A dense connection encoding–decoding convolutional neural network structure for semantic segmentation of thymoma
•Three-channel pseudo-color images preprocessing method is designed by concatenating different CT windows.•A dense skip connection encoding–decoding model (DSC-Net) is proposed to perform automatic segmentation of thymoma base on a deep convolutional neural network.•Dense connections are introduced...
Uložené v:
| Vydané v: | Neurocomputing (Amsterdam) Ročník 451; s. 1 - 11 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
03.09.2021
|
| Predmet: | |
| ISSN: | 0925-2312, 1872-8286 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Three-channel pseudo-color images preprocessing method is designed by concatenating different CT windows.•A dense skip connection encoding–decoding model (DSC-Net) is proposed to perform automatic segmentation of thymoma base on a deep convolutional neural network.•Dense connections are introduced into the architecture of the encoding path across different level feature maps in the DSC-Net.•Different level skip connections are designed between the encoding and decoding path in the DSC-Net.
Accurately positioning and segmenting thymoma from computed tomography (CT) images is of great importance for an image-driven thymoma analysis. In clinical practice, the diagnosis and segmentation of thymomas for radiologists are time-consuming and inefficient tasks. Thus, it is necessary to develop a method to accurately and efficiently realize automatic segmentation of thymoma. Here, a dense skip connection encoding–decoding model (DSC-Net), which is a deep convolutional neural network, was proposed to perform automatic segmentation of thymoma with the ability to fuse feature maps under receptive fields of different scales. An image preprocessing method was also proposed to provide much more texture information and enhance the contrast between thymoma and its surrounding tissues. A total of 310 subjects who underwent contrast-enhanced CT scanning were included in this ethically-approved retrospective study. All of the CT slices were manually labeled by four experienced radiologists, and 80% of images were included in the training set and the rest were included in the testing set. The performance of segmentation was evaluated by calculating the accuracy, intersection over union (IoU), and Boundary F1 contour matching score (BFScore) between the predicted segmentation and the manual labels. For segmentation of thymoma in the testing set, the accuracy, IoU and BFScore were 92.96%, 87.86% and 0.9087 respectively. Compared to the U-Net method, the DSC-Net model improved IoU by 3.94%. In addition, the efficacy and robustness of DSC-Net in segmentation of different patients and different types of thymoma classified by the WHO histological classification criteria were verified. The proposed preprocessing method and DSC-Net demonstrated improved performance in segmentation of thymomas, suggesting the ability to provide consistent delineation and assist radiologists in their clinical applications. |
|---|---|
| AbstractList | •Three-channel pseudo-color images preprocessing method is designed by concatenating different CT windows.•A dense skip connection encoding–decoding model (DSC-Net) is proposed to perform automatic segmentation of thymoma base on a deep convolutional neural network.•Dense connections are introduced into the architecture of the encoding path across different level feature maps in the DSC-Net.•Different level skip connections are designed between the encoding and decoding path in the DSC-Net.
Accurately positioning and segmenting thymoma from computed tomography (CT) images is of great importance for an image-driven thymoma analysis. In clinical practice, the diagnosis and segmentation of thymomas for radiologists are time-consuming and inefficient tasks. Thus, it is necessary to develop a method to accurately and efficiently realize automatic segmentation of thymoma. Here, a dense skip connection encoding–decoding model (DSC-Net), which is a deep convolutional neural network, was proposed to perform automatic segmentation of thymoma with the ability to fuse feature maps under receptive fields of different scales. An image preprocessing method was also proposed to provide much more texture information and enhance the contrast between thymoma and its surrounding tissues. A total of 310 subjects who underwent contrast-enhanced CT scanning were included in this ethically-approved retrospective study. All of the CT slices were manually labeled by four experienced radiologists, and 80% of images were included in the training set and the rest were included in the testing set. The performance of segmentation was evaluated by calculating the accuracy, intersection over union (IoU), and Boundary F1 contour matching score (BFScore) between the predicted segmentation and the manual labels. For segmentation of thymoma in the testing set, the accuracy, IoU and BFScore were 92.96%, 87.86% and 0.9087 respectively. Compared to the U-Net method, the DSC-Net model improved IoU by 3.94%. In addition, the efficacy and robustness of DSC-Net in segmentation of different patients and different types of thymoma classified by the WHO histological classification criteria were verified. The proposed preprocessing method and DSC-Net demonstrated improved performance in segmentation of thymomas, suggesting the ability to provide consistent delineation and assist radiologists in their clinical applications. |
| Author | Cui, Guangbin Li, Jingyuan von Deneen, Karen M. Wang, Wen Zhang, Yi Feng, Xiulong Xing, Gang Sun, Wenfang |
| Author_xml | – sequence: 1 givenname: Jingyuan surname: Li fullname: Li, Jingyuan organization: Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China – sequence: 2 givenname: Wenfang surname: Sun fullname: Sun, Wenfang organization: School of Aerospace Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China – sequence: 3 givenname: Xiulong surname: Feng fullname: Feng, Xiulong organization: Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi 710038, China – sequence: 4 givenname: Gang surname: Xing fullname: Xing, Gang organization: Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China – sequence: 5 givenname: Karen M. surname: von Deneen fullname: von Deneen, Karen M. organization: Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China – sequence: 6 givenname: Wen surname: Wang fullname: Wang, Wen email: wfsun@xidian.cdu.cn organization: Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi 710038, China – sequence: 7 givenname: Yi orcidid: 0000-0003-0859-9735 surname: Zhang fullname: Zhang, Yi email: yizhang@xidian.edu.cn, zhangyiuf@gmail.com organization: Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China – sequence: 8 givenname: Guangbin surname: Cui fullname: Cui, Guangbin email: cuigbtd@fmmu.edu.cn organization: Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi 710038, China |
| BookMark | eNqFkE1OwzAQhS0EEm3hBix8gQTbSZ2EBVJV8SdVYgNry7EnxSWxke0WdccduCEnIWlYsYDVe9LovZn5pujYOgsIXVCSUkL55Sa1sFWuSxlhNCV5Slh2hCa0LFhSspIfowmp2DxhGWWnaBrChhBaUFZNkF9gDTYAVs5aUNE4i8Eqp41df318ahjtMN65djvMZYv7df4g8d35Vxyi36q49YAb53GATtpoVG_WHdgoD6WuwfFl37lOnqGTRrYBzn90hp5vb56W98nq8e5huVglKiM8JrxiOZNK503Fy6as80yWsi7mKisp6FrPOStqTpQGqDLQhDa8AMUIcJIR0DyboauxV3kXgodGKDMeE700raBEDPTERoz0xEBPkFz09Ppw_iv85k0n_f6_2PUYg_6xnQEvgjI9T9DG93SFdubvgm-_yZM3 |
| CitedBy_id | crossref_primary_10_1016_j_neucom_2023_03_006 crossref_primary_10_1016_j_imed_2022_06_003 crossref_primary_10_1109_TGRS_2022_3202865 crossref_primary_10_1016_j_displa_2025_103091 crossref_primary_10_1016_j_jmmm_2022_169521 crossref_primary_10_1016_j_neucom_2022_01_044 crossref_primary_10_1021_acs_biomac_4c01193 crossref_primary_10_1016_j_compbiomed_2023_106635 crossref_primary_10_1016_j_engappai_2025_110045 crossref_primary_10_3390_app132111823 crossref_primary_10_3389_fnagi_2022_841297 crossref_primary_10_1007_s40747_023_01103_6 crossref_primary_10_1038_s41598_024_74025_z |
| Cites_doi | 10.1148/rg.317115505 10.1148/radiology.210.3.r99mr07601 10.1109/CISP-BMEI.2017.8302199 10.1016/j.media.2016.05.004 10.1109/ICCEET.2012.6203833 10.1097/JTO.0b013e3181f209ca 10.1109/CVPR.2017.243 10.2352/J.ImagingSci.Technol.2004.48.1.art00007 10.1109/TMI.2011.2168234 10.1007/978-3-030-01234-2_49 10.1016/j.media.2017.06.014 10.1016/j.patrec.2012.09.015 10.1109/CVPR.2016.90 10.1097/RTI.0b013e31828609a0 10.1259/bjr.20180251 10.1109/TMI.2019.2911588 10.1007/978-3-030-00889-5_1 10.1016/j.procs.2018.01.104 10.1097/MD.0000000000020594 10.1109/TMI.2018.2845918 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. |
| Copyright_xml | – notice: 2021 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2021.04.023 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 11 |
| ExternalDocumentID | 10_1016_j_neucom_2021_04_023 S0925231221005506 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c306t-69242acd4f968f8b43a8ab75c381edbd5627b60cdee93ed01f67ec20e6030ed63 |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000662813300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Tue Nov 18 20:38:44 EST 2025 Sat Nov 29 07:14:16 EST 2025 Fri Feb 23 02:44:20 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Thymoma Computed tomography Image processing Convolutional neural network |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-69242acd4f968f8b43a8ab75c381edbd5627b60cdee93ed01f67ec20e6030ed63 |
| ORCID | 0000-0003-0859-9735 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_neucom_2021_04_023 crossref_primary_10_1016_j_neucom_2021_04_023 elsevier_sciencedirect_doi_10_1016_j_neucom_2021_04_023 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-03 |
| PublicationDateYYYYMMDD | 2021-09-03 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | R.K. Pandey, A. Vasan, A.G. Ramakrishnan, Segmentation of Liver Lesions with Reduced Complexity Deep Models, (2018) Yang, Y.K. M., C. Zhang, Z. Li, K. Yang, DenseASPP for semantic segmentation in street scenes, IEEE/CVF Conference on Computer Vision and Pattern Recognition. G. Huang, L. Z, L.V.D. Maaten, K.Q. Weinberger, Densely connected convolutional networks, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. 10.1109/CVPR.2017.243. S. Angelina, L.P. Suresh, S.H.K. Veni, Image segmentation based on genetic algorithm for region growth and region merging, International Conference on Computing, Electronics and Electrical Technologies IEEE, (IEEE, 2012), pp. 970–974. 10.1109/ICCEET.2012.6203833 Marom (b0005) 2013; 28 Li, Chen, Qi, Dou, Fu, Heng (b0090) 2018; 37 Zhou, Siddiquee, Tajbakhsh, Liang (b0095) 2018; 11045 Li, Gu, Fan, Li, Xiao, Liu (b0110) 2018; 91 Barbu, Suehling, Xu, Liu, Zhou, Comaniciu (b0025) 2012; 31 Liu, Xiao, Liang, Guan (b0060) 2012 Kaur, Soni, Gosain (b0055) 2013; 34 Jiang (b0040) 2006 K. He, Z. X, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, (2016). 10.1109/CVPR.2016.90 X. Gao, Y. Cai, C. Qiu, Y. Cui, Retinal blood vessel segmentation based on the Gaussian matched filter and U-net, 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 2017, 1. 10.1109/CISP-BMEI.2017.8302199 Wu, Gil, Deligdisch (b0045) 2004 L. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam, Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation, (2018). Uchida, Matsubara, Onuki, Matsuoka, Ichihara, Nakajima (b0105) 2020; 99 Man, Huang, Feng, Li, Wu (b0080) 2019; 38 H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid scene parsing network, IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 10.1109/CVPR.2017.660. S. Wang, Z. M, Z. Liu, Z. Liu, D. Gu, Central focused convolutional neural networks: Developing a data-driven model for lung nodule segmentation, Med. Image Anal. (2017) 172–183 B. Ait Skourt, A. El Hassani, A. Majda, Lung CT image segmentation using deep neural networks, Procedia Comput. Sci. 127 (2018) 109–113. 10.1016/j.procs.2018.01.104. Kong (b0150) 2015; 17 Ibtehaz, Rahman (b0100) 2019 Benveniste, Rosado-de-Christenson, Sabloff, Moran, Swisher, Marom (b0015) 2011; 31 Tang (b0035) 2008 Mayo-Smith, Gupta, Ridlen, Brody, Clements, Cronan (b0115) 1999; 210 Marom (b0010) 2010; 5 Havaei, Davy, Warde-Farley, Biard, Courville, Bengio, Pal, Jodoin, Larochelle (b0020) 2017; 35 Ronneberger, Fischer, Brox (b0065) 2015 L. Chen, G. Papandreou, F. Schroff, H. Adam, Rethinking Atrous Convolution for Semantic Image Segmentation, (2017) Ronneberger (10.1016/j.neucom.2021.04.023_b0065) 2015 10.1016/j.neucom.2021.04.023_b0125 Jiang (10.1016/j.neucom.2021.04.023_b0040) 2006 Havaei (10.1016/j.neucom.2021.04.023_b0020) 2017; 35 10.1016/j.neucom.2021.04.023_b0145 10.1016/j.neucom.2021.04.023_b0085 10.1016/j.neucom.2021.04.023_b0140 Marom (10.1016/j.neucom.2021.04.023_b0010) 2010; 5 10.1016/j.neucom.2021.04.023_b0120 Uchida (10.1016/j.neucom.2021.04.023_b0105) 2020; 99 Mayo-Smith (10.1016/j.neucom.2021.04.023_b0115) 1999; 210 Barbu (10.1016/j.neucom.2021.04.023_b0025) 2012; 31 Zhou (10.1016/j.neucom.2021.04.023_b0095) 2018; 11045 Tang (10.1016/j.neucom.2021.04.023_b0035) 2008 Li (10.1016/j.neucom.2021.04.023_b0090) 2018; 37 Wu (10.1016/j.neucom.2021.04.023_b0045) 2004 Li (10.1016/j.neucom.2021.04.023_b0110) 2018; 91 Man (10.1016/j.neucom.2021.04.023_b0080) 2019; 38 Benveniste (10.1016/j.neucom.2021.04.023_b0015) 2011; 31 10.1016/j.neucom.2021.04.023_b0135 Kong (10.1016/j.neucom.2021.04.023_b0150) 2015; 17 Marom (10.1016/j.neucom.2021.04.023_b0005) 2013; 28 10.1016/j.neucom.2021.04.023_b0030 Liu (10.1016/j.neucom.2021.04.023_b0060) 2012 10.1016/j.neucom.2021.04.023_b0075 10.1016/j.neucom.2021.04.023_b0130 10.1016/j.neucom.2021.04.023_b0070 Ibtehaz (10.1016/j.neucom.2021.04.023_b0100) 2019 10.1016/j.neucom.2021.04.023_b0050 Kaur (10.1016/j.neucom.2021.04.023_b0055) 2013; 34 |
| References_xml | – reference: S. Wang, Z. M, Z. Liu, Z. Liu, D. Gu, Central focused convolutional neural networks: Developing a data-driven model for lung nodule segmentation, Med. Image Anal. (2017) 172–183 – volume: 37 start-page: 2663 year: 2018 end-page: 2674 ident: b0090 article-title: H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes publication-title: IEEE Trans. Med. Imag. – reference: X. Gao, Y. Cai, C. Qiu, Y. Cui, Retinal blood vessel segmentation based on the Gaussian matched filter and U-net, 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 2017, 1. 10.1109/CISP-BMEI.2017.8302199 – volume: 5 start-page: S296 year: 2010 end-page: S303 ident: b0010 article-title: Imaging thymoma publication-title: J. Thorac. Oncol. – volume: 35 start-page: 18 year: 2017 end-page: 31 ident: b0020 article-title: Brain tumor segmentation with deep neural networks publication-title: Med. Image Anal. – volume: 28 start-page: 69 year: 2013 ident: b0005 article-title: Advances in thymoma imaging publication-title: J. Thorac. Imag. – volume: 17 start-page: 19 year: 2015 end-page: 21 ident: b0150 article-title: Multi-slice spiral CT in benign and malignant thymoma imaging diagnosis and differential diagnosis publication-title: J. Shenyang Med. College – reference: S. Angelina, L.P. Suresh, S.H.K. Veni, Image segmentation based on genetic algorithm for region growth and region merging, International Conference on Computing, Electronics and Electrical Technologies IEEE, (IEEE, 2012), pp. 970–974. 10.1109/ICCEET.2012.6203833 – volume: 31 start-page: 1847 year: 2011 end-page: 1861 ident: b0015 article-title: Role of imaging in the diagnosis, staging, and treatment of thymoma publication-title: Radiographics – reference: R.K. Pandey, A. Vasan, A.G. Ramakrishnan, Segmentation of Liver Lesions with Reduced Complexity Deep Models, (2018) – year: 2008 ident: b0035 article-title: Fast image segmentation method based on threshold publication-title: Control Decis. Conf. – reference: B. Ait Skourt, A. El Hassani, A. Majda, Lung CT image segmentation using deep neural networks, Procedia Comput. Sci. 127 (2018) 109–113. 10.1016/j.procs.2018.01.104. – reference: K. He, Z. X, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, (2016). 10.1109/CVPR.2016.90 – volume: 31 start-page: 240 year: 2012 end-page: 250 ident: b0025 article-title: Automatic detection and segmentation of lymph nodes from CT data publication-title: IEEE Trans. Med. Imag. – volume: 11045 start-page: 3 year: 2018 end-page: 11 ident: b0095 article-title: UNet++: a nested U-Net architecture for medical image segmentation publication-title: Deep Learn. Med. Image Anal. Multimodal Learn. Clin. Decis. Support – reference: H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid scene parsing network, IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 10.1109/CVPR.2017.660. – reference: Yang, Y.K. M., C. Zhang, Z. Li, K. Yang, DenseASPP for semantic segmentation in street scenes, IEEE/CVF Conference on Computer Vision and Pattern Recognition. – start-page: 22 year: 2004 end-page: 27 ident: b0045 article-title: Region growing segmentation of chromatin clumps of ovarian cells using adaptive gradients publication-title: J. Imag. Sci. Technol. – start-page: 74 year: 2019 end-page: 87 ident: b0100 article-title: MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation publication-title: Neural Networks – reference: G. Huang, L. Z, L.V.D. Maaten, K.Q. Weinberger, Densely connected convolutional networks, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. 10.1109/CVPR.2017.243. – volume: 34 start-page: 163 year: 2013 end-page: 175 ident: b0055 article-title: RETRACTED: A robust kernelized intuitionistic fuzzy c-means clustering algorithm in segmentation of noisy medical images publication-title: Pattern Recogn. Lett. – reference: L. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam, Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation, (2018). – start-page: 398 year: 2006 end-page: 401 ident: b0040 article-title: Medical image segmentation based on improved ostu algorithm and regional growth algorithm publication-title: J. Northeastern Univ. – volume: 210 start-page: 601 year: 1999 end-page: 604 ident: b0115 article-title: Detecting hepatic lesions: the added utility of CT liver window settings publication-title: Radiology – start-page: 234 year: 2015 end-page: 241 ident: b0065 article-title: U-Net: Convolutional networks for biomedical image segmentation publication-title: Med. Image Comput. Comput. Assist. Intervent. (MICCAI) – volume: 99 year: 2020 ident: b0105 article-title: Efficacy of measuring the invasive diameter of lung adenocarcinoma using mediastinal window settings publication-title: Medicine – volume: 91 start-page: 20180251 year: 2018 ident: b0110 article-title: Effect of CT window settings on size measurements of the solid component in subsolid nodules: evaluation of prediction efficacy of the degree of pathological malignancy in lung adenocarcinoma publication-title: Br. J. Radiol. – volume: 38 start-page: 1971 year: 2019 end-page: 1980 ident: b0080 article-title: Deep Q learning driven CT pancreas segmentation with geometry-aware U-Net publication-title: IEEE Trans. Med. Imag. – reference: L. Chen, G. Papandreou, F. Schroff, H. Adam, Rethinking Atrous Convolution for Semantic Image Segmentation, (2017) – start-page: 221 year: 2012 end-page: 230 ident: b0060 publication-title: Fuzzy C-means Clustering with Bilateral Filtering for Medical Image Segmentation – volume: 31 start-page: 1847 year: 2011 ident: 10.1016/j.neucom.2021.04.023_b0015 article-title: Role of imaging in the diagnosis, staging, and treatment of thymoma publication-title: Radiographics doi: 10.1148/rg.317115505 – year: 2008 ident: 10.1016/j.neucom.2021.04.023_b0035 article-title: Fast image segmentation method based on threshold publication-title: Control Decis. Conf. – volume: 210 start-page: 601 year: 1999 ident: 10.1016/j.neucom.2021.04.023_b0115 article-title: Detecting hepatic lesions: the added utility of CT liver window settings publication-title: Radiology doi: 10.1148/radiology.210.3.r99mr07601 – ident: 10.1016/j.neucom.2021.04.023_b0145 – ident: 10.1016/j.neucom.2021.04.023_b0070 doi: 10.1109/CISP-BMEI.2017.8302199 – volume: 35 start-page: 18 year: 2017 ident: 10.1016/j.neucom.2021.04.023_b0020 article-title: Brain tumor segmentation with deep neural networks publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.05.004 – ident: 10.1016/j.neucom.2021.04.023_b0140 – ident: 10.1016/j.neucom.2021.04.023_b0050 doi: 10.1109/ICCEET.2012.6203833 – volume: 5 start-page: S296 year: 2010 ident: 10.1016/j.neucom.2021.04.023_b0010 article-title: Imaging thymoma publication-title: J. Thorac. Oncol. doi: 10.1097/JTO.0b013e3181f209ca – ident: 10.1016/j.neucom.2021.04.023_b0085 – ident: 10.1016/j.neucom.2021.04.023_b0125 doi: 10.1109/CVPR.2017.243 – start-page: 22 year: 2004 ident: 10.1016/j.neucom.2021.04.023_b0045 article-title: Region growing segmentation of chromatin clumps of ovarian cells using adaptive gradients publication-title: J. Imag. Sci. Technol. doi: 10.2352/J.ImagingSci.Technol.2004.48.1.art00007 – start-page: 74 year: 2019 ident: 10.1016/j.neucom.2021.04.023_b0100 article-title: MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation publication-title: Neural Networks – volume: 31 start-page: 240 year: 2012 ident: 10.1016/j.neucom.2021.04.023_b0025 article-title: Automatic detection and segmentation of lymph nodes from CT data publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2011.2168234 – start-page: 398 year: 2006 ident: 10.1016/j.neucom.2021.04.023_b0040 article-title: Medical image segmentation based on improved ostu algorithm and regional growth algorithm publication-title: J. Northeastern Univ. – ident: 10.1016/j.neucom.2021.04.023_b0130 doi: 10.1007/978-3-030-01234-2_49 – ident: 10.1016/j.neucom.2021.04.023_b0135 doi: 10.1007/978-3-030-01234-2_49 – ident: 10.1016/j.neucom.2021.04.023_b0030 doi: 10.1016/j.media.2017.06.014 – volume: 34 start-page: 163 year: 2013 ident: 10.1016/j.neucom.2021.04.023_b0055 article-title: RETRACTED: A robust kernelized intuitionistic fuzzy c-means clustering algorithm in segmentation of noisy medical images publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2012.09.015 – ident: 10.1016/j.neucom.2021.04.023_b0120 doi: 10.1109/CVPR.2016.90 – start-page: 234 year: 2015 ident: 10.1016/j.neucom.2021.04.023_b0065 article-title: U-Net: Convolutional networks for biomedical image segmentation publication-title: Med. Image Comput. Comput. Assist. Intervent. (MICCAI) – volume: 28 start-page: 69 year: 2013 ident: 10.1016/j.neucom.2021.04.023_b0005 article-title: Advances in thymoma imaging publication-title: J. Thorac. Imag. doi: 10.1097/RTI.0b013e31828609a0 – volume: 91 start-page: 20180251 year: 2018 ident: 10.1016/j.neucom.2021.04.023_b0110 article-title: Effect of CT window settings on size measurements of the solid component in subsolid nodules: evaluation of prediction efficacy of the degree of pathological malignancy in lung adenocarcinoma publication-title: Br. J. Radiol. doi: 10.1259/bjr.20180251 – volume: 38 start-page: 1971 year: 2019 ident: 10.1016/j.neucom.2021.04.023_b0080 article-title: Deep Q learning driven CT pancreas segmentation with geometry-aware U-Net publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2019.2911588 – start-page: 221 year: 2012 ident: 10.1016/j.neucom.2021.04.023_b0060 – volume: 11045 start-page: 3 year: 2018 ident: 10.1016/j.neucom.2021.04.023_b0095 article-title: UNet++: a nested U-Net architecture for medical image segmentation publication-title: Deep Learn. Med. Image Anal. Multimodal Learn. Clin. Decis. Support doi: 10.1007/978-3-030-00889-5_1 – ident: 10.1016/j.neucom.2021.04.023_b0075 doi: 10.1016/j.procs.2018.01.104 – volume: 99 year: 2020 ident: 10.1016/j.neucom.2021.04.023_b0105 article-title: Efficacy of measuring the invasive diameter of lung adenocarcinoma using mediastinal window settings publication-title: Medicine doi: 10.1097/MD.0000000000020594 – volume: 37 start-page: 2663 year: 2018 ident: 10.1016/j.neucom.2021.04.023_b0090 article-title: H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2018.2845918 – volume: 17 start-page: 19 year: 2015 ident: 10.1016/j.neucom.2021.04.023_b0150 article-title: Multi-slice spiral CT in benign and malignant thymoma imaging diagnosis and differential diagnosis publication-title: J. Shenyang Med. College |
| SSID | ssj0017129 |
| Score | 2.4093864 |
| Snippet | •Three-channel pseudo-color images preprocessing method is designed by concatenating different CT windows.•A dense skip connection encoding–decoding model... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Computed tomography Convolutional neural network Image processing Thymoma |
| Title | A dense connection encoding–decoding convolutional neural network structure for semantic segmentation of thymoma |
| URI | https://dx.doi.org/10.1016/j.neucom.2021.04.023 |
| Volume | 451 |
| WOSCitedRecordID | wos000662813300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECXcpIdeuhdNN_DQW8BCK0kdhSJdgiAo0LTVTRDFUWHDloMkDpJb_yFfkF_rl3S4yXZTpM2hF1kgJGqZ55kh9fiGkNdCapVkHWc80jnLMONmTS45ayREXOdK5bbG0tc9sb8vq6r4NBpdhrUwp1PR9_LsrDj8r6bGNjS2WTp7A3MPnWID7qPRcYtmx-0_Gb7cRlfiSOg9uELgRqzSxKjAbEg1uAZLOvd3g7Yy4pb2x1LDt522rPnCYLiIxzBDK4xb3Pk-8yuWekcxOJ_NvXufBDGoBQZGWzDCT0WUM6PIoA38hqmHPcsk2MUjzhdLkH5eWEf4Dfqu8WHVpqrOKVXjxXS-bK58SZb34VA_gZHElqGVrs5EJjnDNHPNKWdehta51XglPjvffMXzu0mIyRt8U4YGZC5kNWzdauZ1oe3fAuBASwyMt0nteqlNL3WU1djLLbKZiLxAx7lZftypdodPVSJOnKCjf4qwPtOSCK_ezZ_zn5Wc5uA-uesHI7R0IHpARtA_JPdCoQ_q_f4jclRSiym6xBQNmPr54yKgia6hiTo0UY8mOqCJIppoQBNdRROdd9Sj6TH58m7n4O0H5ot1sBZHnSeM40A-aVqddQWXnVRZ2shGibzFlBC00phnC8WjVgMUKego7riANomAY5gBzdMnZKOf9_CUUC21jCDOQSjIRJcp2aaY-GrMTZURYNwiaXiFdeuV7E1BlWl9nQG3CBvOOnRKLn85XgTr1D4bdVlmjZC79sxnN7zSc3Jn-b94QTbQHPCS3G5PT8bHR6883n4B2mK0OA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dense+connection+encoding%E2%80%93decoding+convolutional+neural+network+structure+for+semantic+segmentation+of+thymoma&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Li%2C+Jingyuan&rft.au=Sun%2C+Wenfang&rft.au=Feng%2C+Xiulong&rft.au=Xing%2C+Gang&rft.date=2021-09-03&rft.issn=0925-2312&rft.volume=451&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1016%2Fj.neucom.2021.04.023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2021_04_023 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |