheat yield: a comparison of artificial intelligence and k-means approaches publication-title: Int. J. Biometeorol. doi: 10.1007/s00484-019-01699-w – volume: vol. 234 start-page: 438 year: 2021 ident: 10.1016/j.patcog.2023.109404_bib0024 article-title: Socially fair k-means clustering – volume: 3 start-page: 2398 issue: 4 year: 2020 ident: 10.1016/j.patcog.2023.109404_bib0007 article-title: Data-driven identification of characteristic real-driving cycles based on k-means clustering and mixed-integer optimization publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2963272 – volume: 102 start-page: 107207 year: 2020 ident: 10.1016/j.patcog.2023.109404_bib0014 article-title: Auto-weighted multi-view co-clustering via fast matrix factorization publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107207 – volume: 30 start-page: 462 year: 2018 ident: 10.1016/j.patcog.2023.109404_bib0026 article-title: Cuckoo inspired fast search algorithm for fractal image encoding publication-title: J. King Saud University-Computer Inf. Sci. doi: 10.1016/j.jksuci.2016.11.003 – volume: 110 start-page: 107625 issue: 110 year: 2021 ident: 10.1016/j.patcog.2023.109404_bib0009 article-title: Cnak: cluster number assisted k-means publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107625 – volume: vol. 9 start-page: 1 year: 2018 ident: 10.1016/j.patcog.2023.109404_bib0019 article-title: Cooperative clustering algorithm based on brain storm optimization and k-means – volume: vol. 18 start-page: 3 year: 2012 ident: 10.1016/j.patcog.2023.109404_bib0025 article-title: Towards the improvement of cuckoo search algorithm – volume: 22 start-page: 6921 issue: 4 year: 2019 ident: 10.1016/j.patcog.2023.109404_bib0022 article-title: Power k-means clustering – volume: 107 start-page: 107499 issue: 9 year: 2020 ident: 10.1016/j.patcog.2023.109404_bib0016 article-title: Cost-sensitive deep forest for price prediction publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107499 – volume: 12 start-page: 1919 year: 2021 ident: 10.1016/j.patcog.2023.109404_bib0002 article-title: Combinatorial k-means clustering as a machine learning tool applied to diabetes mellitus type 2 publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph18041919 |
| SSID | ssj0017142 |
| Score | 2.6573973 |
| Snippet | •A novel k-means clustering algorithm based on Lévy flight trajectory (Lk-means) is proposed.•The defects of Xk-means clustering algorithm are... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 109404 |
| SubjectTerms | [formula omitted]-means algorithm Clustering centroids Global search Local optimization Lévy flight |
| Title | An Effective and Adaptable K-means Algorithm for Big Data Cluster Analysis |
| URI | https://dx.doi.org/10.1016/j.patcog.2023.109404 |
| Volume | 139 |
| WOSCitedRecordID | wos000990892100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbtpode-i5JX-jQ26LgtWxZProhJd2WEGgKvhlZlrYOG6_ZeMvSX9_Rw9q0KX1BL2bRWraZ-Twzkme-Qei1qGVdpw0lrMklSeBZSS6alCRa11LWMkkkt80mstNTXpb5mU9rvrLtBLKu49tt3v9XVcMYKNuUzv6FusNFYQB-g9LhCGqH4x8pvuimjpLY5ASZbfGiEf1gK6Tek0sFrmlaLBerdTt8vrRJhm_aBSh_ENOj5cbQJgSikuuB65nl4TS1Lz7haPf5_mRj_ZdovwaQfGjt2Bywt92EE8PmdAnji350mpYK0v1hcmx9cpLfiYhpyFr122NjicwuH8maXDojNI6cFVPOyvKMEojUvjfDjtTohkl3uwsXhz24ptXi0NzYcGAlrmvxD2TZHx0XZURhZWV6f5a30V6cpTmfoL3i3XE5D1-YslnimOT9441llTb37-a9fh62XAtFzh-ge34NgQun-4foluoeoftjfw7szfVjNC86HKCAAQo4QAF7KOAABQxQwAAFbKCAPRTwCIUn6NPb4_OjE-J7ZxAJi8CBMM11XUslIqF5olMtolqymNdxrtKcJaxhVNKYR0pHglOmUtbQOFMM_I2m8Yw-RZNu1al9hE2th0opvNMwr9EyB9Gl4Jsi3aiMZeoA0VE0lfTE8qa_ybIaMwgvKifQygi0cgI9QCTM6h2xym_Oz0apVz44dEFfBUD55cxn_zzzObq7w_kLNBnWG_US3ZFfhvZq_coj6hv4yIny |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Effective+and+Adaptable+K-means+Algorithm+for+Big+Data+Cluster+Analysis&rft.jtitle=Pattern+recognition&rft.au=Hu%2C+Haize&rft.au=Liu%2C+Jianxun&rft.au=Zhang%2C+Xiangping&rft.au=Fang%2C+Mengge&rft.date=2023-07-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=139&rft_id=info:doi/10.1016%2Fj.patcog.2023.109404&rft.externalDocID=S003132032300105X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |