Video intra prediction using convolutional encoder decoder network
Intra prediction is an effective method for video coding to remove the spatial redundancy of content. Classical intra prediction method usually creates a prediction block by extrapolating the encoded pixels surrounding the target block. However, existing methods cannot guarantee the prediction effic...
Saved in:
| Published in: | Neurocomputing (Amsterdam) Vol. 394; pp. 168 - 177 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
21.06.2020
|
| Subjects: | |
| ISSN: | 0925-2312, 1872-8286 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Intra prediction is an effective method for video coding to remove the spatial redundancy of content. Classical intra prediction method usually creates a prediction block by extrapolating the encoded pixels surrounding the target block. However, existing methods cannot guarantee the prediction efficiency for rich textural structure, especially when weak spatial correlation exists between the target block and reference pixels. To remedy this issue, this paper proposes a novel intra prediction method via convolutional encoder-decoder network, which we term IPCED. IPCED can learn and extract the internal representation of reference blocks, and progressively generate a prediction block from this representation. IPCED is a data-driven method, which represents an improvement over hand-crafted methods, and is capable of improving the accuracy of intra prediction. Extensive experimental results demonstrate that IPCED can generate higher-quality intra prediction results, achieves 3.41%, 3.07% and 3.44% bitrate saving for the Y/Cb/Cr channel compared with HEVC baseline, which is significantly beyond existing methods. |
|---|---|
| AbstractList | Intra prediction is an effective method for video coding to remove the spatial redundancy of content. Classical intra prediction method usually creates a prediction block by extrapolating the encoded pixels surrounding the target block. However, existing methods cannot guarantee the prediction efficiency for rich textural structure, especially when weak spatial correlation exists between the target block and reference pixels. To remedy this issue, this paper proposes a novel intra prediction method via convolutional encoder-decoder network, which we term IPCED. IPCED can learn and extract the internal representation of reference blocks, and progressively generate a prediction block from this representation. IPCED is a data-driven method, which represents an improvement over hand-crafted methods, and is capable of improving the accuracy of intra prediction. Extensive experimental results demonstrate that IPCED can generate higher-quality intra prediction results, achieves 3.41%, 3.07% and 3.44% bitrate saving for the Y/Cb/Cr channel compared with HEVC baseline, which is significantly beyond existing methods. |
| Author | An, Ping Jin, Zhipeng Shen, Liquan |
| Author_xml | – sequence: 1 givenname: Zhipeng orcidid: 0000-0003-0146-8599 surname: Jin fullname: Jin, Zhipeng email: 364043283@qq.com organization: School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China – sequence: 2 givenname: Ping surname: An fullname: An, Ping email: anping@shu.edu.cn organization: Jiaxing Vocational and Technical College, Jiaxing 314036, China – sequence: 3 givenname: Liquan orcidid: 0000-0002-2148-6279 surname: Shen fullname: Shen, Liquan email: jsslq@shu.edu.cn organization: Jiaxing Vocational and Technical College, Jiaxing 314036, China |
| BookMark | eNqFkM1KAzEUhYNUsFbfwMW8wIw3SecnLgQt_kHBjboNmZuMpE6Tkkwrvr0ZxpULXV048B3O_U7JzHlnCLmgUFCg1eWmcGaPflswoKIAVkC1PCJz2tQsb1hTzcgcBCtzxik7IacxbgBoTZmYk9s3q43PrBuCynbBaIuD9S7bR-veM_Tu4Pv9mKg-Mw69NiHTZrrODJ8-fJyR40710Zz_3AV5vb97WT3m6-eHp9XNOkcO1ZBXFcdlyxlowREVVQ3yEltUTIsSa8rLDiCFKEyrsGYKlKbY6hp0R7Vo-YJcTb0YfIzBdBLtoMZtabvtJQU52pAbOdmQow0JTCYbCV7-gnfBblX4-g-7njCTHjtYE2REmzwkT8HgILW3fxd8A8VdgIU |
| CitedBy_id | crossref_primary_10_1016_j_neucom_2022_07_048 crossref_primary_10_3390_electronics11234024 crossref_primary_10_1109_JPROC_2021_3059994 |
| Cites_doi | 10.1109/TIP.2016.2582422 10.1109/TIP.2018.2817044 10.1109/JAS.2017.7510583 10.1109/TCSVT.2016.2633377 10.1109/TPAMI.2010.161 10.1109/TCSVT.2012.2221191 10.1109/TCSVT.2015.2477916 10.1145/3072959.3073659 10.1109/TIP.2016.2573585 10.1109/TCSVT.2004.839995 10.1109/TIP.2017.2662206 10.1109/TIP.2013.2264679 10.1109/TCSVT.2016.2556498 10.1109/TCSVT.2012.2221525 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. |
| Copyright_xml | – notice: 2019 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2019.02.064 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 177 |
| ExternalDocumentID | 10_1016_j_neucom_2019_02_064 S092523121930880X |
| GrantInformation_xml | – fundername: Shanghai Science and Technology Commission grantid: 17DZ2292400; 18XD1423900 funderid: https://doi.org/10.13039/501100011470 – fundername: National Natural Science Foundation of China grantid: 61571285; 61801006 funderid: https://doi.org/10.13039/501100001809 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c306t-663c4b320d93cca1a8c35cbca2d95c7135f00a8cc9ebac72a0ad1cbd70df1d9b3 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000531730600017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Tue Nov 18 22:35:02 EST 2025 Sat Nov 29 07:13:38 EST 2025 Fri Feb 23 02:47:40 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Video coding Intra prediction Image inpainting Convolutional encoder-decoder network (CED) High Efficiency Video Coding (HEVC) |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-663c4b320d93cca1a8c35cbca2d95c7135f00a8cc9ebac72a0ad1cbd70df1d9b3 |
| ORCID | 0000-0002-2148-6279 0000-0003-0146-8599 |
| PageCount | 10 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_neucom_2019_02_064 crossref_primary_10_1016_j_neucom_2019_02_064 elsevier_sciencedirect_doi_10_1016_j_neucom_2019_02_064 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-06-21 |
| PublicationDateYYYYMMDD | 2020-06-21 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Iizuka, Simo-Serra, Ishikawa (bib0033) 2017; 36 Bossen (bib0044) 2011 Niklaus, Long, Liu (bib0020) 2017 Yang, Lu, Lin, Shechtman, Wang, Li (bib0034) 2017 Arbelez, Maire, Fowlkes, Malik (bib0038) 2011; 33 Chang, Lin, Lin, Lin, Tu (bib0014) 2017 Baig, Koltun, Torresani, Baig, Koltun, Torresani (bib0035) 2017 Qi, Zhang, Ye, Men, Yang (bib0031) 2012 Li, Li, Li, Li (bib0012) 2017 Flynn, Neulander, Philbin, Snavely (bib0021) 2016 Li, Li, Xu, Xiong, Gao (bib0024) 2018; 27 I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, D.W.-F. B. Xu, e. a. S. Ozair, Generative adversarial networks, arXiv preprint arXiv Tan, Weerakkody, Mrak, Ramzan, Baroncini, Ohm, Sullivan (bib0004) 2016; 26 Pang, Wang, Seregin, Rapaka, Karczewicz, Xu (bib0015) 2015 Jia, Evan, Jeff, Sergey, Jonathan (bib0040) 2014 Wang, Gou, Duan, Lin, Zheng, Wang (bib0026) 2017; 4 Liu, Xiong, Zhang, Zhang, Ma, Gao (bib0029) 2017; 27 Kingma, Ba (bib0043) 2015 Li, Li, Xu, Xiong (bib0016) 2018; 28 Lucas, Rodrigues, Silva, Pagliari, Faria (bib0010) 2016; 25 Pateux, Jung (bib0045) 2007 HHI, Hm software 16.0, 2014 Lainema, Bossen, Han, Min, Ugur (bib0002) 2013; 22 Robertson, Stevenson (bib0027) 2005; 15 Dias, Blasi, Mrak, Izquierdo (bib0011) 2017 Zhang, Chen, Chen, Meng, Zhang (bib0017) 2016; 26 Li, Li, Xu, Xiong (bib0023) 2017 Pathak, Krahenbuhl, Donahue, Darrell, Efros (bib0032) 2016 Ledig, Wang, Shi, Theis, Huszar, Caballero, Cunningham, Acosta, Aitken, Tejani (bib0041) 2016 Seungjun, Tae Hyun, Kyoung Mu (bib0018) 2017 Guo, Wang, Li (bib0028) 2008 Kamisli (bib0005) 2013; 22 Lai, Lin (bib0007) 2015 Sullivan, Ohm, Han, Wiegand (bib0001) 2013; 22 Chen, Alshina, Sullivan, Ohm, Boyce (bib0003) 2017 Matsuo, Takamura, Yashima (bib0013) 2009 (2015). (2014). Fatih (bib0006) 2015; 24 Chen, Zhang, Sun, Saxena, Budagavi (bib0009) 2016; 25 Cui, Zhang, Zhang, Jiang, Zuo, Wan, Zhao (bib0022) 2017 Galteri, Seidenari, Bertini, Bimbo (bib0042) 2017 . Zhang, Lin (bib0030) 2014 Chen, Lin (bib0008) 2016 A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep convolutional generative adversarial networks, arXiv preprint arXiv Lotter, Kreiman, Cox (bib0019) 2017 Larsen, Larochelle, Winther (bib0037) 2016 Wang (10.1016/j.neucom.2019.02.064_bib0026) 2017; 4 Matsuo (10.1016/j.neucom.2019.02.064_bib0013) 2009 Li (10.1016/j.neucom.2019.02.064_bib0024) 2018; 27 Robertson (10.1016/j.neucom.2019.02.064_bib0027) 2005; 15 Lainema (10.1016/j.neucom.2019.02.064_bib0002) 2013; 22 10.1016/j.neucom.2019.02.064_bib0025 Arbelez (10.1016/j.neucom.2019.02.064_bib0038) 2011; 33 Li (10.1016/j.neucom.2019.02.064_bib0016) 2018; 28 Liu (10.1016/j.neucom.2019.02.064_bib0029) 2017; 27 Chen (10.1016/j.neucom.2019.02.064_bib0003) 2017 Jia (10.1016/j.neucom.2019.02.064_bib0040) 2014 Lotter (10.1016/j.neucom.2019.02.064_bib0019) 2017 Chen (10.1016/j.neucom.2019.02.064_bib0008) 2016 Yang (10.1016/j.neucom.2019.02.064_bib0034) 2017 Zhang (10.1016/j.neucom.2019.02.064_bib0030) 2014 Niklaus (10.1016/j.neucom.2019.02.064_bib0020) 2017 Qi (10.1016/j.neucom.2019.02.064_bib0031) 2012 10.1016/j.neucom.2019.02.064_bib0039 Seungjun (10.1016/j.neucom.2019.02.064_bib0018) 2017 Pathak (10.1016/j.neucom.2019.02.064_bib0032) 2016 Bossen (10.1016/j.neucom.2019.02.064_bib0044) 2011 Li (10.1016/j.neucom.2019.02.064_bib0012) 2017 Lai (10.1016/j.neucom.2019.02.064_bib0007) 2015 Galteri (10.1016/j.neucom.2019.02.064_bib0042) 2017 Zhang (10.1016/j.neucom.2019.02.064_bib0017) 2016; 26 Tan (10.1016/j.neucom.2019.02.064_bib0004) 2016; 26 Chen (10.1016/j.neucom.2019.02.064_bib0009) 2016; 25 Chang (10.1016/j.neucom.2019.02.064_bib0014) 2017 10.1016/j.neucom.2019.02.064_bib0036 Kingma (10.1016/j.neucom.2019.02.064_bib0043) 2015 Cui (10.1016/j.neucom.2019.02.064_sbref0022) 2017 Kamisli (10.1016/j.neucom.2019.02.064_bib0005) 2013; 22 Flynn (10.1016/j.neucom.2019.02.064_bib0021) 2016 Li (10.1016/j.neucom.2019.02.064_bib0023) 2017 Ledig (10.1016/j.neucom.2019.02.064_bib0041) 2016 Fatih (10.1016/j.neucom.2019.02.064_sbref0006) 2015; 24 Larsen (10.1016/j.neucom.2019.02.064_bib0037) 2016 Sullivan (10.1016/j.neucom.2019.02.064_bib0001) 2013; 22 Dias (10.1016/j.neucom.2019.02.064_bib0011) 2017 Iizuka (10.1016/j.neucom.2019.02.064_bib0033) 2017; 36 Baig (10.1016/j.neucom.2019.02.064_bib0035) 2017 Pateux (10.1016/j.neucom.2019.02.064_bib0045) 2007 Lucas (10.1016/j.neucom.2019.02.064_bib0010) 2016; 25 Pang (10.1016/j.neucom.2019.02.064_bib0015) 2015 Guo (10.1016/j.neucom.2019.02.064_bib0028) 2008 |
| References_xml | – start-page: 161 year: 2009 end-page: 164 ident: bib0013 article-title: Intra prediction with spatial gradients and multiple reference lines publication-title: Proceedings of the Conference on Picture Coding Symposium (PCS) – volume: 33 start-page: 898 year: 2011 end-page: 916 ident: bib0038 article-title: Contour detection and hierarchical image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: HHI, Hm software 16.0, 2014, ( – start-page: 2536 year: 2016 end-page: 2544 ident: bib0032 article-title: Context encoders: Feature learning by inpainting publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 1424 year: 2015 end-page: 1427 ident: bib0007 article-title: Error diffused intra prediction for HEVC publication-title: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – start-page: 1447 year: 2016 end-page: 1450 ident: bib0008 article-title: Enhanced hevc intra prediction with ordered dither technique publication-title: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – reference: ). – volume: 22 start-page: 1792 year: 2013 end-page: 1801 ident: bib0002 article-title: Intra coding of the HEVC standard publication-title: IEEE Trans. Circuits Syst. Video Technol. – volume: 22 start-page: 3916 year: 2013 end-page: 3925 ident: bib0005 article-title: Intra prediction based on Markov process modeling of images publication-title: IEEE Trans. Image Process. – volume: 24 year: 2015 ident: bib0006 article-title: Block-based spatial prediction and transforms based on 2-d Markov processes for image and video compression publication-title: IEEE Trans. Image Process. – year: 2017 ident: bib0003 article-title: Algorithm description of joint exploration test model 5 publication-title: Proceedings of the JVET-E1001 – start-page: 675 year: 2014 end-page: 678 ident: bib0040 article-title: Caffe: Convolutional architecture for fast feature embedding publication-title: Proceedings of the Twenty-second ACM international conference on Multimedia – volume: 27 start-page: 1909 year: 2017 end-page: 1921 ident: bib0029 article-title: Nonlocal gradient sparsity regularization for image restoration publication-title: IEEE Trans. Circuits Syst. Video Technol. – start-page: 1558 year: 2016 end-page: 1566 ident: bib0037 article-title: Autoencoding beyond pixels using a learned similarity metric publication-title: Proceedings of the International Conference on Machine Learning – start-page: 1 year: 2017 end-page: 5 ident: bib0023 article-title: Intra prediction using fully connected network for video coding publication-title: Proceedings of the IEEE International Conference on Image Processing – start-page: 105 year: 2016 end-page: 114 ident: bib0041 article-title: Photo-realistic single image super-resolution using a generative adversarial network publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – year: 2007 ident: bib0045 article-title: An excel add-in for computing bjontegaard metric and its evolution publication-title: Proceedings of the ITU-T SG16/Q6, Document, VCEG-AE07 – volume: 22 start-page: 1649 year: 2013 end-page: 1668 ident: bib0001 article-title: Overview of the high efficiency video coding (HEVC) standard publication-title: IEEE Trans. Circuits Syst. Video Technol. – start-page: 5515 year: 2016 end-page: 5524 ident: bib0021 article-title: Deepstereo: Learning to predict new views from the world’s imagery publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 4836 year: 2017 end-page: 4845 ident: bib0042 article-title: Deep generative adversarial compression artifact removal publication-title: Proceedings of the IEEE International Conference on Computer Vision (ICCV) – year: 2011 ident: bib0044 article-title: Common test conditions and software reference configurations publication-title: Proceedings of the Joint Collaborative Team on Video Coding (JCT-VC), JCTVC-F900 – reference: (2015). – volume: 25 start-page: 4046 year: 2016 end-page: 4060 ident: bib0010 article-title: Image coding using generalized predictors based on sparsity and geometric transformations publication-title: IEEE Trans. Image Process. – start-page: 257 year: 2017 end-page: 265 ident: bib0018 article-title: Deep multi-scale convolutional neural network for dynamic scene deblurring publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 25 start-page: 3671 year: 2016 end-page: 3682 ident: bib0009 article-title: Improving intra prediction in high-efficiency video coding publication-title: IEEE Trans. Image Process. – year: 2015 ident: bib0015 article-title: Non-ce2: intra block copy and inter signaling unification publication-title: JCTVC-T0227 – volume: 4 start-page: 588 year: 2017 end-page: 598 ident: bib0026 article-title: Generative adversarial networks:introduction and outlook publication-title: IEEE/CAA J. Autom. Sin. – year: 2017 ident: bib0019 article-title: Deep predictive coding networks for video prediction and unsupervised learning publication-title: Proceedings of the International Conference on Learning Representations (ICLR) – start-page: 1217 year: 2012 end-page: 1220 ident: bib0031 article-title: Intra prediction with enhanced inpainting method and vector predictor for HEVC publication-title: IEEE International Conference on Acoustics, Speech and Signal Processing – volume: 15 start-page: 27 year: 2005 end-page: 38 ident: bib0027 article-title: Dct quantization noise in compressed images publication-title: IEEE Trans. Circuits Syst. Video Technol. – year: 2017 ident: bib0022 article-title: Convolutional neural networks based intra prediction for HEVC publication-title: Proceedings of the Conference on Data Compression Conference (DCC) – start-page: 1 year: 2017 end-page: 5 ident: bib0014 article-title: Improved intra prediction method based on arbitrary reference tier coding schemes publication-title: Proceedings of the Conference on Picture Coding Symposium (PCS) – reference: (2014). – year: 2017 ident: bib0012 article-title: Hierarchical piece-wise linear projections for efficient intra-prediction coding publication-title: Proceedings of the IEEE Visual Communications and Images Processing (VCIP) – volume: 27 start-page: 3236 year: 2018 end-page: 3247 ident: bib0024 article-title: Fully connected network-based intra prediction for image coding publication-title: IEEE Trans. Image Process. – start-page: 1117 year: 2008 end-page: 1120 ident: bib0028 article-title: Priority-based template matching intra prediction publication-title: Proceedings of the IEEE International Conference on Multimedia and Expo – start-page: 1 year: 2015 end-page: 13 ident: bib0043 article-title: Adam: A method for stochastic optimization publication-title: Proceedings of the International Conference for Learning Representations (ICLR) – start-page: 261 year: 2017 end-page: 270 ident: bib0020 article-title: Video frame interpolation via adaptive separable convolution publication-title: Proceedings of the IEEE International Conference on Computer Vision (ICCV) – volume: 26 start-page: 76 year: 2016 end-page: 90 ident: bib0004 article-title: Video quality evaluation methodology and verification testing of hevc compression performance publication-title: IEEE Trans. Circuits Syst. Video Technol. – volume: 28 start-page: 947 year: 2018 end-page: 957 ident: bib0016 article-title: Efficient multiple line-based intra prediction for HEVC publication-title: IEEE Trans. Circuits Syst. Video Technol. – start-page: 1 year: 2014 end-page: 5 ident: bib0030 article-title: Improving HEVC intra prediction with PDE-based inpainting publication-title: Proceedings of the Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific – start-page: 1 year: 2017 end-page: 5 ident: bib0011 article-title: Improved combined intra prediction for higher video compression efficiency publication-title: Proceedings of the Conference on Picture Coding Symposium (PCS) – year: 2017 ident: bib0035 article-title: Learning to inpaint for image compression publication-title: Proceedings of the Neural Information Processing Systems (NIPS) – volume: 36 start-page: 1 year: 2017 end-page: 14 ident: bib0033 article-title: Globally and locally consistent image completion publication-title: ACM Trans. Gr. – volume: 26 start-page: 3142 year: 2016 end-page: 3155 ident: bib0017 article-title: Beyond a gaussian denoiser: residual learning of deep CNN for image denoising publication-title: IEEE Trans. Image Process. – reference: I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, D.W.-F. B. Xu, e. a. S. Ozair, Generative adversarial networks, arXiv preprint arXiv: – reference: A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep convolutional generative adversarial networks, arXiv preprint arXiv: – start-page: 4076 year: 2017 end-page: 4084 ident: bib0034 article-title: High-resolution image inpainting using multi-scale neural patch synthesis publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – year: 2015 ident: 10.1016/j.neucom.2019.02.064_bib0015 article-title: Non-ce2: intra block copy and inter signaling unification – volume: 25 start-page: 4046 issue: 9 year: 2016 ident: 10.1016/j.neucom.2019.02.064_bib0010 article-title: Image coding using generalized predictors based on sparsity and geometric transformations publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2582422 – volume: 27 start-page: 3236 issue: 7 year: 2018 ident: 10.1016/j.neucom.2019.02.064_bib0024 article-title: Fully connected network-based intra prediction for image coding publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2817044 – volume: 4 start-page: 588 issue: 4 year: 2017 ident: 10.1016/j.neucom.2019.02.064_bib0026 article-title: Generative adversarial networks:introduction and outlook publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2017.7510583 – volume: 28 start-page: 947 issue: 4 year: 2018 ident: 10.1016/j.neucom.2019.02.064_bib0016 article-title: Efficient multiple line-based intra prediction for HEVC publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2016.2633377 – volume: 33 start-page: 898 issue: 5 year: 2011 ident: 10.1016/j.neucom.2019.02.064_bib0038 article-title: Contour detection and hierarchical image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.161 – volume: 22 start-page: 1649 issue: 12 year: 2013 ident: 10.1016/j.neucom.2019.02.064_bib0001 article-title: Overview of the high efficiency video coding (HEVC) standard publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2012.2221191 – volume: 26 start-page: 76 issue: 1 year: 2016 ident: 10.1016/j.neucom.2019.02.064_bib0004 article-title: Video quality evaluation methodology and verification testing of hevc compression performance publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2015.2477916 – start-page: 4076 year: 2017 ident: 10.1016/j.neucom.2019.02.064_bib0034 article-title: High-resolution image inpainting using multi-scale neural patch synthesis – year: 2007 ident: 10.1016/j.neucom.2019.02.064_bib0045 article-title: An excel add-in for computing bjontegaard metric and its evolution – volume: 36 start-page: 1 issue: 4 year: 2017 ident: 10.1016/j.neucom.2019.02.064_bib0033 article-title: Globally and locally consistent image completion publication-title: ACM Trans. Gr. doi: 10.1145/3072959.3073659 – start-page: 1 year: 2017 ident: 10.1016/j.neucom.2019.02.064_bib0014 article-title: Improved intra prediction method based on arbitrary reference tier coding schemes – start-page: 1 year: 2017 ident: 10.1016/j.neucom.2019.02.064_bib0011 article-title: Improved combined intra prediction for higher video compression efficiency – ident: 10.1016/j.neucom.2019.02.064_bib0036 – start-page: 1 year: 2014 ident: 10.1016/j.neucom.2019.02.064_bib0030 article-title: Improving HEVC intra prediction with PDE-based inpainting – volume: 25 start-page: 3671 issue: 8 year: 2016 ident: 10.1016/j.neucom.2019.02.064_bib0009 article-title: Improving intra prediction in high-efficiency video coding publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2573585 – year: 2011 ident: 10.1016/j.neucom.2019.02.064_bib0044 article-title: Common test conditions and software reference configurations – volume: 15 start-page: 27 issue: 1 year: 2005 ident: 10.1016/j.neucom.2019.02.064_bib0027 article-title: Dct quantization noise in compressed images publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2004.839995 – start-page: 2536 year: 2016 ident: 10.1016/j.neucom.2019.02.064_bib0032 article-title: Context encoders: Feature learning by inpainting – year: 2017 ident: 10.1016/j.neucom.2019.02.064_bib0035 article-title: Learning to inpaint for image compression – year: 2017 ident: 10.1016/j.neucom.2019.02.064_bib0012 article-title: Hierarchical piece-wise linear projections for efficient intra-prediction coding – start-page: 1424 year: 2015 ident: 10.1016/j.neucom.2019.02.064_bib0007 article-title: Error diffused intra prediction for HEVC – year: 2017 ident: 10.1016/j.neucom.2019.02.064_bib0003 article-title: Algorithm description of joint exploration test model 5 – start-page: 257 year: 2017 ident: 10.1016/j.neucom.2019.02.064_bib0018 article-title: Deep multi-scale convolutional neural network for dynamic scene deblurring – ident: 10.1016/j.neucom.2019.02.064_bib0025 – start-page: 105 year: 2016 ident: 10.1016/j.neucom.2019.02.064_bib0041 article-title: Photo-realistic single image super-resolution using a generative adversarial network – volume: 26 start-page: 3142 issue: 7 year: 2016 ident: 10.1016/j.neucom.2019.02.064_bib0017 article-title: Beyond a gaussian denoiser: residual learning of deep CNN for image denoising publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2662206 – volume: 24 issue: 4 year: 2015 ident: 10.1016/j.neucom.2019.02.064_sbref0006 article-title: Block-based spatial prediction and transforms based on 2-d Markov processes for image and video compression publication-title: IEEE Trans. Image Process. – start-page: 675 year: 2014 ident: 10.1016/j.neucom.2019.02.064_bib0040 article-title: Caffe: Convolutional architecture for fast feature embedding – start-page: 161 year: 2009 ident: 10.1016/j.neucom.2019.02.064_bib0013 article-title: Intra prediction with spatial gradients and multiple reference lines – start-page: 261 year: 2017 ident: 10.1016/j.neucom.2019.02.064_bib0020 article-title: Video frame interpolation via adaptive separable convolution – start-page: 1217 year: 2012 ident: 10.1016/j.neucom.2019.02.064_bib0031 article-title: Intra prediction with enhanced inpainting method and vector predictor for HEVC – volume: 22 start-page: 3916 issue: 10 year: 2013 ident: 10.1016/j.neucom.2019.02.064_bib0005 article-title: Intra prediction based on Markov process modeling of images publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2013.2264679 – start-page: 1447 year: 2016 ident: 10.1016/j.neucom.2019.02.064_bib0008 article-title: Enhanced hevc intra prediction with ordered dither technique – start-page: 1558 year: 2016 ident: 10.1016/j.neucom.2019.02.064_bib0037 article-title: Autoencoding beyond pixels using a learned similarity metric – start-page: 5515 year: 2016 ident: 10.1016/j.neucom.2019.02.064_bib0021 article-title: Deepstereo: Learning to predict new views from the world’s imagery – year: 2017 ident: 10.1016/j.neucom.2019.02.064_sbref0022 article-title: Convolutional neural networks based intra prediction for HEVC – volume: 27 start-page: 1909 issue: 9 year: 2017 ident: 10.1016/j.neucom.2019.02.064_bib0029 article-title: Nonlocal gradient sparsity regularization for image restoration publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2016.2556498 – volume: 22 start-page: 1792 issue: 12 year: 2013 ident: 10.1016/j.neucom.2019.02.064_bib0002 article-title: Intra coding of the HEVC standard publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2012.2221525 – start-page: 4836 year: 2017 ident: 10.1016/j.neucom.2019.02.064_bib0042 article-title: Deep generative adversarial compression artifact removal – start-page: 1117 year: 2008 ident: 10.1016/j.neucom.2019.02.064_bib0028 article-title: Priority-based template matching intra prediction – ident: 10.1016/j.neucom.2019.02.064_bib0039 – year: 2017 ident: 10.1016/j.neucom.2019.02.064_bib0019 article-title: Deep predictive coding networks for video prediction and unsupervised learning – start-page: 1 year: 2017 ident: 10.1016/j.neucom.2019.02.064_bib0023 article-title: Intra prediction using fully connected network for video coding – start-page: 1 year: 2015 ident: 10.1016/j.neucom.2019.02.064_bib0043 article-title: Adam: A method for stochastic optimization |
| SSID | ssj0017129 |
| Score | 2.2967386 |
| Snippet | Intra prediction is an effective method for video coding to remove the spatial redundancy of content. Classical intra prediction method usually creates a... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 168 |
| SubjectTerms | Convolutional encoder-decoder network (CED) High Efficiency Video Coding (HEVC) Image inpainting Intra prediction Video coding |
| Title | Video intra prediction using convolutional encoder decoder network |
| URI | https://dx.doi.org/10.1016/j.neucom.2019.02.064 |
| Volume | 394 |
| WOSCitedRecordID | wos000531730600017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLWg44EXxqcYDOQHXo0cJ6njx4I2jQlNSBuo4iVKfG2RCbLStdN-Ptf2TVso4kviJa2surF8T25ObuxzGHuhqqqsDIDwTpaiAPCicWosWvDOe6_HxdhGswl9clJNp-YdrdO9jHYCuu-r62sz-6-hxjYMdtg6-xfhXv0pNuB3DDoeMex4_KPAf-jAXQQZiHkTFACgS2bgS9pe21_R2TE2QcQSokV4-uzTmvBNwhrFO2y0fqCiwuRL0FaAAKRVEeE4KRF8_NTNHN0KY2khctRu3XJKe0Hedl-XBEuqOKhgTCPUuuKwvRUm1RNVKZAsptTqUjattIr71DfTbW6KjYSZJVMduvdmydJlK62nCsP5y94twxofJC0mKq0mAfQfBLNPw1DCSJCbYg6V05tsR-nSVCO2M3lzMD1evWXSmUpajDT0YWtlXP-3fa6fU5cNOnJ2l92h5wg-SfG_x264_j7bHTw6OKXsB-xVhAOPcOBrOPAIB_4dHDjBgRMcOMHhIXt_eHD2-kiQb4aw-AC4EEgibdHmSoLJ8QLNmsrmpW1to8CUNngyeimx0RrXNlarRjaQ2Ra0BJ-BafNHbNRf9O4x422eI6eTTpcKCpMVeAmD065VyBy1N-M9lg9TUlsSlQ_eJp_rYfXgeZ0msg4TWUtV40TuMbHqNUuiKr_5vR5muyZimAhfjQD5Zc8n_9zzKbu9xv4-Gy3mS_eM3bJXi-5y_pyQ9A2ssYw2 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Video+intra+prediction+using+convolutional+encoder+decoder+network&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Jin%2C+Zhipeng&rft.au=An%2C+Ping&rft.au=Shen%2C+Liquan&rft.date=2020-06-21&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=394&rft.spage=168&rft.epage=177&rft_id=info:doi/10.1016%2Fj.neucom.2019.02.064&rft.externalDocID=S092523121930880X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |