A-SFS: Semi-supervised feature selection based on multi-task self-supervision

Feature selection is an important process in machine learning. It builds an interpretable and robust model by selecting the features that contribute the most to the prediction target. However, most mature feature selection algorithms, including supervised and semi-supervised, fail to fully exploit t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Knowledge-based systems Ročník 252; s. 109449
Hlavní autori: Qiu, Zhifeng, Zeng, Wanxin, Liao, Dahua, Gui, Ning
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 27.09.2022
Predmet:
ISSN:0950-7051, 1872-7409
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Feature selection is an important process in machine learning. It builds an interpretable and robust model by selecting the features that contribute the most to the prediction target. However, most mature feature selection algorithms, including supervised and semi-supervised, fail to fully exploit the complex potential structure between features. We believe that these structures are very important for the feature selection process, especially when labels are lacking and data is noisy. To this end, we innovatively introduces a deep learning-based self-supervised mechanism into feature selection problems, namely batch-Attention-based Self-supervision Feature Selection(A-SFS). Firstly, a multi-task self-supervised autoencoder is designed to uncover the hidden structural among features with the support of two pretext tasks. Guided by the integrated information from the multi-self-supervised learning model, a batch-attention mechanism is designed to generate feature weights according to batch-based feature selection patterns to alleviate the impacts introduced from a handful of noisy data. This method is compared to 14 major strong benchmarks, including LightGBM and XGBoost. Experimental results show that A-SFS achieves the highest accuracy in most datasets. Furthermore, this design significantly reduces the reliance on labels, with only 1/10 labeled data are needed to achieve the same performance as those state of art baselines. Results show that A-SFS is also most robust to the noisy and missing data. •A new feature selection method based on self-supervised pattern discovery.•A multi-task self-supervised model for latent structure discovery.•Batch-attention-based feature weight generation.
AbstractList Feature selection is an important process in machine learning. It builds an interpretable and robust model by selecting the features that contribute the most to the prediction target. However, most mature feature selection algorithms, including supervised and semi-supervised, fail to fully exploit the complex potential structure between features. We believe that these structures are very important for the feature selection process, especially when labels are lacking and data is noisy. To this end, we innovatively introduces a deep learning-based self-supervised mechanism into feature selection problems, namely batch-Attention-based Self-supervision Feature Selection(A-SFS). Firstly, a multi-task self-supervised autoencoder is designed to uncover the hidden structural among features with the support of two pretext tasks. Guided by the integrated information from the multi-self-supervised learning model, a batch-attention mechanism is designed to generate feature weights according to batch-based feature selection patterns to alleviate the impacts introduced from a handful of noisy data. This method is compared to 14 major strong benchmarks, including LightGBM and XGBoost. Experimental results show that A-SFS achieves the highest accuracy in most datasets. Furthermore, this design significantly reduces the reliance on labels, with only 1/10 labeled data are needed to achieve the same performance as those state of art baselines. Results show that A-SFS is also most robust to the noisy and missing data. •A new feature selection method based on self-supervised pattern discovery.•A multi-task self-supervised model for latent structure discovery.•Batch-attention-based feature weight generation.
ArticleNumber 109449
Author Zeng, Wanxin
Gui, Ning
Liao, Dahua
Qiu, Zhifeng
Author_xml – sequence: 1
  givenname: Zhifeng
  surname: Qiu
  fullname: Qiu, Zhifeng
  organization: School of Automation, Central South University, Changsha, 410083, Hunan, China
– sequence: 2
  givenname: Wanxin
  surname: Zeng
  fullname: Zeng, Wanxin
  organization: School of Automation, Central South University, Changsha, 410083, Hunan, China
– sequence: 3
  givenname: Dahua
  surname: Liao
  fullname: Liao, Dahua
  organization: School of Automation, Central South University, Changsha, 410083, Hunan, China
– sequence: 4
  givenname: Ning
  orcidid: 0000-0003-4983-5327
  surname: Gui
  fullname: Gui, Ning
  email: ninggui@csu.edu.cn
  organization: School of Computer Science and Engineering, Central South University, Changsha, 410083, Hunan, China
BookMark eNqFkM9KAzEQh4NUsK2-gYd9gdRk82e7PQilWBUqHqrnkE1mIe12tyRpoW9vlhUPHvQ0w8x8A79vgkZt1wJC95TMKKHyYTfbt124hFlO8jyNSs7LKzSm8yLHBSflCI1JKQguiKA3aBLCjpB0Sedj9LbE2_V2kW3h4HA4HcGfXQCb1aDjyUMWoAETXddmle7nqTmcmuhw1GHfb-sfKh3doutaNwHuvusUfa6fPlYvePP-_LpabrBhREYsrWCFFDk3ohISeMVsKalkOVBr56JgvJYgBdNMcACwFWighBFqKwuFNGyK-PDX-C4ED7U6enfQ_qIoUb0StVODEtUrUYOShC1-YcZF3aeLXrvmP_hxgCEFOzvwKhgHrQHrfFKkbOf-fvAF7uGCkQ
CitedBy_id crossref_primary_10_1007_s10489_024_05760_z
crossref_primary_10_1145_3689428
crossref_primary_10_1186_s40537_023_00792_7
crossref_primary_10_1016_j_knosys_2023_111084
crossref_primary_10_1016_j_knosys_2024_112040
crossref_primary_10_1016_j_knosys_2023_110479
crossref_primary_10_1016_j_knosys_2024_111523
crossref_primary_10_1016_j_segan_2023_101271
crossref_primary_10_3390_rs14205257
crossref_primary_10_3390_a18090552
crossref_primary_10_1016_j_patcog_2025_112280
Cites_doi 10.1145/1553374.1553431
10.1109/CVPR.2018.00813
10.1145/3436891
10.1145/3136625
10.1109/TNNLS.2016.2551724
10.1089/cmb.2015.0189
10.1109/TMM.2019.2924576
10.1016/S1874-1029(14)60362-1
10.1016/j.knosys.2021.107435
10.1007/s10994-017-5648-2
10.1145/2939672.2939785
10.1609/aaai.v33i01.33013705
10.1016/j.knosys.2017.06.018
10.1016/j.patcog.2016.11.003
10.1609/aaai.v28i1.8922
10.1016/j.knosys.2011.04.014
10.1609/aaai.v33i01.33013983
10.1109/TIE.2014.2301773
10.1145/3335676
10.1109/TKDE.2015.2493537
10.1016/j.eswa.2015.07.007
10.1109/CVPR.2019.00375
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.knosys.2022.109449
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2022_109449
S0950705122007122
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
ID FETCH-LOGICAL-c306t-6d5376524c5b56e4b3d961632e1dd85734f6e653a354eeedbeae10301dbde76c3
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001336368800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Sat Nov 29 07:07:58 EST 2025
Tue Nov 18 22:20:17 EST 2025
Fri Feb 23 02:40:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Attention mechanism
Self-supervised
Feature selection
Autoencoder
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-6d5376524c5b56e4b3d961632e1dd85734f6e653a354eeedbeae10301dbde76c3
ORCID 0000-0003-4983-5327
ParticipantIDs crossref_primary_10_1016_j_knosys_2022_109449
crossref_citationtrail_10_1016_j_knosys_2022_109449
elsevier_sciencedirect_doi_10_1016_j_knosys_2022_109449
PublicationCentury 2000
PublicationDate 2022-09-27
PublicationDateYYYYMMDD 2022-09-27
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-27
  day: 27
PublicationDecade 2020
PublicationTitle Knowledge-based systems
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Venkatesh, Anuradha (b12) 2019; 19
Alweshah, Alkhalaileh, Al-Betar, Bakar (b10) 2021
Xiao, Cao, Jiang, Gu, Xie (b36) 2017; 132
N. Gui, D. Ge, Z. Hu, AFS: An attention-based mechanism for supervised feature selection, in: Proceedings of the AAAI Conference on Artificial Intelligence, 33 (01), 2019, pp. 3705–3713.
Liu, Ji, Ye (b44) 2012
Ke, Meng, Finley, Wang, Chen, Ma, Ye, Liu (b22) 2017; 30
Uğuz (b6) 2011; 24
Li, Chen, Wasserman (b30) 2016; 23
Yin, Ding, Xie, Luo (b1) 2014; 61
Bennasar, Hicks, Setchi (b7) 2015; 42
Brown, Mann, Ryder, Subbiah, Kaplan, Dhariwal, Neelakantan, Shyam, Sastry, Askell (b19) 2020
Roy, Murty, Mohan (b31) 2015
Goldman, Zhou (b24) 2000
Sheikhpour, Sarram, Gharaghani, Chahooki (b13) 2017; 64
Nair, Pong, Dalal, Bahl, Lin, Levine (b20) 2018
Yoon, Zhang, Jordon, van der Schaar (b17) 2020; 33
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b41) 2017
T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, 2016, pp. 785–794.
Wojtas, Chen (b34) 2020; 33
L. Jacob, G. Obozinski, J.-P. Vert, Group lasso with overlap and graph lasso, in: Proceedings of the 26th Annual International Conference on Machine Learning, 2009, pp. 433–440.
X. Wang, R. Girshick, A. Gupta, K. He, Non-local neural networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7794–7803.
Guyon, Elisseeff (b25) 2003; 3
Yu, Liu, Li (b16) 2021; 15
Ding-Cheng, Feng, Wen-Li (b28) 2014; 40
Li, Cheng, Wang, Morstatter, Trevino, Tang, Liu (b2) 2017; 50
Nie, Xiang, Jia, Zhang, Yan (b46) 2008
Kingma, Ba (b48) 2014
Mnih, Heess, Graves (b38) 2014
Yan, Tu, Wang, Zhang, Hao, Zhang, Dai (b42) 2019; 22
Škrlj, Džeroski, Lavrač, Petković (b33) 2020
Sechidis, Brown (b14) 2018; 107
Yang, Shen, Ma, Huang, Zhou (b47) 2011
B. Jiang, X. Wu, K. Yu, H. Chen, Joint semi-supervised feature selection and classification through Bayesian approach, in: Proceedings of the AAAI Conference on Artificial Intelligence, 33 (01) 2019, pp.3983–3990.
Wang, Ye (b27) 2015; 28
Li, Wang, Ruiz (b8) 2020
Zhou (b5) 2021
Koller, Sahami (b15) 1996
Q. Yang, H.-X. Yu, A. Wu, W.-S. Zheng, Patch-based discriminative feature learning for unsupervised person re-identification, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 3633–3642.
Ling, Yu, Wang, Liu, Ding, Wu (b21) 2019; 10
X. Chang, F. Nie, Y. Yang, H. Huang, A convex formulation for semi-supervised multi-label feature selection, in: Proceedings of the AAAI Conference on Artificial Intelligence, 28 (1) 2014.
Parikh, Täckström, Das, Uszkoreit (b39) 2016
Arık, Pfister (b29) 2021
Li, Wang, Zhang (b11) 2021; 231
Gui, Sun, Ji, Tao, Tan (b9) 2017; 28
Chorowski, Bahdanau, Serdyuk, Cho, Bengio (b40) 2015
Zhao, He, Cai, Zhang, Ng, Zhuang (b4) 2015; 28
Ang, Haron, Hamed (b37) 2015
Lin, Tang (b45) 2006
Ke (10.1016/j.knosys.2022.109449_b22) 2017; 30
Zhao (10.1016/j.knosys.2022.109449_b4) 2015; 28
Li (10.1016/j.knosys.2022.109449_b8) 2020
Xiao (10.1016/j.knosys.2022.109449_b36) 2017; 132
10.1016/j.knosys.2022.109449_b23
10.1016/j.knosys.2022.109449_b43
Yin (10.1016/j.knosys.2022.109449_b1) 2014; 61
Li (10.1016/j.knosys.2022.109449_b2) 2017; 50
Wang (10.1016/j.knosys.2022.109449_b27) 2015; 28
Roy (10.1016/j.knosys.2022.109449_b31) 2015
Wojtas (10.1016/j.knosys.2022.109449_b34) 2020; 33
Nie (10.1016/j.knosys.2022.109449_b46) 2008
10.1016/j.knosys.2022.109449_b26
Lin (10.1016/j.knosys.2022.109449_b45) 2006
Arık (10.1016/j.knosys.2022.109449_b29) 2021
Yu (10.1016/j.knosys.2022.109449_b16) 2021; 15
10.1016/j.knosys.2022.109449_b3
Venkatesh (10.1016/j.knosys.2022.109449_b12) 2019; 19
Chorowski (10.1016/j.knosys.2022.109449_b40) 2015
Gui (10.1016/j.knosys.2022.109449_b9) 2017; 28
Yoon (10.1016/j.knosys.2022.109449_b17) 2020; 33
Yan (10.1016/j.knosys.2022.109449_b42) 2019; 22
Parikh (10.1016/j.knosys.2022.109449_b39) 2016
Brown (10.1016/j.knosys.2022.109449_b19) 2020
Ding-Cheng (10.1016/j.knosys.2022.109449_b28) 2014; 40
10.1016/j.knosys.2022.109449_b35
Guyon (10.1016/j.knosys.2022.109449_b25) 2003; 3
10.1016/j.knosys.2022.109449_b32
Goldman (10.1016/j.knosys.2022.109449_b24) 2000
Liu (10.1016/j.knosys.2022.109449_b44) 2012
Sechidis (10.1016/j.knosys.2022.109449_b14) 2018; 107
Yang (10.1016/j.knosys.2022.109449_b47) 2011
Sheikhpour (10.1016/j.knosys.2022.109449_b13) 2017; 64
10.1016/j.knosys.2022.109449_b18
Škrlj (10.1016/j.knosys.2022.109449_b33) 2020
Ang (10.1016/j.knosys.2022.109449_b37) 2015
Zhou (10.1016/j.knosys.2022.109449_b5) 2021
Ling (10.1016/j.knosys.2022.109449_b21) 2019; 10
Alweshah (10.1016/j.knosys.2022.109449_b10) 2021
Vaswani (10.1016/j.knosys.2022.109449_b41) 2017
Bennasar (10.1016/j.knosys.2022.109449_b7) 2015; 42
Koller (10.1016/j.knosys.2022.109449_b15) 1996
Kingma (10.1016/j.knosys.2022.109449_b48) 2014
Uğuz (10.1016/j.knosys.2022.109449_b6) 2011; 24
Li (10.1016/j.knosys.2022.109449_b11) 2021; 231
Li (10.1016/j.knosys.2022.109449_b30) 2016; 23
Mnih (10.1016/j.knosys.2022.109449_b38) 2014
Nair (10.1016/j.knosys.2022.109449_b20) 2018
References_xml – start-page: 1
  year: 2015
  end-page: 6
  ident: b31
  article-title: Feature selection using deep neural networks
  publication-title: 2015 International Joint Conference on Neural Networks (IJCNN)
– reference: X. Wang, R. Girshick, A. Gupta, K. He, Non-local neural networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7794–7803.
– start-page: 2204
  year: 2014
  end-page: 2212
  ident: b38
  article-title: Recurrent models of visual attention
  publication-title: Advances in Neural Information Processing Systems
– year: 2014
  ident: b48
  article-title: Adam: A method for stochastic optimization
– volume: 42
  start-page: 8520
  year: 2015
  end-page: 8532
  ident: b7
  article-title: Feature selection using joint mutual information maximisation
  publication-title: Expert Syst. Appl.
– start-page: 468
  year: 2015
  end-page: 477
  ident: b37
  article-title: Semi-supervised SVM-based feature selection for cancer classification using microarray gene expression data
  publication-title: International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems
– volume: 231
  year: 2021
  ident: b11
  article-title: A wind speed interval forecasting system based on constrained lower upper bound estimation and parallel feature selection
  publication-title: Knowl.-Based Syst.
– year: 2020
  ident: b19
  article-title: Language models are few-shot learners
– year: 2021
  ident: b10
  article-title: Coronavirus herd immunity optimizer with greedy crossover for feature selection in medical diagnosis
  publication-title: Knowl.-Based Syst.
– year: 2021
  ident: b5
  article-title: Feature selection with multi-source transfer
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 25
  ident: b21
  article-title: Bamb: A balanced Markov blanket discovery approach to feature selection
  publication-title: ACM Trans. Intell. Syst. Technol. (TIST)
– start-page: 6679
  year: 2021
  end-page: 6687
  ident: b29
  article-title: Tabnet: Attentive interpretable tabular learning
  publication-title: AAAI, Vol. 35
– reference: X. Chang, F. Nie, Y. Yang, H. Huang, A convex formulation for semi-supervised multi-label feature selection, in: Proceedings of the AAAI Conference on Artificial Intelligence, 28 (1) 2014.
– start-page: 671
  year: 2008
  end-page: 676
  ident: b46
  article-title: Trace ratio criterion for feature selection.
  publication-title: AAAI, Vol. 2
– volume: 28
  start-page: 689
  year: 2015
  end-page: 700
  ident: b4
  article-title: Graph regularized feature selection with data reconstruction
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 107
  start-page: 357
  year: 2018
  end-page: 395
  ident: b14
  article-title: Simple strategies for semi-supervised feature selection
  publication-title: Mach. Learn.
– year: 1996
  ident: b15
  article-title: Toward optimal feature selection
– year: 2012
  ident: b44
  article-title: Multi-task feature learning via efficient l2, 1-norm minimization
– volume: 64
  start-page: 141
  year: 2017
  end-page: 158
  ident: b13
  article-title: A survey on semi-supervised feature selection methods
  publication-title: Pattern Recognit.
– volume: 28
  start-page: 1490
  year: 2017
  end-page: 1507
  ident: b9
  article-title: Feature selection based on structured sparsity: A comprehensive study
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 1491
  year: 2020
  end-page: 1498
  ident: b33
  article-title: Feature importance estimation with self-attention networks
  publication-title: ECAI 2020
– reference: L. Jacob, G. Obozinski, J.-P. Vert, Group lasso with overlap and graph lasso, in: Proceedings of the 26th Annual International Conference on Machine Learning, 2009, pp. 433–440.
– volume: 24
  start-page: 1024
  year: 2011
  end-page: 1032
  ident: b6
  article-title: A two-stage feature selection method for text categorization by using information gain, principal component analysis and genetic algorithm
  publication-title: Knowl.-Based Syst.
– volume: 33
  year: 2020
  ident: b17
  article-title: Vime: Extending the success of self-and semi-supervised learning to tabular domain
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: N. Gui, D. Ge, Z. Hu, AFS: An attention-based mechanism for supervised feature selection, in: Proceedings of the AAAI Conference on Artificial Intelligence, 33 (01), 2019, pp. 3705–3713.
– volume: 40
  start-page: 2253
  year: 2014
  end-page: 2261
  ident: b28
  article-title: Detecting local manifold structure for unsupervised feature selection
  publication-title: Acta Automat. Sinica
– volume: 50
  start-page: 1
  year: 2017
  end-page: 45
  ident: b2
  article-title: Feature selection: A data perspective
  publication-title: ACM Comput. Surv.
– start-page: 68
  year: 2006
  end-page: 82
  ident: b45
  article-title: Conditional infomax learning: An integrated framework for feature extraction and fusion
  publication-title: European Conference on Computer Vision
– year: 2011
  ident: b47
  article-title: L2, 1-norm regularized discriminative feature selection for unsupervised
  publication-title: Twenty-Second International Joint Conference on Artificial Intelligence
– year: 2020
  ident: b8
  article-title: A survey on sparse learning models for feature selection
  publication-title: IEEE Trans. Cybern.
– year: 2015
  ident: b40
  article-title: Attention-based models for speech recognition
– reference: Q. Yang, H.-X. Yu, A. Wu, W.-S. Zheng, Patch-based discriminative feature learning for unsupervised person re-identification, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 3633–3642.
– volume: 15
  start-page: 1
  year: 2021
  end-page: 46
  ident: b16
  article-title: A unified view of causal and non-causal feature selection
  publication-title: ACM Trans. Knowll. Discov. Data
– reference: T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, 2016, pp. 785–794.
– volume: 22
  start-page: 229
  year: 2019
  end-page: 241
  ident: b42
  article-title: STAT: Spatial-temporal attention mechanism for video captioning
  publication-title: IEEE Trans. Multimed.
– volume: 61
  start-page: 6418
  year: 2014
  end-page: 6428
  ident: b1
  article-title: A review on basic data-driven approaches for industrial process monitoring
  publication-title: IEEE Trans. Ind. Electron.
– reference: B. Jiang, X. Wu, K. Yu, H. Chen, Joint semi-supervised feature selection and classification through Bayesian approach, in: Proceedings of the AAAI Conference on Artificial Intelligence, 33 (01) 2019, pp.3983–3990.
– volume: 23
  start-page: 322
  year: 2016
  end-page: 336
  ident: b30
  article-title: Deep feature selection: theory and application to identify enhancers and promoters
  publication-title: J. Comput. Biol.
– volume: 132
  start-page: 236
  year: 2017
  end-page: 248
  ident: b36
  article-title: GMDH-based semi-supervised feature selection for customer classification
  publication-title: Knowl.-Based Syst.
– start-page: 5998
  year: 2017
  end-page: 6008
  ident: b41
  article-title: Attention is all you need
  publication-title: Advances in Neural Information Processing Systems
– start-page: 327
  year: 2000
  end-page: 334
  ident: b24
  article-title: Enhancing supervised learning with unlabeled data
  publication-title: ICML
– volume: 33
  start-page: 5105
  year: 2020
  end-page: 5114
  ident: b34
  article-title: Feature importance ranking for deep learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 30
  start-page: 3146
  year: 2017
  end-page: 3154
  ident: b22
  article-title: Lightgbm: A highly efficient gradient boosting decision tree
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: b25
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 28
  start-page: 1279
  year: 2015
  end-page: 1287
  ident: b27
  article-title: Multi-layer feature reduction for tree structured group lasso via hierarchical projection
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2016
  ident: b39
  article-title: A decomposable attention model for natural language inference
– volume: 19
  start-page: 3
  year: 2019
  end-page: 26
  ident: b12
  article-title: A review of feature selection and its methods
  publication-title: Cybern. Inf. Technol.
– year: 2018
  ident: b20
  article-title: Visual reinforcement learning with imagined goals
– ident: 10.1016/j.knosys.2022.109449_b3
  doi: 10.1145/1553374.1553431
– start-page: 5998
  year: 2017
  ident: 10.1016/j.knosys.2022.109449_b41
  article-title: Attention is all you need
– ident: 10.1016/j.knosys.2022.109449_b43
  doi: 10.1109/CVPR.2018.00813
– volume: 15
  start-page: 1
  issue: 4
  year: 2021
  ident: 10.1016/j.knosys.2022.109449_b16
  article-title: A unified view of causal and non-causal feature selection
  publication-title: ACM Trans. Knowll. Discov. Data
  doi: 10.1145/3436891
– start-page: 1491
  year: 2020
  ident: 10.1016/j.knosys.2022.109449_b33
  article-title: Feature importance estimation with self-attention networks
– volume: 50
  start-page: 1
  issue: 6
  year: 2017
  ident: 10.1016/j.knosys.2022.109449_b2
  article-title: Feature selection: A data perspective
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3136625
– start-page: 1
  year: 2015
  ident: 10.1016/j.knosys.2022.109449_b31
  article-title: Feature selection using deep neural networks
– volume: 30
  start-page: 3146
  year: 2017
  ident: 10.1016/j.knosys.2022.109449_b22
  article-title: Lightgbm: A highly efficient gradient boosting decision tree
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 468
  year: 2015
  ident: 10.1016/j.knosys.2022.109449_b37
  article-title: Semi-supervised SVM-based feature selection for cancer classification using microarray gene expression data
– start-page: 2204
  year: 2014
  ident: 10.1016/j.knosys.2022.109449_b38
  article-title: Recurrent models of visual attention
– year: 2015
  ident: 10.1016/j.knosys.2022.109449_b40
– start-page: 6679
  year: 2021
  ident: 10.1016/j.knosys.2022.109449_b29
  article-title: Tabnet: Attentive interpretable tabular learning
– volume: 28
  start-page: 1490
  issue: 7
  year: 2017
  ident: 10.1016/j.knosys.2022.109449_b9
  article-title: Feature selection based on structured sparsity: A comprehensive study
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2551724
– volume: 23
  start-page: 322
  issue: 5
  year: 2016
  ident: 10.1016/j.knosys.2022.109449_b30
  article-title: Deep feature selection: theory and application to identify enhancers and promoters
  publication-title: J. Comput. Biol.
  doi: 10.1089/cmb.2015.0189
– volume: 22
  start-page: 229
  issue: 1
  year: 2019
  ident: 10.1016/j.knosys.2022.109449_b42
  article-title: STAT: Spatial-temporal attention mechanism for video captioning
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2019.2924576
– start-page: 671
  year: 2008
  ident: 10.1016/j.knosys.2022.109449_b46
  article-title: Trace ratio criterion for feature selection.
– volume: 40
  start-page: 2253
  issue: 10
  year: 2014
  ident: 10.1016/j.knosys.2022.109449_b28
  article-title: Detecting local manifold structure for unsupervised feature selection
  publication-title: Acta Automat. Sinica
  doi: 10.1016/S1874-1029(14)60362-1
– volume: 231
  year: 2021
  ident: 10.1016/j.knosys.2022.109449_b11
  article-title: A wind speed interval forecasting system based on constrained lower upper bound estimation and parallel feature selection
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107435
– volume: 107
  start-page: 357
  issue: 2
  year: 2018
  ident: 10.1016/j.knosys.2022.109449_b14
  article-title: Simple strategies for semi-supervised feature selection
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-017-5648-2
– ident: 10.1016/j.knosys.2022.109449_b23
  doi: 10.1145/2939672.2939785
– ident: 10.1016/j.knosys.2022.109449_b32
  doi: 10.1609/aaai.v33i01.33013705
– volume: 132
  start-page: 236
  year: 2017
  ident: 10.1016/j.knosys.2022.109449_b36
  article-title: GMDH-based semi-supervised feature selection for customer classification
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.06.018
– volume: 64
  start-page: 141
  year: 2017
  ident: 10.1016/j.knosys.2022.109449_b13
  article-title: A survey on semi-supervised feature selection methods
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.11.003
– ident: 10.1016/j.knosys.2022.109449_b35
  doi: 10.1609/aaai.v28i1.8922
– year: 2014
  ident: 10.1016/j.knosys.2022.109449_b48
– start-page: 327
  year: 2000
  ident: 10.1016/j.knosys.2022.109449_b24
  article-title: Enhancing supervised learning with unlabeled data
– volume: 33
  start-page: 5105
  year: 2020
  ident: 10.1016/j.knosys.2022.109449_b34
  article-title: Feature importance ranking for deep learning
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2012
  ident: 10.1016/j.knosys.2022.109449_b44
– volume: 3
  start-page: 1157
  issue: Mar
  year: 2003
  ident: 10.1016/j.knosys.2022.109449_b25
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 24
  start-page: 1024
  issue: 7
  year: 2011
  ident: 10.1016/j.knosys.2022.109449_b6
  article-title: A two-stage feature selection method for text categorization by using information gain, principal component analysis and genetic algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2011.04.014
– year: 2021
  ident: 10.1016/j.knosys.2022.109449_b5
  article-title: Feature selection with multi-source transfer
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– ident: 10.1016/j.knosys.2022.109449_b26
  doi: 10.1609/aaai.v33i01.33013983
– volume: 61
  start-page: 6418
  issue: 11
  year: 2014
  ident: 10.1016/j.knosys.2022.109449_b1
  article-title: A review on basic data-driven approaches for industrial process monitoring
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2014.2301773
– year: 2020
  ident: 10.1016/j.knosys.2022.109449_b19
– start-page: 68
  year: 2006
  ident: 10.1016/j.knosys.2022.109449_b45
  article-title: Conditional infomax learning: An integrated framework for feature extraction and fusion
– year: 2016
  ident: 10.1016/j.knosys.2022.109449_b39
– volume: 33
  year: 2020
  ident: 10.1016/j.knosys.2022.109449_b17
  article-title: Vime: Extending the success of self-and semi-supervised learning to tabular domain
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 10
  start-page: 1
  issue: 5
  year: 2019
  ident: 10.1016/j.knosys.2022.109449_b21
  article-title: Bamb: A balanced Markov blanket discovery approach to feature selection
  publication-title: ACM Trans. Intell. Syst. Technol. (TIST)
  doi: 10.1145/3335676
– volume: 28
  start-page: 689
  issue: 3
  year: 2015
  ident: 10.1016/j.knosys.2022.109449_b4
  article-title: Graph regularized feature selection with data reconstruction
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2015.2493537
– year: 2018
  ident: 10.1016/j.knosys.2022.109449_b20
– volume: 42
  start-page: 8520
  issue: 22
  year: 2015
  ident: 10.1016/j.knosys.2022.109449_b7
  article-title: Feature selection using joint mutual information maximisation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.07.007
– year: 2020
  ident: 10.1016/j.knosys.2022.109449_b8
  article-title: A survey on sparse learning models for feature selection
  publication-title: IEEE Trans. Cybern.
– year: 2021
  ident: 10.1016/j.knosys.2022.109449_b10
  article-title: Coronavirus herd immunity optimizer with greedy crossover for feature selection in medical diagnosis
  publication-title: Knowl.-Based Syst.
– year: 1996
  ident: 10.1016/j.knosys.2022.109449_b15
– volume: 19
  start-page: 3
  issue: 1
  year: 2019
  ident: 10.1016/j.knosys.2022.109449_b12
  article-title: A review of feature selection and its methods
  publication-title: Cybern. Inf. Technol.
– year: 2011
  ident: 10.1016/j.knosys.2022.109449_b47
  article-title: L2, 1-norm regularized discriminative feature selection for unsupervised
– ident: 10.1016/j.knosys.2022.109449_b18
  doi: 10.1109/CVPR.2019.00375
– volume: 28
  start-page: 1279
  year: 2015
  ident: 10.1016/j.knosys.2022.109449_b27
  article-title: Multi-layer feature reduction for tree structured group lasso via hierarchical projection
  publication-title: Adv. Neural Inf. Process. Syst.
SSID ssj0002218
Score 2.398389
Snippet Feature selection is an important process in machine learning. It builds an interpretable and robust model by selecting the features that contribute the most...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109449
SubjectTerms Attention mechanism
Autoencoder
Feature selection
Self-supervised
Title A-SFS: Semi-supervised feature selection based on multi-task self-supervision
URI https://dx.doi.org/10.1016/j.knosys.2022.109449
Volume 252
WOSCitedRecordID wos001336368800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9swDBa2doddujfWrht02G1QEduyZO8WFO1eWDEgHZabYVs06nZ1gjou8vNHSrITJMNewC6C4ZhRTDIUSVEfGXutoFKRARCqzI2QYRmL1NAmryxMGpg8zQNjm03os7NkOk2_-Drd1rYT0E2TLJfp_L-KGu-hsOno7F-Ie_hSvIHXKHQcUew4_pHgx2JyOqFAfwLXtWi7OVmDFv3KCiyI55vWtr4hsdMSZmi7wJYVikXeXtGn1UDVC817r5_6BJxwlO0a3DklT-vO7nVc1BX4BZFS0uDMybe8WdarAqA6n7ma-otuWBnedbXTTk_tsxEYyNIGjV6lyLaOyfhc40jokUeWBWdpE42uvRyl66Y4dGi2W2bdZRguj66aGb7ZEU1MOFjSoZ1uAGZPaDqaLaQ8LI532W6o4xRt3u74w8n047BSh6HN_w4_rz9aaev_tuf6ueuy5o6cP2R7Po7gYyf_R-wONI_Zg75HB_cm-wn7bNXhLd9QBu6VgQ_KwK1IOV6slIFvKsNT9vX05Pz4vfAtNESJseBCKENwPXEoy7iIFcgiMqlCFzyEwJgk1pGsFKg4yqNYArpLBeRAjecCUxjQqoyesZ1m1sBzxnWUAMb2hdRJIfGfXJRpZQAj2tLkMoBgn0U9d7LS48tTm5PvWV9IeJk5nmbE08zxdJ-JgWru8FV-87zuGZ95H9H5fhnqyi8pD_6Z8gW7v1L1Q7azuOngJbtX3i7q9uaVV6ofQWeOrw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A-SFS%3A+Semi-supervised+feature+selection+based+on+multi-task+self-supervision&rft.jtitle=Knowledge-based+systems&rft.au=Qiu%2C+Zhifeng&rft.au=Zeng%2C+Wanxin&rft.au=Liao%2C+Dahua&rft.au=Gui%2C+Ning&rft.date=2022-09-27&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=252&rft_id=info:doi/10.1016%2Fj.knosys.2022.109449&rft.externalDocID=S0950705122007122
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon