MF-LRTC: Multi-filters guided low-rank tensor coding for image restoration
•We present a multi-filters guided low-rank tensor coding (MF-LRTC) model for image restoration.•The appeal of constructing a low-rank tensor is obvious in many cases for data that naturally comes from different scales and directions.•The MF-LRTC takes advantages of the low-rank tensor coding to cap...
Uloženo v:
| Vydáno v: | Neurocomputing (Amsterdam) Ročník 303; s. 88 - 102 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
16.08.2018
|
| Témata: | |
| ISSN: | 0925-2312, 1872-8286 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •We present a multi-filters guided low-rank tensor coding (MF-LRTC) model for image restoration.•The appeal of constructing a low-rank tensor is obvious in many cases for data that naturally comes from different scales and directions.•The MF-LRTC takes advantages of the low-rank tensor coding to capture the sparse convolutional features generated by multi-filters representation.•We first convolve the target image with FOE filters to formulate multi-feature images, and then regard the extracted similarity grouped cube as a low-rank tensor.•The resulting non-convex model is addressed by efficient ADMM technique.
Image prior information is a determinative factor to tackling with the ill-posed problem. In this paper, we present multi-filters guided low-rank tensor coding (MF-LRTC) model for image restoration. The appeal of constructing a low-rank tensor is obvious in many cases for data that naturally comes from different scales and directions. The MF-LRTC takes advantages of the low-rank tensor coding to capture the sparse convolutional features generated by multi-filters representation. Using such a low-rank tensor coding would reduce the redundancy between feature vectors at neighboring locations and improve the efficiency of the overall sparse representation. In this work, we are committed to achieving this goal by convoluting the target image with Filed-of-Experts (FoE) filters to formulate multi-feature images. Then similarity-grouped cube set extracted from the multi-features images is regarded as a low-rank tensor. The resulting non-convex model is addressed by an efficient ADMM technique. The potential effectiveness of this tensor construction strategy is demonstrated in image restoration including image deblurring and compressed sensing (CS) applications. |
|---|---|
| AbstractList | •We present a multi-filters guided low-rank tensor coding (MF-LRTC) model for image restoration.•The appeal of constructing a low-rank tensor is obvious in many cases for data that naturally comes from different scales and directions.•The MF-LRTC takes advantages of the low-rank tensor coding to capture the sparse convolutional features generated by multi-filters representation.•We first convolve the target image with FOE filters to formulate multi-feature images, and then regard the extracted similarity grouped cube as a low-rank tensor.•The resulting non-convex model is addressed by efficient ADMM technique.
Image prior information is a determinative factor to tackling with the ill-posed problem. In this paper, we present multi-filters guided low-rank tensor coding (MF-LRTC) model for image restoration. The appeal of constructing a low-rank tensor is obvious in many cases for data that naturally comes from different scales and directions. The MF-LRTC takes advantages of the low-rank tensor coding to capture the sparse convolutional features generated by multi-filters representation. Using such a low-rank tensor coding would reduce the redundancy between feature vectors at neighboring locations and improve the efficiency of the overall sparse representation. In this work, we are committed to achieving this goal by convoluting the target image with Filed-of-Experts (FoE) filters to formulate multi-feature images. Then similarity-grouped cube set extracted from the multi-features images is regarded as a low-rank tensor. The resulting non-convex model is addressed by an efficient ADMM technique. The potential effectiveness of this tensor construction strategy is demonstrated in image restoration including image deblurring and compressed sensing (CS) applications. |
| Author | Liu, Qiegen Lu, Hongyang Li, Sanqian Zhang, Minghui |
| Author_xml | – sequence: 1 givenname: Hongyang surname: Lu fullname: Lu, Hongyang organization: Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China – sequence: 2 givenname: Sanqian surname: Li fullname: Li, Sanqian organization: Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China – sequence: 3 givenname: Qiegen orcidid: 0000-0003-4717-2283 surname: Liu fullname: Liu, Qiegen email: liuqiegen@ncu.edu.cn organization: Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China – sequence: 4 givenname: Minghui surname: Zhang fullname: Zhang, Minghui organization: Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China |
| BookMark | eNqFkM1KAzEUhYNUsK2-gYt5gdT8TDOZLgQp1h9aBKnrkEnulNRpIkmq-PZOrSsXCgfuXdzvcM8ZoYEPHhC6pGRCCRVX24mHvQm7CSNUTkjZS5ygIZUVw5JJMUBDUrMpZpyyMzRKaUsIrSirh-hxtcDL5_V8Vqz2XXa4dV2GmIrN3lmwRRc-cNT-tcjgU4iFCdb5TdH2q9vpDRQRUg5RZxf8OTptdZfg4meO0cvidj2_x8unu4f5zRIbTkTGohGlJVXLTdWwRnKoLK-tZHxKgU15BdBYLWUjtRCtJoaDrIEwUhNLZX_Cx2h29DUxpBShVcbl7w9y1K5TlKhDK2qrjq2oQyuKlL1ED5e_4LfYJ4mf_2HXRwz6YO8OokrGgTdgXQSTlQ3ub4MvaI2Atg |
| CitedBy_id | crossref_primary_10_1155_2020_9365405 crossref_primary_10_1016_j_mri_2022_12_009 crossref_primary_10_1016_j_neucom_2019_07_092 crossref_primary_10_1016_j_mri_2022_01_013 crossref_primary_10_1155_2022_7415342 crossref_primary_10_1016_j_media_2020_101717 crossref_primary_10_1109_TIP_2019_2931240 crossref_primary_10_1016_j_amc_2019_124783 |
| Cites_doi | 10.1007/s10543-013-0455-z 10.1109/TIP.2014.2380155 10.1109/LSP.2007.898300 10.1109/MSP.2010.936030 10.1109/TIP.2009.2028250 10.1088/0031-9155/60/7/2803 10.1109/TIP.2016.2571062 10.1109/TIP.2015.2487860 10.1109/TIP.2011.2108306 10.1109/TIP.2013.2277798 10.1007/s00521-015-2050-5 10.1371/journal.pone.0098441 10.1109/TIP.2014.2319742 10.1109/TIP.2012.2221729 10.1007/s10618-012-0280-z 10.1109/TMI.2013.2256464 10.1109/TIP.2009.2033398 10.1016/j.ins.2015.03.032 10.1109/TPAMI.2012.39 10.1109/TPAMI.2012.140 10.1016/j.media.2010.05.010 10.1109/TMI.2016.2550204 10.1109/TIP.2014.2329449 10.1109/TIP.2016.2570548 10.1109/TIP.2015.2478405 10.1109/TSMCB.2009.2039566 10.1109/TMI.2008.927346 10.1002/gamm.201310004 10.1109/LSP.2014.2376699 10.1016/j.media.2013.09.007 10.1137/110857349 10.1007/s11263-008-0197-6 10.1109/TSP.2017.2695566 10.1109/TIP.2015.2511584 10.1109/TBME.2010.2089456 10.1016/j.ins.2015.07.049 10.1109/TMI.2010.2090538 10.1016/j.media.2011.04.003 10.1109/TBME.2015.2503756 10.3390/rs8060499 10.1109/TNNLS.2013.2262001 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd |
| Copyright_xml | – notice: 2018 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2018.04.046 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 102 |
| ExternalDocumentID | 10_1016_j_neucom_2018_04_046 S0925231218304818 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c306t-6b64d07f3c7b2b83e7d39d82351e2537eebda88b8a66fa0c3e89e02090d181e23 |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432491800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Tue Nov 18 21:44:12 EST 2025 Sat Nov 29 03:02:55 EST 2025 Fri Feb 23 02:30:22 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Low-rank tensor coding HOSVD decomposition Image restoration Multi-filters ADMM |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-6b64d07f3c7b2b83e7d39d82351e2537eebda88b8a66fa0c3e89e02090d181e23 |
| ORCID | 0000-0003-4717-2283 |
| PageCount | 15 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_neucom_2018_04_046 crossref_primary_10_1016_j_neucom_2018_04_046 elsevier_sciencedirect_doi_10_1016_j_neucom_2018_04_046 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-08-16 |
| PublicationDateYYYYMMDD | 2018-08-16 |
| PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-16 day: 16 |
| PublicationDecade | 2010 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Rajwade, Rangarajan, Banerjee (bib0036) 2013; 35 Yu, Jin, Liu, Crozier (bib0040) 2014; 9 Kressner, Steinlechner, Vandereycken (bib0027) 2013; 54 Hong, Dit-Yan, Yimin (bib0005) 2004 Tan, Zhang, Wang, Mou, Cao, Wu, Yu (bib0041) 2015; 60 Qiu, Sapiro (bib0046) 2015; 16 Badri, Yahia, Aboutajdine (bib0049) 2014 Peng, Meng, Xu, Gao, Yang, Zhang (bib0006) 2014 Ying, Lu, Wei, Qu (bib0033) 2017; 65 Liu, Liang, Song, Luo, Zhu, Li (bib0055) 2013; 6 Chartrand (bib0047) 2007; 14 Ravishankar, Bresler (bib0058) 2011; 30 Manjón, Coupé, Buades, Louis, Robles (bib0011) 2010; 14 Zhan, Cai, Guo, Liu, Chen (bib0010) 2016; 63 Wong, Mishra, Fieguth, Clausi (bib0054) 2013; 60 Dong, Zhang, Shi, Wu (bib0017) 2011; 20 Narita, Hayashi, Tomioka, Kashima (bib0029) 2012; 25 Liu, Wang, Yang, Luo, Zhu, Liang (bib0059) 2013; 32 Portilla (bib0001) 2009 Zhang, Hu, Jin, Mei (bib0039) 2015; 29 Schmidt, Rother, Nowozin, Jancsary, Roth (bib0044) 2013 Chartrand (bib0048) 2009 Badri, Yahia (bib0009) 2016; 25 Lu, Tang, Yan, Lin (bib0051) 2016; 25 Xia, Tao, Mei, Zhang (bib0003) 2010; 40 Liu, Lin, Yu (bib0032) 2010 Roth, Black (bib0042) 2009; 82 Chantas, Galatsanos, Molina, Katsaggelos (bib0057) 2010; 19 Grasedyck, Kressner, Tobler (bib0035) 2013; 36 Dong, Li, Shi, Li, Ma (bib0038) 2015 Peng, Liang (bib0004) 2015; 22 Hong, Yu, Wan (bib0022) 2015; 24 Peng, Meng, Xu, Gao, Yang, Zhang (bib0037) 2014 Beck, Teboulle (bib0056) 2009; 18 Y.L. Chen, C.T. Hsu, and H.Y.M. Liao, Simultaneous tensor decomposition and completion using factor priors, IEEE Trans. Pattern Anal. Mach. Intell., 36(3) 2014577–591. Trzasko, Manduca (bib0053) 2009; 28 Yu, Jin, Liu, Crozier (bib0014) 2014; 9 Lu, Lin, Yan (bib0052) 2015; 24 Hong, Yu, Tao (bib0021) 2015; 62 Dong, Shi, Li, Ma, Huang (bib0015) 2014; 23 Hong, Yu, You (bib0023) 2015; 320 Dong, Shi, Li (bib0025) 2013; 22 Ren, Cao, Pan, Guo, Zuo, Yang (bib0020) 2016; 25 Manjón, Coupé, Buades, Louis, Robles (bib0012) 2012; 16 Liu, Musialski, Wonka, Ye (bib0026) 2013; 35 He, Liu, Christodoulou, Ma, Lam, Liang (bib0031) 2016; 35 Zhang, Gao, Tao, Li (bib0024) 2013; 24 Qu, Hou, Lam, Chen (bib0013) 2014; 18 Cho, Lee (bib0019) 2009; 28 Liu, Wang, Ying, Peng, Zhu, Liang (bib0016) 2013; 22 Bergqvist, Larsson (bib0034) 2010; 27 He, Qi, Zaretzki (bib0018) 2013 Wei, Huang, Lu, Wang (bib0045) 2015 Portilla, Trist, Selesnick (bib0002) 2015; 24 Yang, Wang, Zhang, Wang (bib0007) 2014; 23 Schmidt, Roth (bib0043) 2014 Tappen, Liu, Adelson, Freeman (bib0008) 2007 Ji, Huang, Zhao, Ma, Liu (bib0030) 2016; 326 Lu, Wei, Wang, Liu, Liu, Wang, Deng (bib0050) 2016; 8 Lu (10.1016/j.neucom.2018.04.046_bib0050) 2016; 8 Yang (10.1016/j.neucom.2018.04.046_bib0007) 2014; 23 10.1016/j.neucom.2018.04.046_bib0028 Grasedyck (10.1016/j.neucom.2018.04.046_bib0035) 2013; 36 Ren (10.1016/j.neucom.2018.04.046_bib0020) 2016; 25 Hong (10.1016/j.neucom.2018.04.046_bib0022) 2015; 24 Schmidt (10.1016/j.neucom.2018.04.046_bib0044) 2013 Peng (10.1016/j.neucom.2018.04.046_bib0006) 2014 Liu (10.1016/j.neucom.2018.04.046_bib0016) 2013; 22 Ji (10.1016/j.neucom.2018.04.046_bib0030) 2016; 326 Ravishankar (10.1016/j.neucom.2018.04.046_bib0058) 2011; 30 Kressner (10.1016/j.neucom.2018.04.046_bib0027) 2013; 54 Dong (10.1016/j.neucom.2018.04.046_bib0015) 2014; 23 Hong (10.1016/j.neucom.2018.04.046_bib0021) 2015; 62 Chartrand (10.1016/j.neucom.2018.04.046_bib0048) 2009 Liu (10.1016/j.neucom.2018.04.046_bib0059) 2013; 32 Bergqvist (10.1016/j.neucom.2018.04.046_bib0034) 2010; 27 Portilla (10.1016/j.neucom.2018.04.046_bib0002) 2015; 24 He (10.1016/j.neucom.2018.04.046_bib0018) 2013 Schmidt (10.1016/j.neucom.2018.04.046_bib0043) 2014 Trzasko (10.1016/j.neucom.2018.04.046_bib0053) 2009; 28 Beck (10.1016/j.neucom.2018.04.046_bib0056) 2009; 18 Lu (10.1016/j.neucom.2018.04.046_bib0052) 2015; 24 Rajwade (10.1016/j.neucom.2018.04.046_bib0036) 2013; 35 Manjón (10.1016/j.neucom.2018.04.046_bib0011) 2010; 14 Tan (10.1016/j.neucom.2018.04.046_bib0041) 2015; 60 Zhang (10.1016/j.neucom.2018.04.046_bib0039) 2015; 29 Liu (10.1016/j.neucom.2018.04.046_bib0055) 2013; 6 Lu (10.1016/j.neucom.2018.04.046_bib0051) 2016; 25 Dong (10.1016/j.neucom.2018.04.046_bib0025) 2013; 22 Peng (10.1016/j.neucom.2018.04.046_bib0004) 2015; 22 Zhang (10.1016/j.neucom.2018.04.046_bib0024) 2013; 24 Yu (10.1016/j.neucom.2018.04.046_bib0040) 2014; 9 Hong (10.1016/j.neucom.2018.04.046_bib0005) 2004 Liu (10.1016/j.neucom.2018.04.046_bib0026) 2013; 35 Tappen (10.1016/j.neucom.2018.04.046_bib0008) 2007 Qu (10.1016/j.neucom.2018.04.046_bib0013) 2014; 18 Wong (10.1016/j.neucom.2018.04.046_bib0054) 2013; 60 Yu (10.1016/j.neucom.2018.04.046_bib0014) 2014; 9 Wei (10.1016/j.neucom.2018.04.046_bib0045) 2015 Cho (10.1016/j.neucom.2018.04.046_bib0019) 2009; 28 Liu (10.1016/j.neucom.2018.04.046_bib0032) 2010 Chantas (10.1016/j.neucom.2018.04.046_bib0057) 2010; 19 Dong (10.1016/j.neucom.2018.04.046_bib0017) 2011; 20 Xia (10.1016/j.neucom.2018.04.046_bib0003) 2010; 40 Chartrand (10.1016/j.neucom.2018.04.046_bib0047) 2007; 14 Hong (10.1016/j.neucom.2018.04.046_bib0023) 2015; 320 Narita (10.1016/j.neucom.2018.04.046_bib0029) 2012; 25 He (10.1016/j.neucom.2018.04.046_bib0031) 2016; 35 Ying (10.1016/j.neucom.2018.04.046_bib0033) 2017; 65 Badri (10.1016/j.neucom.2018.04.046_bib0009) 2016; 25 Zhan (10.1016/j.neucom.2018.04.046_bib0010) 2016; 63 Badri (10.1016/j.neucom.2018.04.046_bib0049) 2014 Roth (10.1016/j.neucom.2018.04.046_bib0042) 2009; 82 Manjón (10.1016/j.neucom.2018.04.046_bib0012) 2012; 16 Dong (10.1016/j.neucom.2018.04.046_bib0038) 2015 Qiu (10.1016/j.neucom.2018.04.046_bib0046) 2015; 16 Peng (10.1016/j.neucom.2018.04.046_bib0037) 2014 Portilla (10.1016/j.neucom.2018.04.046_bib0001) 2009 |
| References_xml | – volume: 23 start-page: 2793 year: 2014 end-page: 2803 ident: bib0007 article-title: Dual-geometric neighbor embedding for image super resolution with sparse tensor publication-title: IEEE Trans. Image Process. – volume: 8 start-page: 499 year: 2016 ident: bib0050 article-title: Reference information based remote sensing image reconstruction with generalized nonconvex low-rank approximation publication-title: Remote Sens. – volume: 40 start-page: 1438 year: 2010 end-page: 1446 ident: bib0003 article-title: Multiview spectral embedding publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybern.) – volume: 23 start-page: 3618 year: 2014 end-page: 3632 ident: bib0015 article-title: Compressive sensing via nonlocal low-rank regularization publication-title: IEEE Trans. Image Process. – volume: 25 start-page: 3562 year: 2016 end-page: 3571 ident: bib0009 article-title: A non-local low-rank approach to enforce integrability publication-title: IEEE Trans. Image Process. – volume: 60 start-page: 2803 year: 2015 ident: bib0041 article-title: Tensor-based dictionary learning for dynamic tomographic reconstruction publication-title: Phys. Med. Biol. – volume: 22 start-page: 4652 year: 2013 end-page: 4663 ident: bib0016 article-title: Adaptive dictionary learning in sparse gradient domain for image recovery publication-title: IEEE Trans. Image Process. – volume: 14 start-page: 707 year: 2007 end-page: 710 ident: bib0047 article-title: Exact reconstruction of sparse signals via nonconvex minimization publication-title: IEEE Signal Process. Lett. – start-page: 2774 year: 2014 end-page: 2781 ident: bib0043 article-title: Shrinkage fields for effective image restoration publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 24 start-page: 5659 year: 2015 end-page: 5670 ident: bib0022 article-title: Multimodal deep autoencoder for human pose recovery publication-title: IEEE Trans. Image Process. – volume: 35 start-page: 2119 year: 2016 end-page: 2129 ident: bib0031 article-title: Accelerated high-dimensional MR imaging with sparse sampling using sow-sank sensors publication-title: IEEE Trans. Med. Imag. – volume: 32 start-page: 1290 year: 2013 end-page: 1301 ident: bib0059 article-title: Highly undersampled magnetic resonance image reconstruction using two-level Bregman method with dictionary updating publication-title: IEEE Trans. Image Process. – start-page: 2949 year: 2014 end-page: 2956 ident: bib0006 article-title: Decomposable nonlocal tensor dictionary learning for multispectral image denoising publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 16 start-page: 187 year: 2015 end-page: 225 ident: bib0046 article-title: Learning transformations for clustering and classification publication-title: J. Mach. Learn. Res. – volume: 18 start-page: 2419 year: 2009 end-page: 2434 ident: bib0056 article-title: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems publication-title: IEEE Trans. Image Process. – volume: 25 start-page: 298 year: 2012 end-page: 324 ident: bib0029 article-title: Tensor factorization using auxiliary information publication-title: Data Min. Knowl. Discov. – volume: 326 start-page: 243 year: 2016 end-page: 257 ident: bib0030 article-title: Tensor completion using total variation and low-rank matrix factorization publication-title: Inf. Sci. – start-page: 345 year: 2013 end-page: 352 ident: bib0018 article-title: Beta process joint dictionary learning for coupled feature spaces with application to single image super-resolution publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 28 start-page: 145 year: 2009 ident: bib0019 article-title: Fast motion deblurring publication-title: ACM Trans. Gr. (TOG) – volume: 65 start-page: 3702 year: 2017 end-page: 3717 ident: bib0033 article-title: Hankel matrix nuclear norm regularized tensor completion for n-dimensional exponential signals publication-title: IEEE Trans. Signal Process. – volume: 18 start-page: 843 year: 2014 end-page: 856 ident: bib0013 article-title: Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator publication-title: Med. Image Anal. – volume: 62 start-page: 3742 year: 2015 end-page: 3751 ident: bib0021 article-title: Image-based three-dimensional human pose recovery by multiview locality-sensitive sparse retrieval publication-title: IEEE Trans. Ind. Electron. – volume: 30 start-page: 1028 year: 2011 end-page: 1041 ident: bib0058 article-title: MR image reconstruction from highly undersampled k-space data by dictionary learning publication-title: IEEE Tran. Med. Imag. – volume: 25 start-page: 829 year: 2016 end-page: 839 ident: bib0051 article-title: Nonconvex nonsmooth low rank minimization via iteratively reweighted nuclear norm publication-title: IEEE Trans. Image Process. – volume: 19 start-page: 351 year: 2010 end-page: 362 ident: bib0057 article-title: Variational Bayesian image restoration with a product of spatially weighted total variation mage priors publication-title: IEEE Trans. Image Process. – volume: 320 start-page: 395 year: 2015 end-page: 405 ident: bib0023 article-title: Multi-view ensemble manifold regularization for 3D object recognition publication-title: Inf. Sci. – volume: 25 start-page: 3426 year: 2016 end-page: 3437 ident: bib0020 article-title: Image deblurring via enhanced low-rank prior publication-title: IEEE Trans. Image Process. – volume: 24 start-page: 646 year: 2015 end-page: 654 ident: bib0052 article-title: Smoothed low rank and sparse matrix recovery by iteratively reweighted least squares minimization publication-title: IEEE Trans. Image Process. – volume: 29 start-page: 3 year: 2015 end-page: 19 ident: bib0039 article-title: Nonlocal image denoising via adaptive tensor nuclear norm minimization publication-title: Neural Comput. Appl. – volume: 9 start-page: e98441 year: 2014 ident: bib0040 article-title: Multidimensional compressed sensing MRI using tensor decomposition-based sparsifying transform publication-title: PLoS One – start-page: 262 year: 2009 end-page: 265 ident: bib0048 article-title: Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data publication-title: Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro – start-page: 442 year: 2015 end-page: 449 ident: bib0038 article-title: Low-rank tensor approximation with Laplacian scale mixture modeling for multiframe image denoising, publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 9 start-page: e98441 year: 2014 ident: bib0014 article-title: Multidimensional compressed sensing MRI using tensor decomposition-based sparsifying transform publication-title: PLoS ONE – volume: 6 start-page: 1689 year: 2013 end-page: 1718 ident: bib0055 article-title: Augmented Lagrangian-based sparse representation method with dictionary updating for image deblurring publication-title: SIAM J. Imag. Sci. – volume: 24 start-page: 5046 year: 2015 end-page: 5059 ident: bib0002 article-title: Efficient and robust image restoration using multiple-feature l2-relaxed sparse analysis priors publication-title: IEEE Trans. Image Process. – volume: 24 start-page: 1648 year: 2013 end-page: 1659 ident: bib0024 article-title: Single image super-resolution with multiscale similarity learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 22 start-page: 1184 year: 2015 end-page: 1188 ident: bib0004 article-title: MR image reconstruction with convolutional characteristic constraint (CoCCo) publication-title: IEEE Signal Process. Lett. – start-page: 1 year: 2007 end-page: 8 ident: bib0008 article-title: Learning Gaussian conditional random fields for low-level vision publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 54 start-page: 447 year: 2013 end-page: 468 ident: bib0027 article-title: Low-rank tensor completion by Riemannian optimization publication-title: BIT Numer. Math. – start-page: 2949 year: 2014 end-page: 2956 ident: bib0037 article-title: Decomposable nonlocal tensor dictionary learning for multispectral image denoising publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 63 start-page: 1850 year: 2016 end-page: 1861 ident: bib0010 article-title: Fast multiclass dictionaries learning with geometrical directions in MRI reconstruction publication-title: IEEE Trans. Biomed. Eng. – volume: 14 start-page: 784 year: 2010 end-page: 792 ident: bib0011 article-title: Non-local MRI upsampling publication-title: Med. Image Anal. – volume: 22 start-page: 700 year: 2013 end-page: 711 ident: bib0025 article-title: Nonlocal image restoration with bilateral variance estimation: a low-rank approach publication-title: IEEE Trans. Image Process. – volume: 27 start-page: 151 year: 2010 end-page: 154 ident: bib0034 article-title: The higher-order singular value decomposition: theory and an application publication-title: IEEE Signal Process. Mag. – volume: 82 start-page: 205 year: 2009 end-page: 229 ident: bib0042 article-title: Fields of Experts publication-title: Int. J. Comput. Vis. – reference: Y.L. Chen, C.T. Hsu, and H.Y.M. Liao, Simultaneous tensor decomposition and completion using factor priors, IEEE Trans. Pattern Anal. Mach. Intell., 36(3) 2014577–591. – start-page: 663 year: 2010 end-page: 670 ident: bib0032 article-title: Robust subspace segmentation by low-rank representation publication-title: Proceedings of the Twenty-Seventh International Conference on Machine Learning (ICML-10) – volume: 28 start-page: 106 year: 2009 end-page: 121 ident: bib0053 article-title: Highly undersampled magnetic resonance image reconstruction via homotopic l0 minimization publication-title: IEEE Trans. Med. Imag. – volume: 16 start-page: 18 year: 2012 end-page: 27 ident: bib0012 article-title: New methods for MRI denoising based on sparseness and self-similarity publication-title: Med. Image Anal. – start-page: 3909 year: 2009 end-page: 3912 ident: bib0001 article-title: Image restoration through l0 analysis-based sparse optimization in tight frames publication-title: Proceedings of the IEEE International Conference on Image Processing – start-page: 604 year: 2013 end-page: 611 ident: bib0044 article-title: Discriminative non-blind deblurring. publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 60 start-page: 743 year: 2013 end-page: 752 ident: bib0054 article-title: Sparse reconstruction of breast MRI using homotopic l0 minimization in a regional sparsified domain publication-title: IEEE Trans. Biomed. Eng. – volume: 20 start-page: 1838 year: 2011 end-page: 1857 ident: bib0017 article-title: Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization publication-title: IEEE Trans. Image Process. – volume: 35 start-page: 849 year: 2013 end-page: 862 ident: bib0036 article-title: Image denoising using the higher order singular value decomposition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 1 year: 2004 end-page: 8 ident: bib0005 article-title: Super-resolution through neighbor embedding publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition – volume: 36 start-page: 53 year: 2013 end-page: 78 ident: bib0035 article-title: A literature survey of low-rank tensor approximation techniques publication-title: GAMM-Mitteilungen – start-page: 1 year: 2015 end-page: 11 ident: bib0045 article-title: Fields of experts based multichannel compressed sensing publication-title: J. Signal Process. Syst. – volume: 35 start-page: 208 year: 2013 end-page: 220 ident: bib0026 article-title: Tensor completion for estimating missing values in visual data publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 2291 year: 2014 end-page: 2298 ident: bib0049 article-title: Robust surface reconstruction via triple sparsity publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 54 start-page: 447 issue: 2 year: 2013 ident: 10.1016/j.neucom.2018.04.046_bib0027 article-title: Low-rank tensor completion by Riemannian optimization publication-title: BIT Numer. Math. doi: 10.1007/s10543-013-0455-z – start-page: 2291 year: 2014 ident: 10.1016/j.neucom.2018.04.046_bib0049 article-title: Robust surface reconstruction via triple sparsity – volume: 24 start-page: 646 issue: 2 year: 2015 ident: 10.1016/j.neucom.2018.04.046_bib0052 article-title: Smoothed low rank and sparse matrix recovery by iteratively reweighted least squares minimization publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2014.2380155 – volume: 14 start-page: 707 issue: 10 year: 2007 ident: 10.1016/j.neucom.2018.04.046_bib0047 article-title: Exact reconstruction of sparse signals via nonconvex minimization publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2007.898300 – volume: 27 start-page: 151 issue: 3 year: 2010 ident: 10.1016/j.neucom.2018.04.046_bib0034 article-title: The higher-order singular value decomposition: theory and an application publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2010.936030 – volume: 18 start-page: 2419 year: 2009 ident: 10.1016/j.neucom.2018.04.046_bib0056 article-title: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2009.2028250 – start-page: 442 year: 2015 ident: 10.1016/j.neucom.2018.04.046_bib0038 article-title: Low-rank tensor approximation with Laplacian scale mixture modeling for multiframe image denoising, – start-page: 2774 year: 2014 ident: 10.1016/j.neucom.2018.04.046_bib0043 article-title: Shrinkage fields for effective image restoration – volume: 60 start-page: 2803 issue: 7 year: 2015 ident: 10.1016/j.neucom.2018.04.046_bib0041 article-title: Tensor-based dictionary learning for dynamic tomographic reconstruction publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/60/7/2803 – start-page: 262 year: 2009 ident: 10.1016/j.neucom.2018.04.046_bib0048 article-title: Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data – volume: 25 start-page: 3426 issue: 7 year: 2016 ident: 10.1016/j.neucom.2018.04.046_bib0020 article-title: Image deblurring via enhanced low-rank prior publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2571062 – volume: 24 start-page: 5659 issue: 12 year: 2015 ident: 10.1016/j.neucom.2018.04.046_bib0022 article-title: Multimodal deep autoencoder for human pose recovery publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2487860 – volume: 20 start-page: 1838 issue: 7 year: 2011 ident: 10.1016/j.neucom.2018.04.046_bib0017 article-title: Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2011.2108306 – volume: 22 start-page: 4652 issue: 12 year: 2013 ident: 10.1016/j.neucom.2018.04.046_bib0016 article-title: Adaptive dictionary learning in sparse gradient domain for image recovery publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2013.2277798 – volume: 29 start-page: 3 issue: 1 year: 2015 ident: 10.1016/j.neucom.2018.04.046_bib0039 article-title: Nonlocal image denoising via adaptive tensor nuclear norm minimization publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-2050-5 – volume: 9 start-page: e98441 issue: 6 year: 2014 ident: 10.1016/j.neucom.2018.04.046_bib0040 article-title: Multidimensional compressed sensing MRI using tensor decomposition-based sparsifying transform publication-title: PLoS One doi: 10.1371/journal.pone.0098441 – start-page: 1 year: 2004 ident: 10.1016/j.neucom.2018.04.046_bib0005 article-title: Super-resolution through neighbor embedding – volume: 23 start-page: 2793 issue: 7 year: 2014 ident: 10.1016/j.neucom.2018.04.046_bib0007 article-title: Dual-geometric neighbor embedding for image super resolution with sparse tensor publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2014.2319742 – volume: 22 start-page: 700 issue: 2 year: 2013 ident: 10.1016/j.neucom.2018.04.046_bib0025 article-title: Nonlocal image restoration with bilateral variance estimation: a low-rank approach publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2221729 – volume: 25 start-page: 298 issue: 2 year: 2012 ident: 10.1016/j.neucom.2018.04.046_bib0029 article-title: Tensor factorization using auxiliary information publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-012-0280-z – volume: 32 start-page: 1290 year: 2013 ident: 10.1016/j.neucom.2018.04.046_bib0059 article-title: Highly undersampled magnetic resonance image reconstruction using two-level Bregman method with dictionary updating publication-title: IEEE Trans. Image Process. doi: 10.1109/TMI.2013.2256464 – volume: 19 start-page: 351 year: 2010 ident: 10.1016/j.neucom.2018.04.046_bib0057 article-title: Variational Bayesian image restoration with a product of spatially weighted total variation mage priors publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2009.2033398 – volume: 320 start-page: 395 year: 2015 ident: 10.1016/j.neucom.2018.04.046_bib0023 article-title: Multi-view ensemble manifold regularization for 3D object recognition publication-title: Inf. Sci. doi: 10.1016/j.ins.2015.03.032 – start-page: 1 year: 2007 ident: 10.1016/j.neucom.2018.04.046_bib0008 article-title: Learning Gaussian conditional random fields for low-level vision – volume: 35 start-page: 208 issue: 1 year: 2013 ident: 10.1016/j.neucom.2018.04.046_bib0026 article-title: Tensor completion for estimating missing values in visual data publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.39 – volume: 35 start-page: 849 issue: 4 year: 2013 ident: 10.1016/j.neucom.2018.04.046_bib0036 article-title: Image denoising using the higher order singular value decomposition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.140 – volume: 14 start-page: 784 year: 2010 ident: 10.1016/j.neucom.2018.04.046_bib0011 article-title: Non-local MRI upsampling publication-title: Med. Image Anal. doi: 10.1016/j.media.2010.05.010 – start-page: 2949 year: 2014 ident: 10.1016/j.neucom.2018.04.046_bib0006 article-title: Decomposable nonlocal tensor dictionary learning for multispectral image denoising – volume: 35 start-page: 2119 issue: 9 year: 2016 ident: 10.1016/j.neucom.2018.04.046_bib0031 article-title: Accelerated high-dimensional MR imaging with sparse sampling using sow-sank sensors publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2016.2550204 – volume: 62 start-page: 3742 issue: 6 year: 2015 ident: 10.1016/j.neucom.2018.04.046_bib0021 article-title: Image-based three-dimensional human pose recovery by multiview locality-sensitive sparse retrieval publication-title: IEEE Trans. Ind. Electron. – start-page: 663 year: 2010 ident: 10.1016/j.neucom.2018.04.046_bib0032 article-title: Robust subspace segmentation by low-rank representation – volume: 23 start-page: 3618 issue: 8 year: 2014 ident: 10.1016/j.neucom.2018.04.046_bib0015 article-title: Compressive sensing via nonlocal low-rank regularization publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2014.2329449 – start-page: 604 year: 2013 ident: 10.1016/j.neucom.2018.04.046_bib0044 article-title: Discriminative non-blind deblurring. – volume: 25 start-page: 3562 year: 2016 ident: 10.1016/j.neucom.2018.04.046_bib0009 article-title: A non-local low-rank approach to enforce integrability publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2570548 – volume: 24 start-page: 5046 year: 2015 ident: 10.1016/j.neucom.2018.04.046_bib0002 article-title: Efficient and robust image restoration using multiple-feature l2-relaxed sparse analysis priors publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2478405 – volume: 40 start-page: 1438 issue: 6 year: 2010 ident: 10.1016/j.neucom.2018.04.046_bib0003 article-title: Multiview spectral embedding publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybern.) doi: 10.1109/TSMCB.2009.2039566 – volume: 16 start-page: 187 year: 2015 ident: 10.1016/j.neucom.2018.04.046_bib0046 article-title: Learning transformations for clustering and classification publication-title: J. Mach. Learn. Res. – volume: 28 start-page: 106 year: 2009 ident: 10.1016/j.neucom.2018.04.046_bib0053 article-title: Highly undersampled magnetic resonance image reconstruction via homotopic l0 minimization publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2008.927346 – volume: 36 start-page: 53 issue: 1 year: 2013 ident: 10.1016/j.neucom.2018.04.046_bib0035 article-title: A literature survey of low-rank tensor approximation techniques publication-title: GAMM-Mitteilungen doi: 10.1002/gamm.201310004 – volume: 22 start-page: 1184 issue: 8 year: 2015 ident: 10.1016/j.neucom.2018.04.046_bib0004 article-title: MR image reconstruction with convolutional characteristic constraint (CoCCo) publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2014.2376699 – volume: 18 start-page: 843 year: 2014 ident: 10.1016/j.neucom.2018.04.046_bib0013 article-title: Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator publication-title: Med. Image Anal. doi: 10.1016/j.media.2013.09.007 – volume: 6 start-page: 1689 year: 2013 ident: 10.1016/j.neucom.2018.04.046_bib0055 article-title: Augmented Lagrangian-based sparse representation method with dictionary updating for image deblurring publication-title: SIAM J. Imag. Sci. doi: 10.1137/110857349 – volume: 82 start-page: 205 issue: 2 year: 2009 ident: 10.1016/j.neucom.2018.04.046_bib0042 article-title: Fields of Experts publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-008-0197-6 – start-page: 345 year: 2013 ident: 10.1016/j.neucom.2018.04.046_bib0018 article-title: Beta process joint dictionary learning for coupled feature spaces with application to single image super-resolution – volume: 65 start-page: 3702 year: 2017 ident: 10.1016/j.neucom.2018.04.046_bib0033 article-title: Hankel matrix nuclear norm regularized tensor completion for n-dimensional exponential signals publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2017.2695566 – volume: 25 start-page: 829 issue: 2 year: 2016 ident: 10.1016/j.neucom.2018.04.046_bib0051 article-title: Nonconvex nonsmooth low rank minimization via iteratively reweighted nuclear norm publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2511584 – volume: 60 start-page: 743 year: 2013 ident: 10.1016/j.neucom.2018.04.046_bib0054 article-title: Sparse reconstruction of breast MRI using homotopic l0 minimization in a regional sparsified domain publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2089456 – ident: 10.1016/j.neucom.2018.04.046_bib0028 – volume: 326 start-page: 243 year: 2016 ident: 10.1016/j.neucom.2018.04.046_bib0030 article-title: Tensor completion using total variation and low-rank matrix factorization publication-title: Inf. Sci. doi: 10.1016/j.ins.2015.07.049 – volume: 28 start-page: 145 issue: 5 year: 2009 ident: 10.1016/j.neucom.2018.04.046_bib0019 article-title: Fast motion deblurring publication-title: ACM Trans. Gr. (TOG) – volume: 30 start-page: 1028 year: 2011 ident: 10.1016/j.neucom.2018.04.046_bib0058 article-title: MR image reconstruction from highly undersampled k-space data by dictionary learning publication-title: IEEE Tran. Med. Imag. doi: 10.1109/TMI.2010.2090538 – volume: 16 start-page: 18 issue: 1 year: 2012 ident: 10.1016/j.neucom.2018.04.046_bib0012 article-title: New methods for MRI denoising based on sparseness and self-similarity publication-title: Med. Image Anal. doi: 10.1016/j.media.2011.04.003 – start-page: 3909 year: 2009 ident: 10.1016/j.neucom.2018.04.046_bib0001 article-title: Image restoration through l0 analysis-based sparse optimization in tight frames – volume: 9 start-page: e98441 issue: 6 year: 2014 ident: 10.1016/j.neucom.2018.04.046_bib0014 article-title: Multidimensional compressed sensing MRI using tensor decomposition-based sparsifying transform publication-title: PLoS ONE doi: 10.1371/journal.pone.0098441 – volume: 63 start-page: 1850 year: 2016 ident: 10.1016/j.neucom.2018.04.046_bib0010 article-title: Fast multiclass dictionaries learning with geometrical directions in MRI reconstruction publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2503756 – start-page: 2949 year: 2014 ident: 10.1016/j.neucom.2018.04.046_bib0037 article-title: Decomposable nonlocal tensor dictionary learning for multispectral image denoising – volume: 8 start-page: 499 issue: 6 year: 2016 ident: 10.1016/j.neucom.2018.04.046_bib0050 article-title: Reference information based remote sensing image reconstruction with generalized nonconvex low-rank approximation publication-title: Remote Sens. doi: 10.3390/rs8060499 – volume: 24 start-page: 1648 issue: 10 year: 2013 ident: 10.1016/j.neucom.2018.04.046_bib0024 article-title: Single image super-resolution with multiscale similarity learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2013.2262001 – start-page: 1 year: 2015 ident: 10.1016/j.neucom.2018.04.046_bib0045 article-title: Fields of experts based multichannel compressed sensing publication-title: J. Signal Process. Syst. |
| SSID | ssj0017129 |
| Score | 2.2989357 |
| Snippet | •We present a multi-filters guided low-rank tensor coding (MF-LRTC) model for image restoration.•The appeal of constructing a low-rank tensor is obvious in... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 88 |
| SubjectTerms | ADMM HOSVD decomposition Image restoration Low-rank tensor coding Multi-filters |
| Title | MF-LRTC: Multi-filters guided low-rank tensor coding for image restoration |
| URI | https://dx.doi.org/10.1016/j.neucom.2018.04.046 |
| Volume | 303 |
| WOSCitedRecordID | wos000432491800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9swDBaydIdd9h7WvaDDboEG27ItubegaLEVabFHNuRmyLbcOkidLo3b7rS_PlKSXW8Z9gIGBEYgWLYgfqYoivxIyEuvVBESy7FElQULM-kxJRPBVFSKvPRi5Rue7k8TcXQkZ7Pk7WDwtc2FuViIupZXV8nZfxU1tIGwMXX2L8TdPRQa4D8IHa4gdrj-keAP99nk_XQXt_omu5aVFZ6In4-Om6oA83KxvGRYqX2EsevL1ShfFm00ZXWKETwrU2zmWmLzluCpgcXOFIFw7oXxKbIsFAipzp0wacxitqyPvyi3KGJrZb3P9eceGieVufcdHtt3jZ0D-xBectJUfa-EjyzXzCZNWlfZRrqM9TkGEQOD0qpfbTWuFIHJZe-rZO7xnlK1df_c8uybBO1NzW-dEPNXtW4wDAjHZDhswx-Its3S_QFHggMBhYaEOfIG2QpElMgh2Rq_2ZsddAdRwg8sXaMbeZt9aUIEN9_1c-umZ7FM75LbbqtBxxYi98hA1_fJnbaMB3Va_QE5cIjZod_hhVq80BYv1OKFWrxQwAs1eKE9vDwkH_f3pruvmSuxwXLYK65ZnMVh4YmS5yILMsm1KHhSyIBHvg4iLrTOCiVlJlUcl8rLuZaJhh1G4hVgGuqAPyLDelnrx4QGoVYijrVWYRjy3E8011keI2V_qLSQ24S3U5Pmjn8ey6As0jbQcJ7aCU1xQlMvhF-8TVjX68zyr_zmftHOeupsSGsbpgCUX_Z88s89n5Jb15_AMzJcrxr9nNzML9bV-eqFQ9Q3UoSWTw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MF-LRTC%3A+Multi-filters+guided+low-rank+tensor+coding+for+image+restoration&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Lu%2C+Hongyang&rft.au=Li%2C+Sanqian&rft.au=Liu%2C+Qiegen&rft.au=Zhang%2C+Minghui&rft.date=2018-08-16&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=303&rft.spage=88&rft.epage=102&rft_id=info:doi/10.1016%2Fj.neucom.2018.04.046&rft.externalDocID=S0925231218304818 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |