MF-LRTC: Multi-filters guided low-rank tensor coding for image restoration

•We present a multi-filters guided low-rank tensor coding (MF-LRTC) model for image restoration.•The appeal of constructing a low-rank tensor is obvious in many cases for data that naturally comes from different scales and directions.•The MF-LRTC takes advantages of the low-rank tensor coding to cap...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) Vol. 303; pp. 88 - 102
Main Authors: Lu, Hongyang, Li, Sanqian, Liu, Qiegen, Zhang, Minghui
Format: Journal Article
Language:English
Published: Elsevier B.V 16.08.2018
Subjects:
ISSN:0925-2312, 1872-8286
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •We present a multi-filters guided low-rank tensor coding (MF-LRTC) model for image restoration.•The appeal of constructing a low-rank tensor is obvious in many cases for data that naturally comes from different scales and directions.•The MF-LRTC takes advantages of the low-rank tensor coding to capture the sparse convolutional features generated by multi-filters representation.•We first convolve the target image with FOE filters to formulate multi-feature images, and then regard the extracted similarity grouped cube as a low-rank tensor.•The resulting non-convex model is addressed by efficient ADMM technique. Image prior information is a determinative factor to tackling with the ill-posed problem. In this paper, we present multi-filters guided low-rank tensor coding (MF-LRTC) model for image restoration. The appeal of constructing a low-rank tensor is obvious in many cases for data that naturally comes from different scales and directions. The MF-LRTC takes advantages of the low-rank tensor coding to capture the sparse convolutional features generated by multi-filters representation. Using such a low-rank tensor coding would reduce the redundancy between feature vectors at neighboring locations and improve the efficiency of the overall sparse representation. In this work, we are committed to achieving this goal by convoluting the target image with Filed-of-Experts (FoE) filters to formulate multi-feature images. Then similarity-grouped cube set extracted from the multi-features images is regarded as a low-rank tensor. The resulting non-convex model is addressed by an efficient ADMM technique. The potential effectiveness of this tensor construction strategy is demonstrated in image restoration including image deblurring and compressed sensing (CS) applications.
AbstractList •We present a multi-filters guided low-rank tensor coding (MF-LRTC) model for image restoration.•The appeal of constructing a low-rank tensor is obvious in many cases for data that naturally comes from different scales and directions.•The MF-LRTC takes advantages of the low-rank tensor coding to capture the sparse convolutional features generated by multi-filters representation.•We first convolve the target image with FOE filters to formulate multi-feature images, and then regard the extracted similarity grouped cube as a low-rank tensor.•The resulting non-convex model is addressed by efficient ADMM technique. Image prior information is a determinative factor to tackling with the ill-posed problem. In this paper, we present multi-filters guided low-rank tensor coding (MF-LRTC) model for image restoration. The appeal of constructing a low-rank tensor is obvious in many cases for data that naturally comes from different scales and directions. The MF-LRTC takes advantages of the low-rank tensor coding to capture the sparse convolutional features generated by multi-filters representation. Using such a low-rank tensor coding would reduce the redundancy between feature vectors at neighboring locations and improve the efficiency of the overall sparse representation. In this work, we are committed to achieving this goal by convoluting the target image with Filed-of-Experts (FoE) filters to formulate multi-feature images. Then similarity-grouped cube set extracted from the multi-features images is regarded as a low-rank tensor. The resulting non-convex model is addressed by an efficient ADMM technique. The potential effectiveness of this tensor construction strategy is demonstrated in image restoration including image deblurring and compressed sensing (CS) applications.
Author Liu, Qiegen
Lu, Hongyang
Li, Sanqian
Zhang, Minghui
Author_xml – sequence: 1
  givenname: Hongyang
  surname: Lu
  fullname: Lu, Hongyang
  organization: Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China
– sequence: 2
  givenname: Sanqian
  surname: Li
  fullname: Li, Sanqian
  organization: Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China
– sequence: 3
  givenname: Qiegen
  orcidid: 0000-0003-4717-2283
  surname: Liu
  fullname: Liu, Qiegen
  email: liuqiegen@ncu.edu.cn
  organization: Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China
– sequence: 4
  givenname: Minghui
  surname: Zhang
  fullname: Zhang, Minghui
  organization: Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China
BookMark eNqFkM1KAzEUhYNUsK2-gYt5gdT8TDOZLgQp1h9aBKnrkEnulNRpIkmq-PZOrSsXCgfuXdzvcM8ZoYEPHhC6pGRCCRVX24mHvQm7CSNUTkjZS5ygIZUVw5JJMUBDUrMpZpyyMzRKaUsIrSirh-hxtcDL5_V8Vqz2XXa4dV2GmIrN3lmwRRc-cNT-tcjgU4iFCdb5TdH2q9vpDRQRUg5RZxf8OTptdZfg4meO0cvidj2_x8unu4f5zRIbTkTGohGlJVXLTdWwRnKoLK-tZHxKgU15BdBYLWUjtRCtJoaDrIEwUhNLZX_Cx2h29DUxpBShVcbl7w9y1K5TlKhDK2qrjq2oQyuKlL1ED5e_4LfYJ4mf_2HXRwz6YO8OokrGgTdgXQSTlQ3ub4MvaI2Atg
CitedBy_id crossref_primary_10_1155_2020_9365405
crossref_primary_10_1016_j_mri_2022_12_009
crossref_primary_10_1016_j_neucom_2019_07_092
crossref_primary_10_1016_j_mri_2022_01_013
crossref_primary_10_1155_2022_7415342
crossref_primary_10_1016_j_media_2020_101717
crossref_primary_10_1109_TIP_2019_2931240
crossref_primary_10_1016_j_amc_2019_124783
Cites_doi 10.1007/s10543-013-0455-z
10.1109/TIP.2014.2380155
10.1109/LSP.2007.898300
10.1109/MSP.2010.936030
10.1109/TIP.2009.2028250
10.1088/0031-9155/60/7/2803
10.1109/TIP.2016.2571062
10.1109/TIP.2015.2487860
10.1109/TIP.2011.2108306
10.1109/TIP.2013.2277798
10.1007/s00521-015-2050-5
10.1371/journal.pone.0098441
10.1109/TIP.2014.2319742
10.1109/TIP.2012.2221729
10.1007/s10618-012-0280-z
10.1109/TMI.2013.2256464
10.1109/TIP.2009.2033398
10.1016/j.ins.2015.03.032
10.1109/TPAMI.2012.39
10.1109/TPAMI.2012.140
10.1016/j.media.2010.05.010
10.1109/TMI.2016.2550204
10.1109/TIP.2014.2329449
10.1109/TIP.2016.2570548
10.1109/TIP.2015.2478405
10.1109/TSMCB.2009.2039566
10.1109/TMI.2008.927346
10.1002/gamm.201310004
10.1109/LSP.2014.2376699
10.1016/j.media.2013.09.007
10.1137/110857349
10.1007/s11263-008-0197-6
10.1109/TSP.2017.2695566
10.1109/TIP.2015.2511584
10.1109/TBME.2010.2089456
10.1016/j.ins.2015.07.049
10.1109/TMI.2010.2090538
10.1016/j.media.2011.04.003
10.1109/TBME.2015.2503756
10.3390/rs8060499
10.1109/TNNLS.2013.2262001
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2018.04.046
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 102
ExternalDocumentID 10_1016_j_neucom_2018_04_046
S0925231218304818
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-6b64d07f3c7b2b83e7d39d82351e2537eebda88b8a66fa0c3e89e02090d181e23
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432491800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Tue Nov 18 21:44:12 EST 2025
Sat Nov 29 03:02:55 EST 2025
Fri Feb 23 02:30:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Low-rank tensor coding
HOSVD decomposition
Image restoration
Multi-filters
ADMM
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-6b64d07f3c7b2b83e7d39d82351e2537eebda88b8a66fa0c3e89e02090d181e23
ORCID 0000-0003-4717-2283
PageCount 15
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2018_04_046
crossref_primary_10_1016_j_neucom_2018_04_046
elsevier_sciencedirect_doi_10_1016_j_neucom_2018_04_046
PublicationCentury 2000
PublicationDate 2018-08-16
PublicationDateYYYYMMDD 2018-08-16
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-16
  day: 16
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Rajwade, Rangarajan, Banerjee (bib0036) 2013; 35
Yu, Jin, Liu, Crozier (bib0040) 2014; 9
Kressner, Steinlechner, Vandereycken (bib0027) 2013; 54
Hong, Dit-Yan, Yimin (bib0005) 2004
Tan, Zhang, Wang, Mou, Cao, Wu, Yu (bib0041) 2015; 60
Qiu, Sapiro (bib0046) 2015; 16
Badri, Yahia, Aboutajdine (bib0049) 2014
Peng, Meng, Xu, Gao, Yang, Zhang (bib0006) 2014
Ying, Lu, Wei, Qu (bib0033) 2017; 65
Liu, Liang, Song, Luo, Zhu, Li (bib0055) 2013; 6
Chartrand (bib0047) 2007; 14
Ravishankar, Bresler (bib0058) 2011; 30
Manjón, Coupé, Buades, Louis, Robles (bib0011) 2010; 14
Zhan, Cai, Guo, Liu, Chen (bib0010) 2016; 63
Wong, Mishra, Fieguth, Clausi (bib0054) 2013; 60
Dong, Zhang, Shi, Wu (bib0017) 2011; 20
Narita, Hayashi, Tomioka, Kashima (bib0029) 2012; 25
Liu, Wang, Yang, Luo, Zhu, Liang (bib0059) 2013; 32
Portilla (bib0001) 2009
Zhang, Hu, Jin, Mei (bib0039) 2015; 29
Schmidt, Rother, Nowozin, Jancsary, Roth (bib0044) 2013
Chartrand (bib0048) 2009
Badri, Yahia (bib0009) 2016; 25
Lu, Tang, Yan, Lin (bib0051) 2016; 25
Xia, Tao, Mei, Zhang (bib0003) 2010; 40
Liu, Lin, Yu (bib0032) 2010
Roth, Black (bib0042) 2009; 82
Chantas, Galatsanos, Molina, Katsaggelos (bib0057) 2010; 19
Grasedyck, Kressner, Tobler (bib0035) 2013; 36
Dong, Li, Shi, Li, Ma (bib0038) 2015
Peng, Liang (bib0004) 2015; 22
Hong, Yu, Wan (bib0022) 2015; 24
Peng, Meng, Xu, Gao, Yang, Zhang (bib0037) 2014
Beck, Teboulle (bib0056) 2009; 18
Y.L. Chen, C.T. Hsu, and H.Y.M. Liao, Simultaneous tensor decomposition and completion using factor priors, IEEE Trans. Pattern Anal. Mach. Intell., 36(3) 2014577–591.
Trzasko, Manduca (bib0053) 2009; 28
Yu, Jin, Liu, Crozier (bib0014) 2014; 9
Lu, Lin, Yan (bib0052) 2015; 24
Hong, Yu, Tao (bib0021) 2015; 62
Dong, Shi, Li, Ma, Huang (bib0015) 2014; 23
Hong, Yu, You (bib0023) 2015; 320
Dong, Shi, Li (bib0025) 2013; 22
Ren, Cao, Pan, Guo, Zuo, Yang (bib0020) 2016; 25
Manjón, Coupé, Buades, Louis, Robles (bib0012) 2012; 16
Liu, Musialski, Wonka, Ye (bib0026) 2013; 35
He, Liu, Christodoulou, Ma, Lam, Liang (bib0031) 2016; 35
Zhang, Gao, Tao, Li (bib0024) 2013; 24
Qu, Hou, Lam, Chen (bib0013) 2014; 18
Cho, Lee (bib0019) 2009; 28
Liu, Wang, Ying, Peng, Zhu, Liang (bib0016) 2013; 22
Bergqvist, Larsson (bib0034) 2010; 27
He, Qi, Zaretzki (bib0018) 2013
Wei, Huang, Lu, Wang (bib0045) 2015
Portilla, Trist, Selesnick (bib0002) 2015; 24
Yang, Wang, Zhang, Wang (bib0007) 2014; 23
Schmidt, Roth (bib0043) 2014
Tappen, Liu, Adelson, Freeman (bib0008) 2007
Ji, Huang, Zhao, Ma, Liu (bib0030) 2016; 326
Lu, Wei, Wang, Liu, Liu, Wang, Deng (bib0050) 2016; 8
Lu (10.1016/j.neucom.2018.04.046_bib0050) 2016; 8
Yang (10.1016/j.neucom.2018.04.046_bib0007) 2014; 23
10.1016/j.neucom.2018.04.046_bib0028
Grasedyck (10.1016/j.neucom.2018.04.046_bib0035) 2013; 36
Ren (10.1016/j.neucom.2018.04.046_bib0020) 2016; 25
Hong (10.1016/j.neucom.2018.04.046_bib0022) 2015; 24
Schmidt (10.1016/j.neucom.2018.04.046_bib0044) 2013
Peng (10.1016/j.neucom.2018.04.046_bib0006) 2014
Liu (10.1016/j.neucom.2018.04.046_bib0016) 2013; 22
Ji (10.1016/j.neucom.2018.04.046_bib0030) 2016; 326
Ravishankar (10.1016/j.neucom.2018.04.046_bib0058) 2011; 30
Kressner (10.1016/j.neucom.2018.04.046_bib0027) 2013; 54
Dong (10.1016/j.neucom.2018.04.046_bib0015) 2014; 23
Hong (10.1016/j.neucom.2018.04.046_bib0021) 2015; 62
Chartrand (10.1016/j.neucom.2018.04.046_bib0048) 2009
Liu (10.1016/j.neucom.2018.04.046_bib0059) 2013; 32
Bergqvist (10.1016/j.neucom.2018.04.046_bib0034) 2010; 27
Portilla (10.1016/j.neucom.2018.04.046_bib0002) 2015; 24
He (10.1016/j.neucom.2018.04.046_bib0018) 2013
Schmidt (10.1016/j.neucom.2018.04.046_bib0043) 2014
Trzasko (10.1016/j.neucom.2018.04.046_bib0053) 2009; 28
Beck (10.1016/j.neucom.2018.04.046_bib0056) 2009; 18
Lu (10.1016/j.neucom.2018.04.046_bib0052) 2015; 24
Rajwade (10.1016/j.neucom.2018.04.046_bib0036) 2013; 35
Manjón (10.1016/j.neucom.2018.04.046_bib0011) 2010; 14
Tan (10.1016/j.neucom.2018.04.046_bib0041) 2015; 60
Zhang (10.1016/j.neucom.2018.04.046_bib0039) 2015; 29
Liu (10.1016/j.neucom.2018.04.046_bib0055) 2013; 6
Lu (10.1016/j.neucom.2018.04.046_bib0051) 2016; 25
Dong (10.1016/j.neucom.2018.04.046_bib0025) 2013; 22
Peng (10.1016/j.neucom.2018.04.046_bib0004) 2015; 22
Zhang (10.1016/j.neucom.2018.04.046_bib0024) 2013; 24
Yu (10.1016/j.neucom.2018.04.046_bib0040) 2014; 9
Hong (10.1016/j.neucom.2018.04.046_bib0005) 2004
Liu (10.1016/j.neucom.2018.04.046_bib0026) 2013; 35
Tappen (10.1016/j.neucom.2018.04.046_bib0008) 2007
Qu (10.1016/j.neucom.2018.04.046_bib0013) 2014; 18
Wong (10.1016/j.neucom.2018.04.046_bib0054) 2013; 60
Yu (10.1016/j.neucom.2018.04.046_bib0014) 2014; 9
Wei (10.1016/j.neucom.2018.04.046_bib0045) 2015
Cho (10.1016/j.neucom.2018.04.046_bib0019) 2009; 28
Liu (10.1016/j.neucom.2018.04.046_bib0032) 2010
Chantas (10.1016/j.neucom.2018.04.046_bib0057) 2010; 19
Dong (10.1016/j.neucom.2018.04.046_bib0017) 2011; 20
Xia (10.1016/j.neucom.2018.04.046_bib0003) 2010; 40
Chartrand (10.1016/j.neucom.2018.04.046_bib0047) 2007; 14
Hong (10.1016/j.neucom.2018.04.046_bib0023) 2015; 320
Narita (10.1016/j.neucom.2018.04.046_bib0029) 2012; 25
He (10.1016/j.neucom.2018.04.046_bib0031) 2016; 35
Ying (10.1016/j.neucom.2018.04.046_bib0033) 2017; 65
Badri (10.1016/j.neucom.2018.04.046_bib0009) 2016; 25
Zhan (10.1016/j.neucom.2018.04.046_bib0010) 2016; 63
Badri (10.1016/j.neucom.2018.04.046_bib0049) 2014
Roth (10.1016/j.neucom.2018.04.046_bib0042) 2009; 82
Manjón (10.1016/j.neucom.2018.04.046_bib0012) 2012; 16
Dong (10.1016/j.neucom.2018.04.046_bib0038) 2015
Qiu (10.1016/j.neucom.2018.04.046_bib0046) 2015; 16
Peng (10.1016/j.neucom.2018.04.046_bib0037) 2014
Portilla (10.1016/j.neucom.2018.04.046_bib0001) 2009
References_xml – volume: 23
  start-page: 2793
  year: 2014
  end-page: 2803
  ident: bib0007
  article-title: Dual-geometric neighbor embedding for image super resolution with sparse tensor
  publication-title: IEEE Trans. Image Process.
– volume: 8
  start-page: 499
  year: 2016
  ident: bib0050
  article-title: Reference information based remote sensing image reconstruction with generalized nonconvex low-rank approximation
  publication-title: Remote Sens.
– volume: 40
  start-page: 1438
  year: 2010
  end-page: 1446
  ident: bib0003
  article-title: Multiview spectral embedding
  publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybern.)
– volume: 23
  start-page: 3618
  year: 2014
  end-page: 3632
  ident: bib0015
  article-title: Compressive sensing via nonlocal low-rank regularization
  publication-title: IEEE Trans. Image Process.
– volume: 25
  start-page: 3562
  year: 2016
  end-page: 3571
  ident: bib0009
  article-title: A non-local low-rank approach to enforce integrability
  publication-title: IEEE Trans. Image Process.
– volume: 60
  start-page: 2803
  year: 2015
  ident: bib0041
  article-title: Tensor-based dictionary learning for dynamic tomographic reconstruction
  publication-title: Phys. Med. Biol.
– volume: 22
  start-page: 4652
  year: 2013
  end-page: 4663
  ident: bib0016
  article-title: Adaptive dictionary learning in sparse gradient domain for image recovery
  publication-title: IEEE Trans. Image Process.
– volume: 14
  start-page: 707
  year: 2007
  end-page: 710
  ident: bib0047
  article-title: Exact reconstruction of sparse signals via nonconvex minimization
  publication-title: IEEE Signal Process. Lett.
– start-page: 2774
  year: 2014
  end-page: 2781
  ident: bib0043
  article-title: Shrinkage fields for effective image restoration
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 24
  start-page: 5659
  year: 2015
  end-page: 5670
  ident: bib0022
  article-title: Multimodal deep autoencoder for human pose recovery
  publication-title: IEEE Trans. Image Process.
– volume: 35
  start-page: 2119
  year: 2016
  end-page: 2129
  ident: bib0031
  article-title: Accelerated high-dimensional MR imaging with sparse sampling using sow-sank sensors
  publication-title: IEEE Trans. Med. Imag.
– volume: 32
  start-page: 1290
  year: 2013
  end-page: 1301
  ident: bib0059
  article-title: Highly undersampled magnetic resonance image reconstruction using two-level Bregman method with dictionary updating
  publication-title: IEEE Trans. Image Process.
– start-page: 2949
  year: 2014
  end-page: 2956
  ident: bib0006
  article-title: Decomposable nonlocal tensor dictionary learning for multispectral image denoising
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 16
  start-page: 187
  year: 2015
  end-page: 225
  ident: bib0046
  article-title: Learning transformations for clustering and classification
  publication-title: J. Mach. Learn. Res.
– volume: 18
  start-page: 2419
  year: 2009
  end-page: 2434
  ident: bib0056
  article-title: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems
  publication-title: IEEE Trans. Image Process.
– volume: 25
  start-page: 298
  year: 2012
  end-page: 324
  ident: bib0029
  article-title: Tensor factorization using auxiliary information
  publication-title: Data Min. Knowl. Discov.
– volume: 326
  start-page: 243
  year: 2016
  end-page: 257
  ident: bib0030
  article-title: Tensor completion using total variation and low-rank matrix factorization
  publication-title: Inf. Sci.
– start-page: 345
  year: 2013
  end-page: 352
  ident: bib0018
  article-title: Beta process joint dictionary learning for coupled feature spaces with application to single image super-resolution
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 28
  start-page: 145
  year: 2009
  ident: bib0019
  article-title: Fast motion deblurring
  publication-title: ACM Trans. Gr. (TOG)
– volume: 65
  start-page: 3702
  year: 2017
  end-page: 3717
  ident: bib0033
  article-title: Hankel matrix nuclear norm regularized tensor completion for n-dimensional exponential signals
  publication-title: IEEE Trans. Signal Process.
– volume: 18
  start-page: 843
  year: 2014
  end-page: 856
  ident: bib0013
  article-title: Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator
  publication-title: Med. Image Anal.
– volume: 62
  start-page: 3742
  year: 2015
  end-page: 3751
  ident: bib0021
  article-title: Image-based three-dimensional human pose recovery by multiview locality-sensitive sparse retrieval
  publication-title: IEEE Trans. Ind. Electron.
– volume: 30
  start-page: 1028
  year: 2011
  end-page: 1041
  ident: bib0058
  article-title: MR image reconstruction from highly undersampled k-space data by dictionary learning
  publication-title: IEEE Tran. Med. Imag.
– volume: 25
  start-page: 829
  year: 2016
  end-page: 839
  ident: bib0051
  article-title: Nonconvex nonsmooth low rank minimization via iteratively reweighted nuclear norm
  publication-title: IEEE Trans. Image Process.
– volume: 19
  start-page: 351
  year: 2010
  end-page: 362
  ident: bib0057
  article-title: Variational Bayesian image restoration with a product of spatially weighted total variation mage priors
  publication-title: IEEE Trans. Image Process.
– volume: 320
  start-page: 395
  year: 2015
  end-page: 405
  ident: bib0023
  article-title: Multi-view ensemble manifold regularization for 3D object recognition
  publication-title: Inf. Sci.
– volume: 25
  start-page: 3426
  year: 2016
  end-page: 3437
  ident: bib0020
  article-title: Image deblurring via enhanced low-rank prior
  publication-title: IEEE Trans. Image Process.
– volume: 24
  start-page: 646
  year: 2015
  end-page: 654
  ident: bib0052
  article-title: Smoothed low rank and sparse matrix recovery by iteratively reweighted least squares minimization
  publication-title: IEEE Trans. Image Process.
– volume: 29
  start-page: 3
  year: 2015
  end-page: 19
  ident: bib0039
  article-title: Nonlocal image denoising via adaptive tensor nuclear norm minimization
  publication-title: Neural Comput. Appl.
– volume: 9
  start-page: e98441
  year: 2014
  ident: bib0040
  article-title: Multidimensional compressed sensing MRI using tensor decomposition-based sparsifying transform
  publication-title: PLoS One
– start-page: 262
  year: 2009
  end-page: 265
  ident: bib0048
  article-title: Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data
  publication-title: Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro
– start-page: 442
  year: 2015
  end-page: 449
  ident: bib0038
  article-title: Low-rank tensor approximation with Laplacian scale mixture modeling for multiframe image denoising,
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 9
  start-page: e98441
  year: 2014
  ident: bib0014
  article-title: Multidimensional compressed sensing MRI using tensor decomposition-based sparsifying transform
  publication-title: PLoS ONE
– volume: 6
  start-page: 1689
  year: 2013
  end-page: 1718
  ident: bib0055
  article-title: Augmented Lagrangian-based sparse representation method with dictionary updating for image deblurring
  publication-title: SIAM J. Imag. Sci.
– volume: 24
  start-page: 5046
  year: 2015
  end-page: 5059
  ident: bib0002
  article-title: Efficient and robust image restoration using multiple-feature l2-relaxed sparse analysis priors
  publication-title: IEEE Trans. Image Process.
– volume: 24
  start-page: 1648
  year: 2013
  end-page: 1659
  ident: bib0024
  article-title: Single image super-resolution with multiscale similarity learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 22
  start-page: 1184
  year: 2015
  end-page: 1188
  ident: bib0004
  article-title: MR image reconstruction with convolutional characteristic constraint (CoCCo)
  publication-title: IEEE Signal Process. Lett.
– start-page: 1
  year: 2007
  end-page: 8
  ident: bib0008
  article-title: Learning Gaussian conditional random fields for low-level vision
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 54
  start-page: 447
  year: 2013
  end-page: 468
  ident: bib0027
  article-title: Low-rank tensor completion by Riemannian optimization
  publication-title: BIT Numer. Math.
– start-page: 2949
  year: 2014
  end-page: 2956
  ident: bib0037
  article-title: Decomposable nonlocal tensor dictionary learning for multispectral image denoising
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 63
  start-page: 1850
  year: 2016
  end-page: 1861
  ident: bib0010
  article-title: Fast multiclass dictionaries learning with geometrical directions in MRI reconstruction
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 14
  start-page: 784
  year: 2010
  end-page: 792
  ident: bib0011
  article-title: Non-local MRI upsampling
  publication-title: Med. Image Anal.
– volume: 22
  start-page: 700
  year: 2013
  end-page: 711
  ident: bib0025
  article-title: Nonlocal image restoration with bilateral variance estimation: a low-rank approach
  publication-title: IEEE Trans. Image Process.
– volume: 27
  start-page: 151
  year: 2010
  end-page: 154
  ident: bib0034
  article-title: The higher-order singular value decomposition: theory and an application
  publication-title: IEEE Signal Process. Mag.
– volume: 82
  start-page: 205
  year: 2009
  end-page: 229
  ident: bib0042
  article-title: Fields of Experts
  publication-title: Int. J. Comput. Vis.
– reference: Y.L. Chen, C.T. Hsu, and H.Y.M. Liao, Simultaneous tensor decomposition and completion using factor priors, IEEE Trans. Pattern Anal. Mach. Intell., 36(3) 2014577–591.
– start-page: 663
  year: 2010
  end-page: 670
  ident: bib0032
  article-title: Robust subspace segmentation by low-rank representation
  publication-title: Proceedings of the Twenty-Seventh International Conference on Machine Learning (ICML-10)
– volume: 28
  start-page: 106
  year: 2009
  end-page: 121
  ident: bib0053
  article-title: Highly undersampled magnetic resonance image reconstruction via homotopic l0 minimization
  publication-title: IEEE Trans. Med. Imag.
– volume: 16
  start-page: 18
  year: 2012
  end-page: 27
  ident: bib0012
  article-title: New methods for MRI denoising based on sparseness and self-similarity
  publication-title: Med. Image Anal.
– start-page: 3909
  year: 2009
  end-page: 3912
  ident: bib0001
  article-title: Image restoration through l0 analysis-based sparse optimization in tight frames
  publication-title: Proceedings of the IEEE International Conference on Image Processing
– start-page: 604
  year: 2013
  end-page: 611
  ident: bib0044
  article-title: Discriminative non-blind deblurring.
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 60
  start-page: 743
  year: 2013
  end-page: 752
  ident: bib0054
  article-title: Sparse reconstruction of breast MRI using homotopic l0 minimization in a regional sparsified domain
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 20
  start-page: 1838
  year: 2011
  end-page: 1857
  ident: bib0017
  article-title: Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization
  publication-title: IEEE Trans. Image Process.
– volume: 35
  start-page: 849
  year: 2013
  end-page: 862
  ident: bib0036
  article-title: Image denoising using the higher order singular value decomposition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1
  year: 2004
  end-page: 8
  ident: bib0005
  article-title: Super-resolution through neighbor embedding
  publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– volume: 36
  start-page: 53
  year: 2013
  end-page: 78
  ident: bib0035
  article-title: A literature survey of low-rank tensor approximation techniques
  publication-title: GAMM-Mitteilungen
– start-page: 1
  year: 2015
  end-page: 11
  ident: bib0045
  article-title: Fields of experts based multichannel compressed sensing
  publication-title: J. Signal Process. Syst.
– volume: 35
  start-page: 208
  year: 2013
  end-page: 220
  ident: bib0026
  article-title: Tensor completion for estimating missing values in visual data
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 2291
  year: 2014
  end-page: 2298
  ident: bib0049
  article-title: Robust surface reconstruction via triple sparsity
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 54
  start-page: 447
  issue: 2
  year: 2013
  ident: 10.1016/j.neucom.2018.04.046_bib0027
  article-title: Low-rank tensor completion by Riemannian optimization
  publication-title: BIT Numer. Math.
  doi: 10.1007/s10543-013-0455-z
– start-page: 2291
  year: 2014
  ident: 10.1016/j.neucom.2018.04.046_bib0049
  article-title: Robust surface reconstruction via triple sparsity
– volume: 24
  start-page: 646
  issue: 2
  year: 2015
  ident: 10.1016/j.neucom.2018.04.046_bib0052
  article-title: Smoothed low rank and sparse matrix recovery by iteratively reweighted least squares minimization
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2380155
– volume: 14
  start-page: 707
  issue: 10
  year: 2007
  ident: 10.1016/j.neucom.2018.04.046_bib0047
  article-title: Exact reconstruction of sparse signals via nonconvex minimization
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2007.898300
– volume: 27
  start-page: 151
  issue: 3
  year: 2010
  ident: 10.1016/j.neucom.2018.04.046_bib0034
  article-title: The higher-order singular value decomposition: theory and an application
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2010.936030
– volume: 18
  start-page: 2419
  year: 2009
  ident: 10.1016/j.neucom.2018.04.046_bib0056
  article-title: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2009.2028250
– start-page: 442
  year: 2015
  ident: 10.1016/j.neucom.2018.04.046_bib0038
  article-title: Low-rank tensor approximation with Laplacian scale mixture modeling for multiframe image denoising,
– start-page: 2774
  year: 2014
  ident: 10.1016/j.neucom.2018.04.046_bib0043
  article-title: Shrinkage fields for effective image restoration
– volume: 60
  start-page: 2803
  issue: 7
  year: 2015
  ident: 10.1016/j.neucom.2018.04.046_bib0041
  article-title: Tensor-based dictionary learning for dynamic tomographic reconstruction
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/60/7/2803
– start-page: 262
  year: 2009
  ident: 10.1016/j.neucom.2018.04.046_bib0048
  article-title: Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data
– volume: 25
  start-page: 3426
  issue: 7
  year: 2016
  ident: 10.1016/j.neucom.2018.04.046_bib0020
  article-title: Image deblurring via enhanced low-rank prior
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2571062
– volume: 24
  start-page: 5659
  issue: 12
  year: 2015
  ident: 10.1016/j.neucom.2018.04.046_bib0022
  article-title: Multimodal deep autoencoder for human pose recovery
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2487860
– volume: 20
  start-page: 1838
  issue: 7
  year: 2011
  ident: 10.1016/j.neucom.2018.04.046_bib0017
  article-title: Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2108306
– volume: 22
  start-page: 4652
  issue: 12
  year: 2013
  ident: 10.1016/j.neucom.2018.04.046_bib0016
  article-title: Adaptive dictionary learning in sparse gradient domain for image recovery
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2013.2277798
– volume: 29
  start-page: 3
  issue: 1
  year: 2015
  ident: 10.1016/j.neucom.2018.04.046_bib0039
  article-title: Nonlocal image denoising via adaptive tensor nuclear norm minimization
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-2050-5
– volume: 9
  start-page: e98441
  issue: 6
  year: 2014
  ident: 10.1016/j.neucom.2018.04.046_bib0040
  article-title: Multidimensional compressed sensing MRI using tensor decomposition-based sparsifying transform
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0098441
– start-page: 1
  year: 2004
  ident: 10.1016/j.neucom.2018.04.046_bib0005
  article-title: Super-resolution through neighbor embedding
– volume: 23
  start-page: 2793
  issue: 7
  year: 2014
  ident: 10.1016/j.neucom.2018.04.046_bib0007
  article-title: Dual-geometric neighbor embedding for image super resolution with sparse tensor
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2319742
– volume: 22
  start-page: 700
  issue: 2
  year: 2013
  ident: 10.1016/j.neucom.2018.04.046_bib0025
  article-title: Nonlocal image restoration with bilateral variance estimation: a low-rank approach
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2221729
– volume: 25
  start-page: 298
  issue: 2
  year: 2012
  ident: 10.1016/j.neucom.2018.04.046_bib0029
  article-title: Tensor factorization using auxiliary information
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-012-0280-z
– volume: 32
  start-page: 1290
  year: 2013
  ident: 10.1016/j.neucom.2018.04.046_bib0059
  article-title: Highly undersampled magnetic resonance image reconstruction using two-level Bregman method with dictionary updating
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TMI.2013.2256464
– volume: 19
  start-page: 351
  year: 2010
  ident: 10.1016/j.neucom.2018.04.046_bib0057
  article-title: Variational Bayesian image restoration with a product of spatially weighted total variation mage priors
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2009.2033398
– volume: 320
  start-page: 395
  year: 2015
  ident: 10.1016/j.neucom.2018.04.046_bib0023
  article-title: Multi-view ensemble manifold regularization for 3D object recognition
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2015.03.032
– start-page: 1
  year: 2007
  ident: 10.1016/j.neucom.2018.04.046_bib0008
  article-title: Learning Gaussian conditional random fields for low-level vision
– volume: 35
  start-page: 208
  issue: 1
  year: 2013
  ident: 10.1016/j.neucom.2018.04.046_bib0026
  article-title: Tensor completion for estimating missing values in visual data
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.39
– volume: 35
  start-page: 849
  issue: 4
  year: 2013
  ident: 10.1016/j.neucom.2018.04.046_bib0036
  article-title: Image denoising using the higher order singular value decomposition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.140
– volume: 14
  start-page: 784
  year: 2010
  ident: 10.1016/j.neucom.2018.04.046_bib0011
  article-title: Non-local MRI upsampling
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2010.05.010
– start-page: 2949
  year: 2014
  ident: 10.1016/j.neucom.2018.04.046_bib0006
  article-title: Decomposable nonlocal tensor dictionary learning for multispectral image denoising
– volume: 35
  start-page: 2119
  issue: 9
  year: 2016
  ident: 10.1016/j.neucom.2018.04.046_bib0031
  article-title: Accelerated high-dimensional MR imaging with sparse sampling using sow-sank sensors
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2016.2550204
– volume: 62
  start-page: 3742
  issue: 6
  year: 2015
  ident: 10.1016/j.neucom.2018.04.046_bib0021
  article-title: Image-based three-dimensional human pose recovery by multiview locality-sensitive sparse retrieval
  publication-title: IEEE Trans. Ind. Electron.
– start-page: 663
  year: 2010
  ident: 10.1016/j.neucom.2018.04.046_bib0032
  article-title: Robust subspace segmentation by low-rank representation
– volume: 23
  start-page: 3618
  issue: 8
  year: 2014
  ident: 10.1016/j.neucom.2018.04.046_bib0015
  article-title: Compressive sensing via nonlocal low-rank regularization
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2329449
– start-page: 604
  year: 2013
  ident: 10.1016/j.neucom.2018.04.046_bib0044
  article-title: Discriminative non-blind deblurring.
– volume: 25
  start-page: 3562
  year: 2016
  ident: 10.1016/j.neucom.2018.04.046_bib0009
  article-title: A non-local low-rank approach to enforce integrability
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2570548
– volume: 24
  start-page: 5046
  year: 2015
  ident: 10.1016/j.neucom.2018.04.046_bib0002
  article-title: Efficient and robust image restoration using multiple-feature l2-relaxed sparse analysis priors
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2478405
– volume: 40
  start-page: 1438
  issue: 6
  year: 2010
  ident: 10.1016/j.neucom.2018.04.046_bib0003
  article-title: Multiview spectral embedding
  publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybern.)
  doi: 10.1109/TSMCB.2009.2039566
– volume: 16
  start-page: 187
  year: 2015
  ident: 10.1016/j.neucom.2018.04.046_bib0046
  article-title: Learning transformations for clustering and classification
  publication-title: J. Mach. Learn. Res.
– volume: 28
  start-page: 106
  year: 2009
  ident: 10.1016/j.neucom.2018.04.046_bib0053
  article-title: Highly undersampled magnetic resonance image reconstruction via homotopic l0 minimization
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2008.927346
– volume: 36
  start-page: 53
  issue: 1
  year: 2013
  ident: 10.1016/j.neucom.2018.04.046_bib0035
  article-title: A literature survey of low-rank tensor approximation techniques
  publication-title: GAMM-Mitteilungen
  doi: 10.1002/gamm.201310004
– volume: 22
  start-page: 1184
  issue: 8
  year: 2015
  ident: 10.1016/j.neucom.2018.04.046_bib0004
  article-title: MR image reconstruction with convolutional characteristic constraint (CoCCo)
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2014.2376699
– volume: 18
  start-page: 843
  year: 2014
  ident: 10.1016/j.neucom.2018.04.046_bib0013
  article-title: Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2013.09.007
– volume: 6
  start-page: 1689
  year: 2013
  ident: 10.1016/j.neucom.2018.04.046_bib0055
  article-title: Augmented Lagrangian-based sparse representation method with dictionary updating for image deblurring
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/110857349
– volume: 82
  start-page: 205
  issue: 2
  year: 2009
  ident: 10.1016/j.neucom.2018.04.046_bib0042
  article-title: Fields of Experts
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-008-0197-6
– start-page: 345
  year: 2013
  ident: 10.1016/j.neucom.2018.04.046_bib0018
  article-title: Beta process joint dictionary learning for coupled feature spaces with application to single image super-resolution
– volume: 65
  start-page: 3702
  year: 2017
  ident: 10.1016/j.neucom.2018.04.046_bib0033
  article-title: Hankel matrix nuclear norm regularized tensor completion for n-dimensional exponential signals
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2017.2695566
– volume: 25
  start-page: 829
  issue: 2
  year: 2016
  ident: 10.1016/j.neucom.2018.04.046_bib0051
  article-title: Nonconvex nonsmooth low rank minimization via iteratively reweighted nuclear norm
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2511584
– volume: 60
  start-page: 743
  year: 2013
  ident: 10.1016/j.neucom.2018.04.046_bib0054
  article-title: Sparse reconstruction of breast MRI using homotopic l0 minimization in a regional sparsified domain
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2089456
– ident: 10.1016/j.neucom.2018.04.046_bib0028
– volume: 326
  start-page: 243
  year: 2016
  ident: 10.1016/j.neucom.2018.04.046_bib0030
  article-title: Tensor completion using total variation and low-rank matrix factorization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2015.07.049
– volume: 28
  start-page: 145
  issue: 5
  year: 2009
  ident: 10.1016/j.neucom.2018.04.046_bib0019
  article-title: Fast motion deblurring
  publication-title: ACM Trans. Gr. (TOG)
– volume: 30
  start-page: 1028
  year: 2011
  ident: 10.1016/j.neucom.2018.04.046_bib0058
  article-title: MR image reconstruction from highly undersampled k-space data by dictionary learning
  publication-title: IEEE Tran. Med. Imag.
  doi: 10.1109/TMI.2010.2090538
– volume: 16
  start-page: 18
  issue: 1
  year: 2012
  ident: 10.1016/j.neucom.2018.04.046_bib0012
  article-title: New methods for MRI denoising based on sparseness and self-similarity
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2011.04.003
– start-page: 3909
  year: 2009
  ident: 10.1016/j.neucom.2018.04.046_bib0001
  article-title: Image restoration through l0 analysis-based sparse optimization in tight frames
– volume: 9
  start-page: e98441
  issue: 6
  year: 2014
  ident: 10.1016/j.neucom.2018.04.046_bib0014
  article-title: Multidimensional compressed sensing MRI using tensor decomposition-based sparsifying transform
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0098441
– volume: 63
  start-page: 1850
  year: 2016
  ident: 10.1016/j.neucom.2018.04.046_bib0010
  article-title: Fast multiclass dictionaries learning with geometrical directions in MRI reconstruction
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2503756
– start-page: 2949
  year: 2014
  ident: 10.1016/j.neucom.2018.04.046_bib0037
  article-title: Decomposable nonlocal tensor dictionary learning for multispectral image denoising
– volume: 8
  start-page: 499
  issue: 6
  year: 2016
  ident: 10.1016/j.neucom.2018.04.046_bib0050
  article-title: Reference information based remote sensing image reconstruction with generalized nonconvex low-rank approximation
  publication-title: Remote Sens.
  doi: 10.3390/rs8060499
– volume: 24
  start-page: 1648
  issue: 10
  year: 2013
  ident: 10.1016/j.neucom.2018.04.046_bib0024
  article-title: Single image super-resolution with multiscale similarity learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2013.2262001
– start-page: 1
  year: 2015
  ident: 10.1016/j.neucom.2018.04.046_bib0045
  article-title: Fields of experts based multichannel compressed sensing
  publication-title: J. Signal Process. Syst.
SSID ssj0017129
Score 2.2988405
Snippet •We present a multi-filters guided low-rank tensor coding (MF-LRTC) model for image restoration.•The appeal of constructing a low-rank tensor is obvious in...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 88
SubjectTerms ADMM
HOSVD decomposition
Image restoration
Low-rank tensor coding
Multi-filters
Title MF-LRTC: Multi-filters guided low-rank tensor coding for image restoration
URI https://dx.doi.org/10.1016/j.neucom.2018.04.046
Volume 303
WOSCitedRecordID wos000432491800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbTQ-99F2avtCht0XFtmxLzm0JCW3YhD62ZW9GkrWJl42dbtZJeupf7-hhx-2WvqBgjBGWLTSfRjOjeSD0Ukc6lJRpklAlSRwWsKTmKiWRUCBNZLRQNm_Bpwk7OuKzWfZ2MPjaxsJcLFlV8aur7Oy_khragNgmdPYvyN19FBrgGYgOdyA73P-I8If7ZPJ-umtUfRtdS-alORE_Hx03ZQHi5bK-JKZS-8j4rterkaqL1puyPDUePCtbbOaaYos2wVMDm50tAuHNC-NTk2WhMJDqzAmTxm5mdXX8RfhN0bSWzvpcfe6hcVLad9-ZY_uusTNgH8JPTpqyb5UITZZr4oImnalsI1zG2RyjhAAEHPvVjuNyFtlY9j5LpgHtMVVX989vz6EN0N7k_M4IsXhV6ca4AZkx2Ry28Q-Jtu3W_cGMxAwEGJpJmMNvoK2IJRkfoq3xm73ZQXcQxcLIpWv0I2-jL62L4Oa_fi7d9CSW6V1026saeOwgcg8NdHUf3WnLeGDP1R-gA4-YHfwdXrDDC27xgh1esMMLBrxgixfcw8tD9HF_b7r7mvgSG0SBrrgmqUzjImBzqpiMJKeaFTQreESTUEcJrGEtC8G55CJN5yJQVPNMg4aRBQWIhjqij9Cwqiv9GGEqZaxA2WepDmORSRFqzYUWTIBGEGdyG9F2anLl88-bMijLvHU0XORuQnMzoXkQw5VuI9L1OnP5V37zPmtnPfcypJMNcwDKL3s--eeeT9Gt6yXwDA3Xq0Y_RzfVxbo8X73wiPoGnQaW3g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MF-LRTC%3A+Multi-filters+guided+low-rank+tensor+coding+for+image+restoration&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Lu%2C+Hongyang&rft.au=Li%2C+Sanqian&rft.au=Liu%2C+Qiegen&rft.au=Zhang%2C+Minghui&rft.date=2018-08-16&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=303&rft.spage=88&rft.epage=102&rft_id=info:doi/10.1016%2Fj.neucom.2018.04.046&rft.externalDocID=S0925231218304818
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon