Performing multi-target regression via gene expression programming-based ensemble models

•Three multi-target regression ensemble models with different architectures.•Use gene-expression programming to build each member of the ensemble.•Individuals encode a full solution to the problem, using as many genes as targets.•Competitive results compared versus 5 state-of-the-art methods over 18...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 432; s. 275 - 287
Hlavní autoři: Moyano, Jose M., Reyes, Oscar, Fardoun, Habib M., Ventura, Sebastián
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 07.04.2021
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Three multi-target regression ensemble models with different architectures.•Use gene-expression programming to build each member of the ensemble.•Individuals encode a full solution to the problem, using as many genes as targets.•Competitive results compared versus 5 state-of-the-art methods over 18 datasets. Multi-Target Regression problem comprises the prediction of multiple continuous variables given a common set of input features, unlike traditional regression tasks, where just one output target is available. There are two major challenges when addressing this problem, namely the exploration of the inter-target dependencies and the modeling of complex input–output relationships. This work proposes a Symbolic Regression method following the basis of Gene Expression Programming paradigm to solve the multi-target regression problem, and called GEPMTR. It evolves a population of individuals, where each one represents a complete solution to the problem by using a multi-genic chromosome, and encodes a mathematical function for each target variable involving the input attributes. The proposed model can estimate the inter-target dependencies by applying some genetic operators. Furthermore, three ensemble-based methods are developed to better exploit the inter-target and input–output relationships. The effectiveness of the proposals is analyzed through an extensive experimental study on 18 datasets. The codification schema and the process followed to ensure a diverse population in GEPMTR lead to obtain an effective proposal to solve the MTR problem. Furthermore, the EGEPMTR-B ensemble method obtained the best performance across all proposed models, being the best in 8 out of 11 cases, demonstrating that more sophisticated mechanisms were not needed for ensuring that GEPMTR method would properly model the existing inter-target dependencies. Finally, the experimental results also showed that the proposed approach attains competitive results compared to state-of-the-art, showing the possibilities that can bring this research line for effectively solving the MTR problem.
AbstractList •Three multi-target regression ensemble models with different architectures.•Use gene-expression programming to build each member of the ensemble.•Individuals encode a full solution to the problem, using as many genes as targets.•Competitive results compared versus 5 state-of-the-art methods over 18 datasets. Multi-Target Regression problem comprises the prediction of multiple continuous variables given a common set of input features, unlike traditional regression tasks, where just one output target is available. There are two major challenges when addressing this problem, namely the exploration of the inter-target dependencies and the modeling of complex input–output relationships. This work proposes a Symbolic Regression method following the basis of Gene Expression Programming paradigm to solve the multi-target regression problem, and called GEPMTR. It evolves a population of individuals, where each one represents a complete solution to the problem by using a multi-genic chromosome, and encodes a mathematical function for each target variable involving the input attributes. The proposed model can estimate the inter-target dependencies by applying some genetic operators. Furthermore, three ensemble-based methods are developed to better exploit the inter-target and input–output relationships. The effectiveness of the proposals is analyzed through an extensive experimental study on 18 datasets. The codification schema and the process followed to ensure a diverse population in GEPMTR lead to obtain an effective proposal to solve the MTR problem. Furthermore, the EGEPMTR-B ensemble method obtained the best performance across all proposed models, being the best in 8 out of 11 cases, demonstrating that more sophisticated mechanisms were not needed for ensuring that GEPMTR method would properly model the existing inter-target dependencies. Finally, the experimental results also showed that the proposed approach attains competitive results compared to state-of-the-art, showing the possibilities that can bring this research line for effectively solving the MTR problem.
Author Reyes, Oscar
Moyano, Jose M.
Fardoun, Habib M.
Ventura, Sebastián
Author_xml – sequence: 1
  givenname: Jose M.
  surname: Moyano
  fullname: Moyano, Jose M.
  organization: Department of Computer Science and Numerical Analysis, University of Córdoba, Córdoba, Spain
– sequence: 2
  givenname: Oscar
  surname: Reyes
  fullname: Reyes, Oscar
  organization: Department of Computer Science and Numerical Analysis, University of Córdoba, Córdoba, Spain
– sequence: 3
  givenname: Habib M.
  surname: Fardoun
  fullname: Fardoun, Habib M.
  organization: Faculty of Computing and Information Technology, King Abdulaziz University, North Jeddah, Saudi Arabia
– sequence: 4
  givenname: Sebastián
  surname: Ventura
  fullname: Ventura, Sebastián
  organization: Department of Computer Science and Numerical Analysis, University of Córdoba, Córdoba, Spain
BookMark eNqFkM1KxDAUhYOM4MzoG7joC7TepD9pXQgy-AcDulBwF9LktmRokyHJDPr2dhjduNDVgQPf4d5vQWbWWSTkkkJGgVZXm8ziTrkxY8CmimVQwQmZ05qztGZ1NSNzaFiZspyyM7IIYQNAOWXNnLy_oO-cH43tk3E3RJNG6XuMicfeYwjG2WRvZNKjxQQ_tj_d1rvey_HApa0MqBO0Acd2wGR0GodwTk47OQS8-M4lebu_e109puvnh6fV7TpVOVQxrcqyAKw1Z3xK2SLrgBas7nLaAGhatsBQa8kK1fC24rzhtFZtSbWkum4hX5Lr467yLgSPnVAmyjjdGL00g6AgDo7ERhwdiYMjQZmYHE1w8QveejNK__kfdnPEpj9xb9CLoAxahdp4VFFoZ_4e-AKnt4cT
CitedBy_id crossref_primary_10_1007_s00521_023_08335_0
crossref_primary_10_1016_j_neucom_2023_127226
crossref_primary_10_1016_j_neunet_2024_106619
crossref_primary_10_1109_ACCESS_2024_3471708
crossref_primary_10_1007_s11227_025_07132_x
crossref_primary_10_1007_s42452_024_06244_y
crossref_primary_10_1016_j_eswa_2021_115224
crossref_primary_10_1016_j_neucom_2021_12_048
crossref_primary_10_1016_j_neucom_2025_130280
crossref_primary_10_1038_s41598_024_78911_4
Cites_doi 10.1214/aoms/1177731944
10.1080/01621459.1986.10478341
10.1007/s10916-017-0788-2
10.1109/TPAMI.2017.2688363
10.1109/TSMCC.2011.2161285
10.2991/ijcis.11.1.22
10.2307/3001968
10.1007/s10994-011-5256-5
10.1016/j.ins.2012.05.002
10.1007/978-3-662-44845-8_15
10.1016/j.asoc.2017.06.050
10.1109/TKDE.2010.164
10.1016/j.cemconcomp.2007.02.001
10.1016/j.procs.2011.08.032
10.1016/j.knosys.2008.03.005
10.1023/A:1007365207130
10.2991/ijcis.11.1.40
10.1002/widm.1157
10.1007/s10994-016-5546-z
10.1023/A:1008323212047
10.1016/j.enbuild.2012.03.003
10.1109/LGRS.2011.2109934
10.1109/CEC.2017.7969548
10.3233/ICA-180581
10.1109/MCI.2017.2708618
10.1016/j.ecolmodel.2009.01.037
10.1145/3161606
10.1016/j.csda.2007.01.025
10.1007/978-3-319-34223-8_14
10.2991/ijcis.11.1.73
10.1023/A:1018054314350
10.1016/j.ins.2017.06.017
10.1016/j.neucom.2013.05.062
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2020.12.060
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 287
ExternalDocumentID 10_1016_j_neucom_2020_12_060
S0925231220319603
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-65540e8d72740eabe2f01428f31900d15b02edda24c97b6779718cb51da1d8b03
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000620904600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 07:12:32 EST 2025
Tue Nov 18 20:44:40 EST 2025
Fri Feb 23 02:48:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Symbolic regression
Ensemble-based model
Multi-target regression
Gene expression programming
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-65540e8d72740eabe2f01428f31900d15b02edda24c97b6779718cb51da1d8b03
PageCount 13
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2020_12_060
crossref_primary_10_1016_j_neucom_2020_12_060
elsevier_sciencedirect_doi_10_1016_j_neucom_2020_12_060
PublicationCentury 2000
PublicationDate 2021-04-07
PublicationDateYYYYMMDD 2021-04-07
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-07
  day: 07
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Karaboga, Ozturk, Karaboga, Gorkemli (b0120) 2012; 209
Spyromitros-Xioufis, Tsoumakas, Groves, Vlahavas (b0050) 2016; 104
Kocev, Džeroski, White, Newell, Griffioen (b0015) 2009; 220
Hatzikos, Tsoumakas, Tzanis, Bassiliades, Vlahavas (b0210) 2008; 21
Reyes, Fardoun, Ventura (b0005) 2018; 25
Li, Zhou, Xiao, Nelson (b0140) 2005
Similä, Tikka (b0055) 2007; 52
Shaffer (b0235) 1986; 81
M. Lichman, UCI machine learning repository. http://archive.ics.uci.edu/ml (2013).
Guerrero-Enamorado, Morell, Ventura (b0135) 2018; 11
Tsoumakas, Katakis, Vlahavas (b0180) 2011; 23
Friedman (b0230) 1940; 11
Reyes, Moyano, Luna, Ventura (b0095) 2018
Ferreira (b0090) 2001; 13
Aho, Ženko, Elomaa (b0225) 2009; 373
Peng, Yuan, Qin, Huang, Shi (b0075) 2014; 137
G. Tsoumakas, E. Spyromitros-Xioufis, A. Vrekou, I. Vlahavas, Multi-target regression via random linear target combinations, in: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2014, pp. 225–240.
H. Xie, M. Zhang, Tuning selection pressure in tournament selection, Tech. Rep. ECSTR-09-10, School of Engineering and Computer Science, Victoria University of Wellington, 2009
S. Stijven, E. Vladislavleva, A. Kordon, L. Willem, M.E. Kotanchek, Genetic Programming Theory and Practice XIII, Springer, Cham, 2016, Ch. Prime-Time: Symbolic Regression Takes Its Place in the Real World, pp. 241–260.
Holland (b0130) 1975
Kaggle, Kaggle competition: online product sales. https://www.kaggle.com/c/online-sales (2012).
Galar, Fernández, Tartas, Sola, Herrera (b0170) 2012; 42
Tuia, Verrelst, Alonso, Pérez-Cruz, Camps-Valls (b0020) 2011; 8
Colmenar, Winkler, Kronberger, Maqueda, Botella, Hidalgo (b0105) 2016
Reyes, Ventura (b0045) 2018; 9
Read, Pfahringer, Holmes, Frank (b0175) 2011; 85
Tsanas, Xifara (b0025) 2012; 49
Karalic, Bratko (b0185) 1997; 26
Goovaerts (b0200) 1997
Koza (b0125) 1992
Džeroski, Demsar, Grbovic (b0220) 2000; 13
Tsoumakas, Spyromitros-Xioufis, Vilcek, Vlahavas (b0245) 2011; 12
Lopes, Weinert (b0115) 2004; 14
Reyes, Ventura (b0035) 2019; 1950014
Borchani, Varando, Bielza, Larrañaga (b0040) 2015; 5
Breiman (b0165) 1996; 24
Ryan, Hibler (b0145) 2011; 6
Zhong, Feng, Ong (b0085) 2017; 12
Cheng, Zhong (b0150) 2018
Melki, Cano, Kecman, Ventura (b0060) 2017; 415–416
Wilcoxon (b0240) 1945; 1
J.M. Moyano, E. Gibaja, S. Ventura, An evolutionary algorithm for optimizing the target ordering in ensemble of regressor chains, in: IEEE Congress on Evolutionary Computation, 2017, pp. 2015–2021.
Erdem (b0160) 2018; 11
Haeri, Ebadzadeh, Folino (b0080) 2017; 60
Hidalgo, Colmenar, Kronberger, Winkler, Garnica, Lanchares (b0110) 2017; 41
Zhen, Yu, He, Li (b0030) 2018; 40
Kaggle, Kaggle competition: see click predict fix. https://www.kaggle.com/c/see-click-predict-fi (2013).
Reyes, Cano, Fardoun, Ventura (b0010) 2018; 11
Yeh (b0190) 2007; 29
Wilcoxon (10.1016/j.neucom.2020.12.060_b0240) 1945; 1
Koza (10.1016/j.neucom.2020.12.060_b0125) 1992
Tsanas (10.1016/j.neucom.2020.12.060_b0025) 2012; 49
Kocev (10.1016/j.neucom.2020.12.060_b0015) 2009; 220
10.1016/j.neucom.2020.12.060_b0155
Galar (10.1016/j.neucom.2020.12.060_b0170) 2012; 42
10.1016/j.neucom.2020.12.060_b0070
Karalic (10.1016/j.neucom.2020.12.060_b0185) 1997; 26
Peng (10.1016/j.neucom.2020.12.060_b0075) 2014; 137
Zhong (10.1016/j.neucom.2020.12.060_b0085) 2017; 12
Haeri (10.1016/j.neucom.2020.12.060_b0080) 2017; 60
10.1016/j.neucom.2020.12.060_b0195
Tuia (10.1016/j.neucom.2020.12.060_b0020) 2011; 8
Guerrero-Enamorado (10.1016/j.neucom.2020.12.060_b0135) 2018; 11
Tsoumakas (10.1016/j.neucom.2020.12.060_b0245) 2011; 12
Melki (10.1016/j.neucom.2020.12.060_b0060) 2017; 415–416
Li (10.1016/j.neucom.2020.12.060_b0140) 2005
Shaffer (10.1016/j.neucom.2020.12.060_b0235) 1986; 81
Reyes (10.1016/j.neucom.2020.12.060_b0095) 2018
Similä (10.1016/j.neucom.2020.12.060_b0055) 2007; 52
Reyes (10.1016/j.neucom.2020.12.060_b0035) 2019; 1950014
10.1016/j.neucom.2020.12.060_b0100
Spyromitros-Xioufis (10.1016/j.neucom.2020.12.060_b0050) 2016; 104
10.1016/j.neucom.2020.12.060_b0065
Friedman (10.1016/j.neucom.2020.12.060_b0230) 1940; 11
Lopes (10.1016/j.neucom.2020.12.060_b0115) 2004; 14
Holland (10.1016/j.neucom.2020.12.060_b0130) 1975
Goovaerts (10.1016/j.neucom.2020.12.060_b0200) 1997
Ferreira (10.1016/j.neucom.2020.12.060_b0090) 2001; 13
Cheng (10.1016/j.neucom.2020.12.060_b0150) 2018
Hatzikos (10.1016/j.neucom.2020.12.060_b0210) 2008; 21
Reyes (10.1016/j.neucom.2020.12.060_b0005) 2018; 25
Colmenar (10.1016/j.neucom.2020.12.060_b0105) 2016
Yeh (10.1016/j.neucom.2020.12.060_b0190) 2007; 29
10.1016/j.neucom.2020.12.060_b0215
Erdem (10.1016/j.neucom.2020.12.060_b0160) 2018; 11
Džeroski (10.1016/j.neucom.2020.12.060_b0220) 2000; 13
Zhen (10.1016/j.neucom.2020.12.060_b0030) 2018; 40
Read (10.1016/j.neucom.2020.12.060_b0175) 2011; 85
Tsoumakas (10.1016/j.neucom.2020.12.060_b0180) 2011; 23
Karaboga (10.1016/j.neucom.2020.12.060_b0120) 2012; 209
Ryan (10.1016/j.neucom.2020.12.060_b0145) 2011; 6
Aho (10.1016/j.neucom.2020.12.060_b0225) 2009; 373
Reyes (10.1016/j.neucom.2020.12.060_b0045) 2018; 9
Borchani (10.1016/j.neucom.2020.12.060_b0040) 2015; 5
10.1016/j.neucom.2020.12.060_b0205
Breiman (10.1016/j.neucom.2020.12.060_b0165) 1996; 24
Hidalgo (10.1016/j.neucom.2020.12.060_b0110) 2017; 41
Reyes (10.1016/j.neucom.2020.12.060_b0010) 2018; 11
References_xml – volume: 11
  start-page: 282
  year: 2018
  end-page: 295
  ident: b0010
  article-title: A locally weighted learning method based on a data gravitation model for multi-target regression
  publication-title: Int. J. Comput. Intell. Syst.
– year: 1997
  ident: b0200
  article-title: Geostatistics for Natural Resources Evaluation
– volume: 13
  start-page: 7
  year: 2000
  end-page: 17
  ident: b0220
  article-title: Predicting chemical parameters of river water quality from bioindicator data
  publication-title: Appl. Intell.
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: b0165
  article-title: Bagging predictors
  publication-title: Mach. Learn.
– volume: 40
  start-page: 497
  year: 2018
  end-page: 504
  ident: b0030
  article-title: Multi-target regression via robust low-rank learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 23
  start-page: 1079
  year: 2011
  end-page: 1089
  ident: b0180
  article-title: Random k)labelsets for multi-label classification
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 415–416
  start-page: 53
  year: 2017
  end-page: 69
  ident: b0060
  article-title: Multi-target support vector regression via correlation regressor chains
  publication-title: Inf. Sci.
– volume: 11
  start-page: 540
  year: 2018
  end-page: 559
  ident: b0135
  article-title: A gene expression programming algorithm for discovering classification rules in the multi-objective space
  publication-title: Int. J. Comput. Intell. Syst.
– volume: 21
  start-page: 471
  year: 2008
  end-page: 478
  ident: b0210
  article-title: An empirical study on sea water quality prediction
  publication-title: Knowl.-Based Syst.
– volume: 14
  start-page: 375
  year: 2004
  end-page: 384
  ident: b0115
  article-title: EGIPSYS: an enhanced gene expression programming approach for symbolic regression problems
  publication-title: Int. J. Appl. Math. Comput. Sci.
– volume: 85
  start-page: 333
  year: 2011
  ident: b0175
  article-title: Classifier chains for multi-label classification
  publication-title: Mach. Learn.
– volume: 49
  start-page: 560
  year: 2012
  end-page: 567
  ident: b0025
  article-title: Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools
  publication-title: Energy Build.
– volume: 137
  start-page: 293
  year: 2014
  end-page: 301
  ident: b0075
  article-title: An improved gene expression programming approach for symbolic regression problems
  publication-title: Neurocomputing
– volume: 60
  start-page: 447
  year: 2017
  end-page: 469
  ident: b0080
  article-title: Statistical genetic programming for symbolic regression
  publication-title: Appl. Soft Comput.
– volume: 9
  start-page: 46
  year: 2018
  ident: b0045
  article-title: Evolutionary strategy to perform batch-mode active learning on multi-label data
  publication-title: ACM Trans. Intell. Syst. Technol.
– reference: J.M. Moyano, E. Gibaja, S. Ventura, An evolutionary algorithm for optimizing the target ordering in ensemble of regressor chains, in: IEEE Congress on Evolutionary Computation, 2017, pp. 2015–2021.
– start-page: 1393
  year: 2016
  end-page: 1400
  ident: b0105
  article-title: Predicting glycemia in diabetic patients by evolutionary computation and continuous glucose monitoring
  publication-title: Genetic and Evolutionary Computation Conference Companion
– volume: 1950014
  year: 2019
  ident: b0035
  article-title: Performing multi-target regression via a parameter sharing-based deep network
  publication-title: Int. J. Neural Syst.
– start-page: 1422
  year: 2018
  end-page: 1427
  ident: b0150
  article-title: An efficient cooperative co-evolutionary gene expression programming
  publication-title: International Conference on SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI
– reference: H. Xie, M. Zhang, Tuning selection pressure in tournament selection, Tech. Rep. ECSTR-09-10, School of Engineering and Computer Science, Victoria University of Wellington, 2009
– volume: 26
  start-page: 147
  year: 1997
  end-page: 176
  ident: b0185
  article-title: First order regression
  publication-title: Mach. Learn.
– volume: 5
  start-page: 216
  year: 2015
  end-page: 233
  ident: b0040
  article-title: A survey on multi-output regression
  publication-title: Wiley Interdisc. Rev. Data Min. Knowl. Disc.
– year: 1992
  ident: b0125
  article-title: Genetic Programming: On the Programming of Computers by Means of Natural Selection
– volume: 373
  start-page: 2055
  year: 2009
  end-page: 2066
  ident: b0225
  article-title: Multi-target regression with rule ensembles
  publication-title: J. Mach. Learn. Res.
– volume: 11
  start-page: 962
  year: 2018
  end-page: 978
  ident: b0160
  article-title: Sparsity-driven weighted ensemble classifier
  publication-title: Int. J. Comput. Intell. Syst.
– start-page: 2:1
  year: 2018
  end-page: 2:6
  ident: b0095
  article-title: A gene expression programming method for multi-target regression
  publication-title: International Conference on Learning and Optimization Algorithms: Theory and Applications
– reference: M. Lichman, UCI machine learning repository. http://archive.ics.uci.edu/ml (2013).
– volume: 220
  start-page: 1159
  year: 2009
  end-page: 1168
  ident: b0015
  article-title: Using single and multi-target regression trees and ensembles to model a compound index of vegetation condition
  publication-title: Ecol. Model.
– volume: 6
  start-page: 165
  year: 2011
  end-page: 170
  ident: b0145
  article-title: Robust gene expression programming
  publication-title: Procedia Comput. Sci.
– volume: 1
  start-page: 80
  year: 1945
  end-page: 83
  ident: b0240
  article-title: Individual comparisons by ranking methods
  publication-title: Biometr. Bull.
– start-page: 25
  year: 2005
  end-page: 29
  ident: b0140
  article-title: Prefix gene expression programming
  publication-title: Genetic and Evolutionary Computation Conference
– reference: S. Stijven, E. Vladislavleva, A. Kordon, L. Willem, M.E. Kotanchek, Genetic Programming Theory and Practice XIII, Springer, Cham, 2016, Ch. Prime-Time: Symbolic Regression Takes Its Place in the Real World, pp. 241–260.
– volume: 209
  start-page: 1
  year: 2012
  end-page: 15
  ident: b0120
  article-title: Artificial bee colony programming for symbolic regression
  publication-title: Inf. Sci.
– volume: 41
  start-page: 142
  year: 2017
  ident: b0110
  article-title: Data based prediction of blood glucose concentrations using evolutionary methods
  publication-title: J. Med. Syst.
– volume: 42
  start-page: 463
  year: 2012
  end-page: 484
  ident: b0170
  article-title: A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches
  publication-title: IEEE Trans. Syst. Man Cybern. C
– volume: 29
  start-page: 474
  year: 2007
  end-page: 480
  ident: b0190
  article-title: Modeling slump flow of concrete using second-order regressions and artificial neural networks
  publication-title: Cem. Concr. Compos.
– volume: 13
  start-page: 87
  year: 2001
  end-page: 129
  ident: b0090
  article-title: Gene expression programming: a new adaptive algorithm for solving problems
  publication-title: Complex Syst.
– volume: 11
  start-page: 86
  year: 1940
  end-page: 92
  ident: b0230
  article-title: A comparison of alternative tests of significance for the problem of m)
  publication-title: Ann. Math. Stat.
– volume: 25
  start-page: 305
  year: 2018
  end-page: 320
  ident: b0005
  article-title: An ensemble-based method for the selection of instances in the multi-target regression problem
  publication-title: Integr. Comput. Aided Eng.
– volume: 104
  start-page: 55
  year: 2016
  end-page: 98
  ident: b0050
  article-title: Multi-target regression via input space expansion: treating targets as inputs
  publication-title: Mach. Learn.
– volume: 81
  start-page: 826
  year: 1986
  end-page: 831
  ident: b0235
  article-title: Modified sequentially rejective multiple test procedures
  publication-title: J. Am. Stat. Assoc.
– reference: G. Tsoumakas, E. Spyromitros-Xioufis, A. Vrekou, I. Vlahavas, Multi-target regression via random linear target combinations, in: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2014, pp. 225–240.
– volume: 12
  start-page: 2411
  year: 2011
  end-page: 2414
  ident: b0245
  article-title: Mulan: a java library for multi-label learning
  publication-title: J. Mach. Learn. Res.
– reference: Kaggle, Kaggle competition: online product sales. https://www.kaggle.com/c/online-sales (2012).
– volume: 52
  start-page: 406
  year: 2007
  end-page: 422
  ident: b0055
  article-title: Input selection and shrinkage in multiresponse linear regression
  publication-title: Comput. Stat. Data Anal.
– reference: Kaggle, Kaggle competition: see click predict fix. https://www.kaggle.com/c/see-click-predict-fi (2013).
– volume: 8
  start-page: 804
  year: 2011
  end-page: 808
  ident: b0020
  article-title: Multioutput support vector regression for remote sensing biophysical parameter estimation
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 12
  start-page: 54
  year: 2017
  end-page: 72
  ident: b0085
  article-title: Gene expression programming: a survey
  publication-title: IEEE Comput. Intell. Mag.
– year: 1975
  ident: b0130
  article-title: Adaptation in Natural and Artificial Systems
– volume: 11
  start-page: 86
  issue: 1
  year: 1940
  ident: 10.1016/j.neucom.2020.12.060_b0230
  article-title: A comparison of alternative tests of significance for the problem of m)rankings
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177731944
– volume: 81
  start-page: 826
  issue: 395
  year: 1986
  ident: 10.1016/j.neucom.2020.12.060_b0235
  article-title: Modified sequentially rejective multiple test procedures
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1986.10478341
– year: 1992
  ident: 10.1016/j.neucom.2020.12.060_b0125
– year: 1975
  ident: 10.1016/j.neucom.2020.12.060_b0130
– ident: 10.1016/j.neucom.2020.12.060_b0155
– volume: 41
  start-page: 142
  issue: 9
  year: 2017
  ident: 10.1016/j.neucom.2020.12.060_b0110
  article-title: Data based prediction of blood glucose concentrations using evolutionary methods
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-017-0788-2
– volume: 14
  start-page: 375
  issue: 3
  year: 2004
  ident: 10.1016/j.neucom.2020.12.060_b0115
  article-title: EGIPSYS: an enhanced gene expression programming approach for symbolic regression problems
  publication-title: Int. J. Appl. Math. Comput. Sci.
– volume: 40
  start-page: 497
  issue: 2
  year: 2018
  ident: 10.1016/j.neucom.2020.12.060_b0030
  article-title: Multi-target regression via robust low-rank learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2688363
– volume: 42
  start-page: 463
  issue: 4
  year: 2012
  ident: 10.1016/j.neucom.2020.12.060_b0170
  article-title: A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches
  publication-title: IEEE Trans. Syst. Man Cybern. C
  doi: 10.1109/TSMCC.2011.2161285
– volume: 11
  start-page: 282
  year: 2018
  ident: 10.1016/j.neucom.2020.12.060_b0010
  article-title: A locally weighted learning method based on a data gravitation model for multi-target regression
  publication-title: Int. J. Comput. Intell. Syst.
  doi: 10.2991/ijcis.11.1.22
– volume: 1
  start-page: 80
  issue: 6
  year: 1945
  ident: 10.1016/j.neucom.2020.12.060_b0240
  article-title: Individual comparisons by ranking methods
  publication-title: Biometr. Bull.
  doi: 10.2307/3001968
– volume: 85
  start-page: 333
  issue: 3
  year: 2011
  ident: 10.1016/j.neucom.2020.12.060_b0175
  article-title: Classifier chains for multi-label classification
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-011-5256-5
– start-page: 2:1
  year: 2018
  ident: 10.1016/j.neucom.2020.12.060_b0095
  article-title: A gene expression programming method for multi-target regression
  publication-title: International Conference on Learning and Optimization Algorithms: Theory and Applications
– volume: 209
  start-page: 1
  year: 2012
  ident: 10.1016/j.neucom.2020.12.060_b0120
  article-title: Artificial bee colony programming for symbolic regression
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.05.002
– ident: 10.1016/j.neucom.2020.12.060_b0100
  doi: 10.1007/978-3-662-44845-8_15
– volume: 60
  start-page: 447
  year: 2017
  ident: 10.1016/j.neucom.2020.12.060_b0080
  article-title: Statistical genetic programming for symbolic regression
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.06.050
– year: 1997
  ident: 10.1016/j.neucom.2020.12.060_b0200
– ident: 10.1016/j.neucom.2020.12.060_b0215
– volume: 373
  start-page: 2055
  year: 2009
  ident: 10.1016/j.neucom.2020.12.060_b0225
  article-title: Multi-target regression with rule ensembles
  publication-title: J. Mach. Learn. Res.
– volume: 23
  start-page: 1079
  issue: 7
  year: 2011
  ident: 10.1016/j.neucom.2020.12.060_b0180
  article-title: Random k)labelsets for multi-label classification
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2010.164
– volume: 29
  start-page: 474
  issue: 6
  year: 2007
  ident: 10.1016/j.neucom.2020.12.060_b0190
  article-title: Modeling slump flow of concrete using second-order regressions and artificial neural networks
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2007.02.001
– start-page: 1422
  year: 2018
  ident: 10.1016/j.neucom.2020.12.060_b0150
  article-title: An efficient cooperative co-evolutionary gene expression programming
  publication-title: International Conference on SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI
– volume: 6
  start-page: 165
  year: 2011
  ident: 10.1016/j.neucom.2020.12.060_b0145
  article-title: Robust gene expression programming
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2011.08.032
– volume: 21
  start-page: 471
  issue: 6
  year: 2008
  ident: 10.1016/j.neucom.2020.12.060_b0210
  article-title: An empirical study on sea water quality prediction
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2008.03.005
– volume: 26
  start-page: 147
  issue: 2–3
  year: 1997
  ident: 10.1016/j.neucom.2020.12.060_b0185
  article-title: First order regression
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007365207130
– volume: 11
  start-page: 540
  issue: 1
  year: 2018
  ident: 10.1016/j.neucom.2020.12.060_b0135
  article-title: A gene expression programming algorithm for discovering classification rules in the multi-objective space
  publication-title: Int. J. Comput. Intell. Syst.
  doi: 10.2991/ijcis.11.1.40
– volume: 12
  start-page: 2411
  year: 2011
  ident: 10.1016/j.neucom.2020.12.060_b0245
  article-title: Mulan: a java library for multi-label learning
  publication-title: J. Mach. Learn. Res.
– volume: 5
  start-page: 216
  issue: 5
  year: 2015
  ident: 10.1016/j.neucom.2020.12.060_b0040
  article-title: A survey on multi-output regression
  publication-title: Wiley Interdisc. Rev. Data Min. Knowl. Disc.
  doi: 10.1002/widm.1157
– volume: 104
  start-page: 55
  issue: 1
  year: 2016
  ident: 10.1016/j.neucom.2020.12.060_b0050
  article-title: Multi-target regression via input space expansion: treating targets as inputs
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-016-5546-z
– volume: 13
  start-page: 7
  issue: 1
  year: 2000
  ident: 10.1016/j.neucom.2020.12.060_b0220
  article-title: Predicting chemical parameters of river water quality from bioindicator data
  publication-title: Appl. Intell.
  doi: 10.1023/A:1008323212047
– volume: 49
  start-page: 560
  year: 2012
  ident: 10.1016/j.neucom.2020.12.060_b0025
  article-title: Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2012.03.003
– start-page: 25
  year: 2005
  ident: 10.1016/j.neucom.2020.12.060_b0140
  article-title: Prefix gene expression programming
  publication-title: Genetic and Evolutionary Computation Conference
– volume: 8
  start-page: 804
  issue: 4
  year: 2011
  ident: 10.1016/j.neucom.2020.12.060_b0020
  article-title: Multioutput support vector regression for remote sensing biophysical parameter estimation
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2011.2109934
– ident: 10.1016/j.neucom.2020.12.060_b0065
  doi: 10.1109/CEC.2017.7969548
– volume: 25
  start-page: 305
  issue: 4
  year: 2018
  ident: 10.1016/j.neucom.2020.12.060_b0005
  article-title: An ensemble-based method for the selection of instances in the multi-target regression problem
  publication-title: Integr. Comput. Aided Eng.
  doi: 10.3233/ICA-180581
– volume: 12
  start-page: 54
  issue: 3
  year: 2017
  ident: 10.1016/j.neucom.2020.12.060_b0085
  article-title: Gene expression programming: a survey
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2017.2708618
– ident: 10.1016/j.neucom.2020.12.060_b0195
– volume: 220
  start-page: 1159
  issue: 8
  year: 2009
  ident: 10.1016/j.neucom.2020.12.060_b0015
  article-title: Using single and multi-target regression trees and ensembles to model a compound index of vegetation condition
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2009.01.037
– volume: 1950014
  year: 2019
  ident: 10.1016/j.neucom.2020.12.060_b0035
  article-title: Performing multi-target regression via a parameter sharing-based deep network
  publication-title: Int. J. Neural Syst.
– start-page: 1393
  year: 2016
  ident: 10.1016/j.neucom.2020.12.060_b0105
  article-title: Predicting glycemia in diabetic patients by evolutionary computation and continuous glucose monitoring
  publication-title: Genetic and Evolutionary Computation Conference Companion
– volume: 9
  start-page: 46
  issue: 4
  year: 2018
  ident: 10.1016/j.neucom.2020.12.060_b0045
  article-title: Evolutionary strategy to perform batch-mode active learning on multi-label data
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/3161606
– ident: 10.1016/j.neucom.2020.12.060_b0205
– volume: 52
  start-page: 406
  issue: 1
  year: 2007
  ident: 10.1016/j.neucom.2020.12.060_b0055
  article-title: Input selection and shrinkage in multiresponse linear regression
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2007.01.025
– ident: 10.1016/j.neucom.2020.12.060_b0070
  doi: 10.1007/978-3-319-34223-8_14
– volume: 11
  start-page: 962
  issue: 1
  year: 2018
  ident: 10.1016/j.neucom.2020.12.060_b0160
  article-title: Sparsity-driven weighted ensemble classifier
  publication-title: Int. J. Comput. Intell. Syst.
  doi: 10.2991/ijcis.11.1.73
– volume: 13
  start-page: 87
  year: 2001
  ident: 10.1016/j.neucom.2020.12.060_b0090
  article-title: Gene expression programming: a new adaptive algorithm for solving problems
  publication-title: Complex Syst.
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 10.1016/j.neucom.2020.12.060_b0165
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1023/A:1018054314350
– volume: 415–416
  start-page: 53
  year: 2017
  ident: 10.1016/j.neucom.2020.12.060_b0060
  article-title: Multi-target support vector regression via correlation regressor chains
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.06.017
– volume: 137
  start-page: 293
  year: 2014
  ident: 10.1016/j.neucom.2020.12.060_b0075
  article-title: An improved gene expression programming approach for symbolic regression problems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.05.062
SSID ssj0017129
Score 2.3767793
Snippet •Three multi-target regression ensemble models with different architectures.•Use gene-expression programming to build each member of the ensemble.•Individuals...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 275
SubjectTerms Ensemble-based model
Gene expression programming
Multi-target regression
Symbolic regression
Title Performing multi-target regression via gene expression programming-based ensemble models
URI https://dx.doi.org/10.1016/j.neucom.2020.12.060
Volume 432
WOSCitedRecordID wos000620904600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxsxEBbG6aGXvkuTtEWH3swGSd61do-mJLSFpIGkxbdFry0OyTrYjkl-Tf9qZiTtg7r0Bb3sGrHjFZpvZ0ajeRDyTmdcF6mEnWohRZLaMcjBKquSPFeWOSVZpUOzCXlyks9mxelg8L3JhdlcyrrOb2-L6__KahgDZmPq7F-wu_1TGIDfwHS4Atvh-keMPw2pAOgC8NGCSQj2Hi3dtxDzWo82c4Wtkx3W92_GYqAW0iWo2uwINrjuChOrfLecVd-M9SU9jG8IEV0N0yusuGARXq1r4Xhxp-pFc84wOj5oT3fcXZBOn1dGtdHBRwBWkD1eGSo91z2Cr141ejv3zMHs1nN_wM_rvtNCcB_rIjtP2lY2TXBJiiwBezNIZxcEcg4QwlT3vsROo0s0ytzQeiWqbxH095ZmCE6Ki4Pa3WCYEEyKeT9w6GbwQ83tM5wKzkRgktcEq8nuwGuKfEh2ph8PZ5_agyrJRSjnGKfeZGf6EMLtd_3c-ulZNOdPyKO4FaHTAKGnZODqZ-Rx0-aDRqn_nMw6RNE-omiHKAqIoogo2iGKbiGKNoiiAVEvyJejw_P3H5LYkCMxsLNcJxOwPZnLLdi8cFfaiYphxb4KFokxyzPNhLNWidQUUk-kLMDyMSAOrOI212z8kgzrRe1eEer4RDsJtNyZlFummHRVlsMGw1SGVWyXjJuFKk2sVo9NUy7LJizxogzLW-LyllyUsLy7JGmprkO1lt88LxselNHiDJZkCbD5JeXeP1Puk4fdF_GaDNfLG_eGPDCb9Xy1fBvxdQ_GLqjp
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performing+multi-target+regression+via+gene+expression+programming-based+ensemble+models&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Moyano%2C+Jose+M.&rft.au=Reyes%2C+Oscar&rft.au=Fardoun%2C+Habib+M.&rft.au=Ventura%2C+Sebasti%C3%A1n&rft.date=2021-04-07&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=432&rft.spage=275&rft.epage=287&rft_id=info:doi/10.1016%2Fj.neucom.2020.12.060&rft.externalDocID=S0925231220319603
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon