Short-term ANN load forecasting from limited data using generalization learning strategies

The emergence of the new competitive electricity market environment has made short-term load forecasting a more complex task, owing to the effect of marketers’ behavior on the load pattern and the reduction of available information due to commercial reasons. In recent years, many ANN-based forecaste...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) Vol. 70; no. 1; pp. 409 - 419
Main Authors: Chan, Zeke S.H., Ngan, H.W., Rad, A.B., David, A.K., Kasabov, N.
Format: Journal Article
Language:English
Published: Elsevier B.V 01.12.2006
Subjects:
ISSN:0925-2312, 1872-8286
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The emergence of the new competitive electricity market environment has made short-term load forecasting a more complex task, owing to the effect of marketers’ behavior on the load pattern and the reduction of available information due to commercial reasons. In recent years, many ANN-based forecasters are proposed for learning the highly nonlinear load pattern, yet their effectiveness are limited by the reduction of training data, which causes these ANN models to be susceptible to “over-fitting”. “Over-fitting” is a common ANN problem that describes the situation that the model memorizes the training data but fails to generalize well to new data. This paper discusses the problem of “over-fitting” and some common generalization learning techniques in the ANN literature, as well as introducing a new Genetic Algorithm-based regularization method called “GARNET” for short-term load forecasting. As an illustration, four generalization learning techniques, including Early-Stopping, Bayesian Regularization, Adaptive-Regularization and GARNET are applied to train Multi-Layer Perceptrons networks (MLP) for day-ahead load forecasting on limited amount of hourly data from a US utility. Results show that forecasters trained by these four methods consistently produce lower prediction error than those trained by the standard error minimization method.
AbstractList The emergence of the new competitive electricity market environment has made short-term load forecasting a more complex task, owing to the effect of marketers’ behavior on the load pattern and the reduction of available information due to commercial reasons. In recent years, many ANN-based forecasters are proposed for learning the highly nonlinear load pattern, yet their effectiveness are limited by the reduction of training data, which causes these ANN models to be susceptible to “over-fitting”. “Over-fitting” is a common ANN problem that describes the situation that the model memorizes the training data but fails to generalize well to new data. This paper discusses the problem of “over-fitting” and some common generalization learning techniques in the ANN literature, as well as introducing a new Genetic Algorithm-based regularization method called “GARNET” for short-term load forecasting. As an illustration, four generalization learning techniques, including Early-Stopping, Bayesian Regularization, Adaptive-Regularization and GARNET are applied to train Multi-Layer Perceptrons networks (MLP) for day-ahead load forecasting on limited amount of hourly data from a US utility. Results show that forecasters trained by these four methods consistently produce lower prediction error than those trained by the standard error minimization method.
Author Rad, A.B.
Ngan, H.W.
Kasabov, N.
Chan, Zeke S.H.
David, A.K.
Author_xml – sequence: 1
  givenname: Zeke S.H.
  surname: Chan
  fullname: Chan, Zeke S.H.
  email: zekechan@vodafone.net.nz
  organization: Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, New Zealand
– sequence: 2
  givenname: H.W.
  surname: Ngan
  fullname: Ngan, H.W.
  organization: Department of Electrical Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong
– sequence: 3
  givenname: A.B.
  surname: Rad
  fullname: Rad, A.B.
  organization: Department of Electrical Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong
– sequence: 4
  givenname: A.K.
  surname: David
  fullname: David, A.K.
  organization: Department of Electrical Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong
– sequence: 5
  givenname: N.
  surname: Kasabov
  fullname: Kasabov, N.
  organization: Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, New Zealand
BookMark eNqFkM1KAzEUhYNUsK2-gYu8wIxJZjI_LoRS_INSF-rGTUiTm5oyk0iSCvr0zlhXLnR14XC_A-eboYnzDhA6pySnhFYXu9zBXvk-Z4TwnLKcFvQITWlTs6xhTTVBU9IynrGCshM0i3FHCK0pa6fo5fHVh5QlCD1erNe481Jj4wMoGZN1W2yC73Fne5tAYy2TxPs45ltwEGRnP2Wy3uEOZHBjHlOQCbYW4ik6NrKLcPZz5-j55vppeZetHm7vl4tVpgpSpaySvNWyqtVwlKqlqWvecgqyKsuG8JIrTnXbVKVSAG1NS5CmhUaZRm-G900xR-WhVwUfYwAj3oLtZfgQlIjRj9iJgx8x-hGUicHPgF3-wpRN32OGBbb7D746wDAMe7cQRFQWnAJtB3VJaG__LvgCyduIfQ
CitedBy_id crossref_primary_10_1002_tee_22420
crossref_primary_10_1007_s11103_025_01564_y
crossref_primary_10_1049_iet_gtd_2020_0842
crossref_primary_10_1007_s40201_022_00835_w
crossref_primary_10_1109_TPWRS_2009_2016609
crossref_primary_10_1016_j_rser_2024_114581
crossref_primary_10_1016_j_ijpe_2016_10_021
crossref_primary_10_2118_219448_PA
crossref_primary_10_1016_j_tust_2017_01_010
crossref_primary_10_1016_j_ijheatmasstransfer_2010_05_064
crossref_primary_10_1016_j_apenergy_2019_114396
crossref_primary_10_1016_j_energy_2016_08_023
crossref_primary_10_1016_j_ijepes_2014_03_005
crossref_primary_10_1038_s41598_024_74300_z
crossref_primary_10_1515_intag_2015_0076
crossref_primary_10_1016_j_ecolind_2014_04_003
crossref_primary_10_1080_07055900_2012_693061
crossref_primary_10_3390_su15010272
crossref_primary_10_1109_TPWRS_2007_908438
crossref_primary_10_1109_TPWRS_2009_2036821
crossref_primary_10_3390_en17246211
crossref_primary_10_1002_jctb_2613
crossref_primary_10_1007_s00521_016_2263_2
crossref_primary_10_1016_j_neunet_2009_11_016
crossref_primary_10_1016_j_energy_2017_04_032
crossref_primary_10_1016_j_tust_2011_11_002
crossref_primary_10_1016_j_compag_2008_07_008
crossref_primary_10_1016_j_jhydrol_2022_127742
crossref_primary_10_1016_j_porgcoat_2022_107296
crossref_primary_10_1061__ASCE_MT_1943_5533_0001270
crossref_primary_10_1007_s00521_016_2408_3
crossref_primary_10_1016_j_renene_2009_10_037
crossref_primary_10_1186_s40008_021_00236_6
crossref_primary_10_1002_cite_202000226
crossref_primary_10_1016_j_enconman_2013_08_039
crossref_primary_10_1016_j_neucom_2023_127028
crossref_primary_10_1039_D5GC02370J
crossref_primary_10_1002_asmb_1979
crossref_primary_10_1109_TII_2019_2924326
Cites_doi 10.1109/59.852131
10.1109/59.116982
10.1109/31.1846
10.1088/0954-898X/6/3/011
10.1007/978-1-4612-0745-0
10.1109/72.595881
10.1109/72.788663
10.1109/59.910780
10.1109/5.823996
10.1109/4235.585888
10.1049/el:20020592
10.1109/72.572107
10.1109/59.761878
10.1109/59.736285
ContentType Journal Article
Copyright 2006
Copyright_xml – notice: 2006
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2005.12.131
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 419
ExternalDocumentID 10_1016_j_neucom_2005_12_131
S0925231206001950
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
29N
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSN
SSV
SSZ
T5K
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-6a59da67c59dcc7af775951ea64480545c51d9864ccee9714eaf9e8cf8dbc7ab3
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000242602300041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 04:38:38 EST 2025
Tue Nov 18 21:44:12 EST 2025
Fri Feb 23 02:31:04 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Day-ahead forecasting
Genetic algorithm
Regularization
Open electricity market
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-6a59da67c59dcc7af775951ea64480545c51d9864ccee9714eaf9e8cf8dbc7ab3
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_neucom_2005_12_131
crossref_citationtrail_10_1016_j_neucom_2005_12_131
elsevier_sciencedirect_doi_10_1016_j_neucom_2005_12_131
PublicationCentury 2000
PublicationDate 2006-12-01
PublicationDateYYYYMMDD 2006-12-01
PublicationDate_xml – month: 12
  year: 2006
  text: 2006-12-01
  day: 01
PublicationDecade 2000
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2006
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chen (bib10) 1999; 10
R.M. Neal, Probabilistic Inference Using Markov Chain Monte-Carlo Methods, Department of Computer Science, University of Toronto CRG-TR-93-1, 25 September 1993.
Baeck, Hammel, Schwefel (bib2) 1997; 1
Charytoniuk, Chen (bib9) 2000; 15
Rognvaldsson (bib30) 1998
D.J.C. MacKay, A practical Bayesian framework for backprop networks, in: J.E. Moody, S.J. Hanson, R.P. Lippmann, (Eds.), Adv. Neural Inform. Process. Syst., 4 (1992) 839–846.
Baeck (bib1) 1995
MacKay (bib24) 1995; 6
K. Siwek, S. Osowski, Regularization of neural networks for improved load forecasting in power system, presented at ICECS 2001, 2001.
Larsen, Svarer, Andersen, Hansen (bib21) 1998
R.M. Neal, Bayesian Learning for Neural Networks; Springer, New York, 1996.
Baeck, Fogel, Michalewicz (bib4) 2000; 2
Gamerman (bib12) 1997
Kotz, Balakrishnan, Johnson (bib19) 2000
Hippert, Pedreira, Souza (bib15) 2001; 16
MacKay (bib26) 2001
Lu, Grady, Crawford (bib22) 1988; 35
Holland (bib16) 1975
R.M. Neal, Bayesian Training of Backpropagation Networks by the Hybrid Monte-Carlo Method, Connectionist Research Group, Department of Computer Science, University of Toronto CRG-TR-92-1, 10 April 1992.
Grady, Groce, Huebner, Lu, Crawford (bib14) 1991; 6
E.H. Tito, G. Zaverucha, M. Vellasco, M. Pacheco, Bayesian neural networks for electric load forecasting, presented at International Conference on Neural Information Processing, 1999.
Bishop (bib5) 1995
Z.S.H. Chan, H.W. Ngan, A.B. Rad, T.K. Ho, Alleviating “overfitting” via genetically-regularised neural network, Electronics Letter, 2002.
Yao, Liu (bib34) 1997; 8
Koza (bib20) 1992
D.J.C. MacKay, Bayesian methods for neural networks - FAQ, vol. 2001, 2000.
Schneider, Takenawa, Schiffman (bib31) 1985
Baeck, Fogel, Michalewicz (bib3) 2000; vol. 1
Doveh, Feigin, Greig, Hyams (bib11) 1999; 14
Khotanzad, Afkhami-Rohani, Tsun-Liang, Abaye, Davis, Maratukulam (bib17) 1997; 84
Khotanzad, Afkhami-Rohani, Maratukulam (bib18) 1998; 134
Gilks, Richardson, Spiegelhalter (bib13) 1996
Bunn (bib6) 2000; 88
Bunn, Farmer (bib7) 1985
Schneider (10.1016/j.neucom.2005.12.131_bib31) 1985
Baeck (10.1016/j.neucom.2005.12.131_bib4) 2000; 2
Khotanzad (10.1016/j.neucom.2005.12.131_bib17) 1997; 84
Larsen (10.1016/j.neucom.2005.12.131_bib21) 1998
10.1016/j.neucom.2005.12.131_bib32
10.1016/j.neucom.2005.12.131_bib33
Khotanzad (10.1016/j.neucom.2005.12.131_bib18) 1998; 134
MacKay (10.1016/j.neucom.2005.12.131_bib24) 1995; 6
Baeck (10.1016/j.neucom.2005.12.131_bib3) 2000; vol. 1
Bunn (10.1016/j.neucom.2005.12.131_bib6) 2000; 88
Holland (10.1016/j.neucom.2005.12.131_bib16) 1975
Gamerman (10.1016/j.neucom.2005.12.131_bib12) 1997
10.1016/j.neucom.2005.12.131_bib25
10.1016/j.neucom.2005.12.131_bib27
10.1016/j.neucom.2005.12.131_bib28
10.1016/j.neucom.2005.12.131_bib29
Hippert (10.1016/j.neucom.2005.12.131_bib15) 2001; 16
10.1016/j.neucom.2005.12.131_bib8
Gilks (10.1016/j.neucom.2005.12.131_bib13) 1996
Grady (10.1016/j.neucom.2005.12.131_bib14) 1991; 6
Koza (10.1016/j.neucom.2005.12.131_bib20) 1992
10.1016/j.neucom.2005.12.131_bib23
Yao (10.1016/j.neucom.2005.12.131_bib34) 1997; 8
Charytoniuk (10.1016/j.neucom.2005.12.131_bib9) 2000; 15
Doveh (10.1016/j.neucom.2005.12.131_bib11) 1999; 14
Baeck (10.1016/j.neucom.2005.12.131_bib2) 1997; 1
Rognvaldsson (10.1016/j.neucom.2005.12.131_bib30) 1998
Bunn (10.1016/j.neucom.2005.12.131_bib7) 1985
Lu (10.1016/j.neucom.2005.12.131_bib22) 1988; 35
MacKay (10.1016/j.neucom.2005.12.131_bib26) 2001
Kotz (10.1016/j.neucom.2005.12.131_bib19) 2000
Baeck (10.1016/j.neucom.2005.12.131_bib1) 1995
Bishop (10.1016/j.neucom.2005.12.131_bib5) 1995
Chen (10.1016/j.neucom.2005.12.131_bib10) 1999; 10
References_xml – reference: R.M. Neal, Bayesian Training of Backpropagation Networks by the Hybrid Monte-Carlo Method, Connectionist Research Group, Department of Computer Science, University of Toronto CRG-TR-92-1, 10 April 1992.
– reference: K. Siwek, S. Osowski, Regularization of neural networks for improved load forecasting in power system, presented at ICECS 2001, 2001.
– reference: D.J.C. MacKay, A practical Bayesian framework for backprop networks, in: J.E. Moody, S.J. Hanson, R.P. Lippmann, (Eds.), Adv. Neural Inform. Process. Syst., 4 (1992) 839–846.
– year: 1992
  ident: bib20
  article-title: Genetic Programming
– year: 2001
  ident: bib26
  article-title: Bayesian Methods for Neural Networks: Theory and Applications
– reference: E.H. Tito, G. Zaverucha, M. Vellasco, M. Pacheco, Bayesian neural networks for electric load forecasting, presented at International Conference on Neural Information Processing, 1999.
– year: 1995
  ident: bib5
  article-title: Neural Networks for Pattern Recognition
– volume: 15
  start-page: 263
  year: 2000
  end-page: 268
  ident: bib9
  article-title: Very short-term load forecasting using artificial neural networks
  publication-title: IEEE Trans. Power Syst.
– year: 1996
  ident: bib13
  article-title: Markov Chain Monte-Carlo in Practice
– volume: 14
  start-page: 538
  year: 1999
  end-page: 546
  ident: bib11
  article-title: Experience with FNN models for medium term power demand predictions
  publication-title: IEEE Trans. Power Syst.
– volume: 84
  start-page: 835
  year: 1997
  end-page: 846
  ident: bib17
  article-title: ANNSTLF-a neural-network-based electric load forecasting system
  publication-title: IEEE Trans. Neural Networks
– start-page: 87
  year: 1985
  end-page: 108
  ident: bib31
  article-title: 24-hour electric utility load forecasting
  publication-title: Comparative Models for Electrical Load Forecasting
– volume: 35
  start-page: 1004
  year: 1988
  end-page: 1010
  ident: bib22
  article-title: An adaptive algorithm for short-term multinode load forecasting in power systems
  publication-title: IEEE Trans. Circuits Syst.
– start-page: 71
  year: 1998
  end-page: 92
  ident: bib30
  article-title: A Simple Trick for Estimating the Weight Decay Parameter
  publication-title: Neural Networks: Tricks of the Trade
– volume: 1
  start-page: 3
  year: 1997
  end-page: 17
  ident: bib2
  article-title: Evolutionary computation: comments on the history and current state
  publication-title: IEEE Trans. Evol. Comput.
– reference: D.J.C. MacKay, Bayesian methods for neural networks - FAQ, vol. 2001, 2000.
– reference: Z.S.H. Chan, H.W. Ngan, A.B. Rad, T.K. Ho, Alleviating “overfitting” via genetically-regularised neural network, Electronics Letter, 2002.
– volume: 10
  start-page: 1239
  year: 1999
  end-page: 1243
  ident: bib10
  article-title: Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks
  publication-title: IEEE Trans. Neural Networks
– year: 1995
  ident: bib1
  publication-title: Evolutionary Algorithm in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms
– start-page: 3
  year: 1985
  end-page: 12
  ident: bib7
  article-title: Economic and operational context of electric load prediction
  publication-title: Comparative Models for Electrical Load Forecasting
– volume: 6
  start-page: 469
  year: 1995
  end-page: 505
  ident: bib24
  article-title: Probable networks and plausible predictions - a review of practical Bayesian methods for supervised neural networks
  publication-title: Comput Neural Syst.
– volume: 8
  start-page: 694
  year: 1997
  end-page: 713
  ident: bib34
  article-title: A new evolutionary system for evolving artificial neural networks
  publication-title: IEEE Trans. Neural Networks
– volume: 2
  year: 2000
  ident: bib4
  publication-title: Evolutionary Computataion II. Advanced Algorithm and Operators
– start-page: 113
  year: 1998
  end-page: 132
  ident: bib21
  article-title: Adaptive regularization in neural network modeling
  publication-title: Neural Networks: Tricks of the Trade
– volume: 134
  start-page: 1413
  year: 1998
  end-page: 1422
  ident: bib18
  article-title: ANNSTLF-artificial neural network short-term load forecaster-generation three
  publication-title: IEEE Trans. Power Systems
– year: 1997
  ident: bib12
  article-title: Markov Chain Monte-Carlo:Stochastic simulation for Bayesian inference
– volume: 16
  start-page: 44
  year: 2001
  end-page: 55
  ident: bib15
  article-title: Neural networks for short-term load forecasting: a review and evaluation
  publication-title: IEEE Trans. Power Systems
– volume: 88
  start-page: 163
  year: 2000
  end-page: 169
  ident: bib6
  article-title: Forecasting loads and prices in competitive power markets
  publication-title: Proc. IEEE
– year: 2000
  ident: bib19
  article-title: Continuous Multivariate Distributions
– volume: vol. 1
  year: 2000
  ident: bib3
  publication-title: Evolutionary Computation I. Basic Algorithm and Operators
– reference: R.M. Neal, Bayesian Learning for Neural Networks; Springer, New York, 1996.
– reference: R.M. Neal, Probabilistic Inference Using Markov Chain Monte-Carlo Methods, Department of Computer Science, University of Toronto CRG-TR-93-1, 25 September 1993.
– year: 1975
  ident: bib16
  article-title: Adaptation in Natural and Artificial Systems
– volume: 6
  start-page: 1404
  year: 1991
  end-page: 1410
  ident: bib14
  article-title: Enhancement, implementation and performance of an adaptive short-term load forecasting algorithm
  publication-title: IEEE Trans. Power Systems
– volume: 15
  start-page: 263
  year: 2000
  ident: 10.1016/j.neucom.2005.12.131_bib9
  article-title: Very short-term load forecasting using artificial neural networks
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.852131
– year: 1997
  ident: 10.1016/j.neucom.2005.12.131_bib12
– volume: 6
  start-page: 1404
  year: 1991
  ident: 10.1016/j.neucom.2005.12.131_bib14
  article-title: Enhancement, implementation and performance of an adaptive short-term load forecasting algorithm
  publication-title: IEEE Trans. Power Systems
  doi: 10.1109/59.116982
– volume: 35
  start-page: 1004
  year: 1988
  ident: 10.1016/j.neucom.2005.12.131_bib22
  article-title: An adaptive algorithm for short-term multinode load forecasting in power systems
  publication-title: IEEE Trans. Circuits Syst.
  doi: 10.1109/31.1846
– year: 1992
  ident: 10.1016/j.neucom.2005.12.131_bib20
– year: 1995
  ident: 10.1016/j.neucom.2005.12.131_bib1
– start-page: 3
  year: 1985
  ident: 10.1016/j.neucom.2005.12.131_bib7
  article-title: Economic and operational context of electric load prediction
– ident: 10.1016/j.neucom.2005.12.131_bib25
– ident: 10.1016/j.neucom.2005.12.131_bib23
– volume: 6
  start-page: 469
  year: 1995
  ident: 10.1016/j.neucom.2005.12.131_bib24
  article-title: Probable networks and plausible predictions - a review of practical Bayesian methods for supervised neural networks
  publication-title: Comput Neural Syst.
  doi: 10.1088/0954-898X/6/3/011
– year: 2001
  ident: 10.1016/j.neucom.2005.12.131_bib26
– ident: 10.1016/j.neucom.2005.12.131_bib27
– ident: 10.1016/j.neucom.2005.12.131_bib29
  doi: 10.1007/978-1-4612-0745-0
– start-page: 71
  year: 1998
  ident: 10.1016/j.neucom.2005.12.131_bib30
  article-title: A Simple Trick for Estimating the Weight Decay Parameter
– volume: vol. 1
  year: 2000
  ident: 10.1016/j.neucom.2005.12.131_bib3
– ident: 10.1016/j.neucom.2005.12.131_bib32
– volume: 84
  start-page: 835
  year: 1997
  ident: 10.1016/j.neucom.2005.12.131_bib17
  article-title: ANNSTLF-a neural-network-based electric load forecasting system
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.595881
– volume: 10
  start-page: 1239
  year: 1999
  ident: 10.1016/j.neucom.2005.12.131_bib10
  article-title: Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.788663
– volume: 16
  start-page: 44
  year: 2001
  ident: 10.1016/j.neucom.2005.12.131_bib15
  article-title: Neural networks for short-term load forecasting: a review and evaluation
  publication-title: IEEE Trans. Power Systems
  doi: 10.1109/59.910780
– year: 2000
  ident: 10.1016/j.neucom.2005.12.131_bib19
– year: 1996
  ident: 10.1016/j.neucom.2005.12.131_bib13
– volume: 88
  start-page: 163
  year: 2000
  ident: 10.1016/j.neucom.2005.12.131_bib6
  article-title: Forecasting loads and prices in competitive power markets
  publication-title: Proc. IEEE
  doi: 10.1109/5.823996
– ident: 10.1016/j.neucom.2005.12.131_bib33
– volume: 2
  year: 2000
  ident: 10.1016/j.neucom.2005.12.131_bib4
– year: 1975
  ident: 10.1016/j.neucom.2005.12.131_bib16
– volume: 1
  start-page: 3
  year: 1997
  ident: 10.1016/j.neucom.2005.12.131_bib2
  article-title: Evolutionary computation: comments on the history and current state
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585888
– start-page: 113
  year: 1998
  ident: 10.1016/j.neucom.2005.12.131_bib21
  article-title: Adaptive regularization in neural network modeling
– ident: 10.1016/j.neucom.2005.12.131_bib8
  doi: 10.1049/el:20020592
– volume: 8
  start-page: 694
  year: 1997
  ident: 10.1016/j.neucom.2005.12.131_bib34
  article-title: A new evolutionary system for evolving artificial neural networks
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.572107
– volume: 14
  start-page: 538
  year: 1999
  ident: 10.1016/j.neucom.2005.12.131_bib11
  article-title: Experience with FNN models for medium term power demand predictions
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.761878
– volume: 134
  start-page: 1413
  year: 1998
  ident: 10.1016/j.neucom.2005.12.131_bib18
  article-title: ANNSTLF-artificial neural network short-term load forecaster-generation three
  publication-title: IEEE Trans. Power Systems
  doi: 10.1109/59.736285
– ident: 10.1016/j.neucom.2005.12.131_bib28
– start-page: 87
  year: 1985
  ident: 10.1016/j.neucom.2005.12.131_bib31
  article-title: 24-hour electric utility load forecasting
– year: 1995
  ident: 10.1016/j.neucom.2005.12.131_bib5
SSID ssj0017129
Score 2.0225234
Snippet The emergence of the new competitive electricity market environment has made short-term load forecasting a more complex task, owing to the effect of marketers’...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 409
SubjectTerms Day-ahead forecasting
Genetic algorithm
Open electricity market
Regularization
Title Short-term ANN load forecasting from limited data using generalization learning strategies
URI https://dx.doi.org/10.1016/j.neucom.2005.12.131
Volume 70
WOSCitedRecordID wos000242602300041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5FKQculKcohWoP3Ky1shu_9mhQUUqrCNEiIi6WvV63lOBWbVL1b_CPmdmH47So0AMXJ9r4kXi-zH47nvmGkLeiVhFMbBWrxKhhES8TJuuGs1pUokHBtkQbdf2DdDrNZjP5aTD45WthruZp22bX1_L8v5oaxsDYWDp7D3N3J4UBeA9Ghy2YHbb_ZPjDE2DUDD1ukE-nwfysrDGXUKvy0qQ4m4KSua1rCjBBNFiaeMGxFaB2dZm-nQQGG7yaRJ_IGlEPZVpCuGBD_hM1F2oEWBdcwNoF8_hD_9DBYTgJu9jzsf1gEn7txj5btOXhu27IZNzbwf3wRoBilezhIo0iZkAj15yu7RbiwcXGPR8ajWRvOo6sR73l6W3Q4TRs9RLTfkxwjIuQuzllTVj7xoTXpSH6DLfTwp4Fe3LGBRcFx8r8DZHGMhuSjXxvd_axezSVcmEFHN2v8vWYJmnw9rf5M9_pcZijx-SRW3zQ3ILmCRno9inZ9I09qPPzz8i3FYYoYIgihmgPQxQxRB2GKGKIGgzRdQxRjyG6wtBz8uXD7tH7CXNNOJiC1eSCJWUs6zJJFbwolZZNCncl5rrEhT3w_VjFvEaNfwV0S6Y80mUjdaaarK5g92r8ggzbs1a_JHTUAPeGBUMjMxXFYoyZzZkGDpUpkSVVskXG_lYVyinUY6OUeXGXobYI6446twotf9k_9VYoHMu07LEAaN155Kt7XmmbPFz9H16T4eJiqd-QB-pq8f3yYsfh6jcDGZ8N
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-term+ANN+load+forecasting+from+limited+data+using+generalization+learning+strategies&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Chan%2C+Zeke+S.H.&rft.au=Ngan%2C+H.W.&rft.au=Rad%2C+A.B.&rft.au=David%2C+A.K.&rft.date=2006-12-01&rft.issn=0925-2312&rft.volume=70&rft.issue=1-3&rft.spage=409&rft.epage=419&rft_id=info:doi/10.1016%2Fj.neucom.2005.12.131&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2005_12_131
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon