Performing multi-target regression via gene expression programming-based ensemble models
•Three multi-target regression ensemble models with different architectures.•Use gene-expression programming to build each member of the ensemble.•Individuals encode a full solution to the problem, using as many genes as targets.•Competitive results compared versus 5 state-of-the-art methods over 18...
Uloženo v:
| Vydáno v: | Neurocomputing (Amsterdam) Ročník 432; s. 275 - 287 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
07.04.2021
|
| Témata: | |
| ISSN: | 0925-2312, 1872-8286 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Three multi-target regression ensemble models with different architectures.•Use gene-expression programming to build each member of the ensemble.•Individuals encode a full solution to the problem, using as many genes as targets.•Competitive results compared versus 5 state-of-the-art methods over 18 datasets.
Multi-Target Regression problem comprises the prediction of multiple continuous variables given a common set of input features, unlike traditional regression tasks, where just one output target is available. There are two major challenges when addressing this problem, namely the exploration of the inter-target dependencies and the modeling of complex input–output relationships. This work proposes a Symbolic Regression method following the basis of Gene Expression Programming paradigm to solve the multi-target regression problem, and called GEPMTR. It evolves a population of individuals, where each one represents a complete solution to the problem by using a multi-genic chromosome, and encodes a mathematical function for each target variable involving the input attributes. The proposed model can estimate the inter-target dependencies by applying some genetic operators. Furthermore, three ensemble-based methods are developed to better exploit the inter-target and input–output relationships. The effectiveness of the proposals is analyzed through an extensive experimental study on 18 datasets. The codification schema and the process followed to ensure a diverse population in GEPMTR lead to obtain an effective proposal to solve the MTR problem. Furthermore, the EGEPMTR-B ensemble method obtained the best performance across all proposed models, being the best in 8 out of 11 cases, demonstrating that more sophisticated mechanisms were not needed for ensuring that GEPMTR method would properly model the existing inter-target dependencies. Finally, the experimental results also showed that the proposed approach attains competitive results compared to state-of-the-art, showing the possibilities that can bring this research line for effectively solving the MTR problem. |
|---|---|
| AbstractList | •Three multi-target regression ensemble models with different architectures.•Use gene-expression programming to build each member of the ensemble.•Individuals encode a full solution to the problem, using as many genes as targets.•Competitive results compared versus 5 state-of-the-art methods over 18 datasets.
Multi-Target Regression problem comprises the prediction of multiple continuous variables given a common set of input features, unlike traditional regression tasks, where just one output target is available. There are two major challenges when addressing this problem, namely the exploration of the inter-target dependencies and the modeling of complex input–output relationships. This work proposes a Symbolic Regression method following the basis of Gene Expression Programming paradigm to solve the multi-target regression problem, and called GEPMTR. It evolves a population of individuals, where each one represents a complete solution to the problem by using a multi-genic chromosome, and encodes a mathematical function for each target variable involving the input attributes. The proposed model can estimate the inter-target dependencies by applying some genetic operators. Furthermore, three ensemble-based methods are developed to better exploit the inter-target and input–output relationships. The effectiveness of the proposals is analyzed through an extensive experimental study on 18 datasets. The codification schema and the process followed to ensure a diverse population in GEPMTR lead to obtain an effective proposal to solve the MTR problem. Furthermore, the EGEPMTR-B ensemble method obtained the best performance across all proposed models, being the best in 8 out of 11 cases, demonstrating that more sophisticated mechanisms were not needed for ensuring that GEPMTR method would properly model the existing inter-target dependencies. Finally, the experimental results also showed that the proposed approach attains competitive results compared to state-of-the-art, showing the possibilities that can bring this research line for effectively solving the MTR problem. |
| Author | Reyes, Oscar Moyano, Jose M. Fardoun, Habib M. Ventura, Sebastián |
| Author_xml | – sequence: 1 givenname: Jose M. surname: Moyano fullname: Moyano, Jose M. organization: Department of Computer Science and Numerical Analysis, University of Córdoba, Córdoba, Spain – sequence: 2 givenname: Oscar surname: Reyes fullname: Reyes, Oscar organization: Department of Computer Science and Numerical Analysis, University of Córdoba, Córdoba, Spain – sequence: 3 givenname: Habib M. surname: Fardoun fullname: Fardoun, Habib M. organization: Faculty of Computing and Information Technology, King Abdulaziz University, North Jeddah, Saudi Arabia – sequence: 4 givenname: Sebastián surname: Ventura fullname: Ventura, Sebastián organization: Department of Computer Science and Numerical Analysis, University of Córdoba, Córdoba, Spain |
| BookMark | eNqFkM1KxDAUhYOM4MzoG7joC7TepD9pXQgy-AcDulBwF9LktmRokyHJDPr2dhjduNDVgQPf4d5vQWbWWSTkkkJGgVZXm8ziTrkxY8CmimVQwQmZ05qztGZ1NSNzaFiZspyyM7IIYQNAOWXNnLy_oO-cH43tk3E3RJNG6XuMicfeYwjG2WRvZNKjxQQ_tj_d1rvey_HApa0MqBO0Acd2wGR0GodwTk47OQS8-M4lebu_e109puvnh6fV7TpVOVQxrcqyAKw1Z3xK2SLrgBas7nLaAGhatsBQa8kK1fC24rzhtFZtSbWkum4hX5Lr467yLgSPnVAmyjjdGL00g6AgDo7ERhwdiYMjQZmYHE1w8QveejNK__kfdnPEpj9xb9CLoAxahdp4VFFoZ_4e-AKnt4cT |
| CitedBy_id | crossref_primary_10_1007_s00521_023_08335_0 crossref_primary_10_1016_j_neucom_2023_127226 crossref_primary_10_1016_j_neunet_2024_106619 crossref_primary_10_1109_ACCESS_2024_3471708 crossref_primary_10_1007_s11227_025_07132_x crossref_primary_10_1007_s42452_024_06244_y crossref_primary_10_1016_j_eswa_2021_115224 crossref_primary_10_1016_j_neucom_2021_12_048 crossref_primary_10_1016_j_neucom_2025_130280 crossref_primary_10_1038_s41598_024_78911_4 |
| Cites_doi | 10.1214/aoms/1177731944 10.1080/01621459.1986.10478341 10.1007/s10916-017-0788-2 10.1109/TPAMI.2017.2688363 10.1109/TSMCC.2011.2161285 10.2991/ijcis.11.1.22 10.2307/3001968 10.1007/s10994-011-5256-5 10.1016/j.ins.2012.05.002 10.1007/978-3-662-44845-8_15 10.1016/j.asoc.2017.06.050 10.1109/TKDE.2010.164 10.1016/j.cemconcomp.2007.02.001 10.1016/j.procs.2011.08.032 10.1016/j.knosys.2008.03.005 10.1023/A:1007365207130 10.2991/ijcis.11.1.40 10.1002/widm.1157 10.1007/s10994-016-5546-z 10.1023/A:1008323212047 10.1016/j.enbuild.2012.03.003 10.1109/LGRS.2011.2109934 10.1109/CEC.2017.7969548 10.3233/ICA-180581 10.1109/MCI.2017.2708618 10.1016/j.ecolmodel.2009.01.037 10.1145/3161606 10.1016/j.csda.2007.01.025 10.1007/978-3-319-34223-8_14 10.2991/ijcis.11.1.73 10.1023/A:1018054314350 10.1016/j.ins.2017.06.017 10.1016/j.neucom.2013.05.062 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2020.12.060 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 287 |
| ExternalDocumentID | 10_1016_j_neucom_2020_12_060 S0925231220319603 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c306t-65540e8d72740eabe2f01428f31900d15b02edda24c97b6779718cb51da1d8b03 |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000620904600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Sat Nov 29 07:12:32 EST 2025 Tue Nov 18 20:44:40 EST 2025 Fri Feb 23 02:48:34 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Symbolic regression Ensemble-based model Multi-target regression Gene expression programming |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-65540e8d72740eabe2f01428f31900d15b02edda24c97b6779718cb51da1d8b03 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_neucom_2020_12_060 crossref_primary_10_1016_j_neucom_2020_12_060 elsevier_sciencedirect_doi_10_1016_j_neucom_2020_12_060 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-04-07 |
| PublicationDateYYYYMMDD | 2021-04-07 |
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Karaboga, Ozturk, Karaboga, Gorkemli (b0120) 2012; 209 Spyromitros-Xioufis, Tsoumakas, Groves, Vlahavas (b0050) 2016; 104 Kocev, Džeroski, White, Newell, Griffioen (b0015) 2009; 220 Hatzikos, Tsoumakas, Tzanis, Bassiliades, Vlahavas (b0210) 2008; 21 Reyes, Fardoun, Ventura (b0005) 2018; 25 Li, Zhou, Xiao, Nelson (b0140) 2005 Similä, Tikka (b0055) 2007; 52 Shaffer (b0235) 1986; 81 M. Lichman, UCI machine learning repository. http://archive.ics.uci.edu/ml (2013). Guerrero-Enamorado, Morell, Ventura (b0135) 2018; 11 Tsoumakas, Katakis, Vlahavas (b0180) 2011; 23 Friedman (b0230) 1940; 11 Reyes, Moyano, Luna, Ventura (b0095) 2018 Ferreira (b0090) 2001; 13 Aho, Ženko, Elomaa (b0225) 2009; 373 Peng, Yuan, Qin, Huang, Shi (b0075) 2014; 137 G. Tsoumakas, E. Spyromitros-Xioufis, A. Vrekou, I. Vlahavas, Multi-target regression via random linear target combinations, in: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2014, pp. 225–240. H. Xie, M. Zhang, Tuning selection pressure in tournament selection, Tech. Rep. ECSTR-09-10, School of Engineering and Computer Science, Victoria University of Wellington, 2009 S. Stijven, E. Vladislavleva, A. Kordon, L. Willem, M.E. Kotanchek, Genetic Programming Theory and Practice XIII, Springer, Cham, 2016, Ch. Prime-Time: Symbolic Regression Takes Its Place in the Real World, pp. 241–260. Holland (b0130) 1975 Kaggle, Kaggle competition: online product sales. https://www.kaggle.com/c/online-sales (2012). Galar, Fernández, Tartas, Sola, Herrera (b0170) 2012; 42 Tuia, Verrelst, Alonso, Pérez-Cruz, Camps-Valls (b0020) 2011; 8 Colmenar, Winkler, Kronberger, Maqueda, Botella, Hidalgo (b0105) 2016 Reyes, Ventura (b0045) 2018; 9 Read, Pfahringer, Holmes, Frank (b0175) 2011; 85 Tsanas, Xifara (b0025) 2012; 49 Karalic, Bratko (b0185) 1997; 26 Goovaerts (b0200) 1997 Koza (b0125) 1992 Džeroski, Demsar, Grbovic (b0220) 2000; 13 Tsoumakas, Spyromitros-Xioufis, Vilcek, Vlahavas (b0245) 2011; 12 Lopes, Weinert (b0115) 2004; 14 Reyes, Ventura (b0035) 2019; 1950014 Borchani, Varando, Bielza, Larrañaga (b0040) 2015; 5 Breiman (b0165) 1996; 24 Ryan, Hibler (b0145) 2011; 6 Zhong, Feng, Ong (b0085) 2017; 12 Cheng, Zhong (b0150) 2018 Melki, Cano, Kecman, Ventura (b0060) 2017; 415–416 Wilcoxon (b0240) 1945; 1 J.M. Moyano, E. Gibaja, S. Ventura, An evolutionary algorithm for optimizing the target ordering in ensemble of regressor chains, in: IEEE Congress on Evolutionary Computation, 2017, pp. 2015–2021. Erdem (b0160) 2018; 11 Haeri, Ebadzadeh, Folino (b0080) 2017; 60 Hidalgo, Colmenar, Kronberger, Winkler, Garnica, Lanchares (b0110) 2017; 41 Zhen, Yu, He, Li (b0030) 2018; 40 Kaggle, Kaggle competition: see click predict fix. https://www.kaggle.com/c/see-click-predict-fi (2013). Reyes, Cano, Fardoun, Ventura (b0010) 2018; 11 Yeh (b0190) 2007; 29 Wilcoxon (10.1016/j.neucom.2020.12.060_b0240) 1945; 1 Koza (10.1016/j.neucom.2020.12.060_b0125) 1992 Tsanas (10.1016/j.neucom.2020.12.060_b0025) 2012; 49 Kocev (10.1016/j.neucom.2020.12.060_b0015) 2009; 220 10.1016/j.neucom.2020.12.060_b0155 Galar (10.1016/j.neucom.2020.12.060_b0170) 2012; 42 10.1016/j.neucom.2020.12.060_b0070 Karalic (10.1016/j.neucom.2020.12.060_b0185) 1997; 26 Peng (10.1016/j.neucom.2020.12.060_b0075) 2014; 137 Zhong (10.1016/j.neucom.2020.12.060_b0085) 2017; 12 Haeri (10.1016/j.neucom.2020.12.060_b0080) 2017; 60 10.1016/j.neucom.2020.12.060_b0195 Tuia (10.1016/j.neucom.2020.12.060_b0020) 2011; 8 Guerrero-Enamorado (10.1016/j.neucom.2020.12.060_b0135) 2018; 11 Tsoumakas (10.1016/j.neucom.2020.12.060_b0245) 2011; 12 Melki (10.1016/j.neucom.2020.12.060_b0060) 2017; 415–416 Li (10.1016/j.neucom.2020.12.060_b0140) 2005 Shaffer (10.1016/j.neucom.2020.12.060_b0235) 1986; 81 Reyes (10.1016/j.neucom.2020.12.060_b0095) 2018 Similä (10.1016/j.neucom.2020.12.060_b0055) 2007; 52 Reyes (10.1016/j.neucom.2020.12.060_b0035) 2019; 1950014 10.1016/j.neucom.2020.12.060_b0100 Spyromitros-Xioufis (10.1016/j.neucom.2020.12.060_b0050) 2016; 104 10.1016/j.neucom.2020.12.060_b0065 Friedman (10.1016/j.neucom.2020.12.060_b0230) 1940; 11 Lopes (10.1016/j.neucom.2020.12.060_b0115) 2004; 14 Holland (10.1016/j.neucom.2020.12.060_b0130) 1975 Goovaerts (10.1016/j.neucom.2020.12.060_b0200) 1997 Ferreira (10.1016/j.neucom.2020.12.060_b0090) 2001; 13 Cheng (10.1016/j.neucom.2020.12.060_b0150) 2018 Hatzikos (10.1016/j.neucom.2020.12.060_b0210) 2008; 21 Reyes (10.1016/j.neucom.2020.12.060_b0005) 2018; 25 Colmenar (10.1016/j.neucom.2020.12.060_b0105) 2016 Yeh (10.1016/j.neucom.2020.12.060_b0190) 2007; 29 10.1016/j.neucom.2020.12.060_b0215 Erdem (10.1016/j.neucom.2020.12.060_b0160) 2018; 11 Džeroski (10.1016/j.neucom.2020.12.060_b0220) 2000; 13 Zhen (10.1016/j.neucom.2020.12.060_b0030) 2018; 40 Read (10.1016/j.neucom.2020.12.060_b0175) 2011; 85 Tsoumakas (10.1016/j.neucom.2020.12.060_b0180) 2011; 23 Karaboga (10.1016/j.neucom.2020.12.060_b0120) 2012; 209 Ryan (10.1016/j.neucom.2020.12.060_b0145) 2011; 6 Aho (10.1016/j.neucom.2020.12.060_b0225) 2009; 373 Reyes (10.1016/j.neucom.2020.12.060_b0045) 2018; 9 Borchani (10.1016/j.neucom.2020.12.060_b0040) 2015; 5 10.1016/j.neucom.2020.12.060_b0205 Breiman (10.1016/j.neucom.2020.12.060_b0165) 1996; 24 Hidalgo (10.1016/j.neucom.2020.12.060_b0110) 2017; 41 Reyes (10.1016/j.neucom.2020.12.060_b0010) 2018; 11 |
| References_xml | – volume: 11 start-page: 282 year: 2018 end-page: 295 ident: b0010 article-title: A locally weighted learning method based on a data gravitation model for multi-target regression publication-title: Int. J. Comput. Intell. Syst. – year: 1997 ident: b0200 article-title: Geostatistics for Natural Resources Evaluation – volume: 13 start-page: 7 year: 2000 end-page: 17 ident: b0220 article-title: Predicting chemical parameters of river water quality from bioindicator data publication-title: Appl. Intell. – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: b0165 article-title: Bagging predictors publication-title: Mach. Learn. – volume: 40 start-page: 497 year: 2018 end-page: 504 ident: b0030 article-title: Multi-target regression via robust low-rank learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 23 start-page: 1079 year: 2011 end-page: 1089 ident: b0180 article-title: Random k)labelsets for multi-label classification publication-title: IEEE Trans. Knowl. Data Eng. – volume: 415–416 start-page: 53 year: 2017 end-page: 69 ident: b0060 article-title: Multi-target support vector regression via correlation regressor chains publication-title: Inf. Sci. – volume: 11 start-page: 540 year: 2018 end-page: 559 ident: b0135 article-title: A gene expression programming algorithm for discovering classification rules in the multi-objective space publication-title: Int. J. Comput. Intell. Syst. – volume: 21 start-page: 471 year: 2008 end-page: 478 ident: b0210 article-title: An empirical study on sea water quality prediction publication-title: Knowl.-Based Syst. – volume: 14 start-page: 375 year: 2004 end-page: 384 ident: b0115 article-title: EGIPSYS: an enhanced gene expression programming approach for symbolic regression problems publication-title: Int. J. Appl. Math. Comput. Sci. – volume: 85 start-page: 333 year: 2011 ident: b0175 article-title: Classifier chains for multi-label classification publication-title: Mach. Learn. – volume: 49 start-page: 560 year: 2012 end-page: 567 ident: b0025 article-title: Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools publication-title: Energy Build. – volume: 137 start-page: 293 year: 2014 end-page: 301 ident: b0075 article-title: An improved gene expression programming approach for symbolic regression problems publication-title: Neurocomputing – volume: 60 start-page: 447 year: 2017 end-page: 469 ident: b0080 article-title: Statistical genetic programming for symbolic regression publication-title: Appl. Soft Comput. – volume: 9 start-page: 46 year: 2018 ident: b0045 article-title: Evolutionary strategy to perform batch-mode active learning on multi-label data publication-title: ACM Trans. Intell. Syst. Technol. – reference: J.M. Moyano, E. Gibaja, S. Ventura, An evolutionary algorithm for optimizing the target ordering in ensemble of regressor chains, in: IEEE Congress on Evolutionary Computation, 2017, pp. 2015–2021. – start-page: 1393 year: 2016 end-page: 1400 ident: b0105 article-title: Predicting glycemia in diabetic patients by evolutionary computation and continuous glucose monitoring publication-title: Genetic and Evolutionary Computation Conference Companion – volume: 1950014 year: 2019 ident: b0035 article-title: Performing multi-target regression via a parameter sharing-based deep network publication-title: Int. J. Neural Syst. – start-page: 1422 year: 2018 end-page: 1427 ident: b0150 article-title: An efficient cooperative co-evolutionary gene expression programming publication-title: International Conference on SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI – reference: H. Xie, M. Zhang, Tuning selection pressure in tournament selection, Tech. Rep. ECSTR-09-10, School of Engineering and Computer Science, Victoria University of Wellington, 2009 – volume: 26 start-page: 147 year: 1997 end-page: 176 ident: b0185 article-title: First order regression publication-title: Mach. Learn. – volume: 5 start-page: 216 year: 2015 end-page: 233 ident: b0040 article-title: A survey on multi-output regression publication-title: Wiley Interdisc. Rev. Data Min. Knowl. Disc. – year: 1992 ident: b0125 article-title: Genetic Programming: On the Programming of Computers by Means of Natural Selection – volume: 373 start-page: 2055 year: 2009 end-page: 2066 ident: b0225 article-title: Multi-target regression with rule ensembles publication-title: J. Mach. Learn. Res. – volume: 11 start-page: 962 year: 2018 end-page: 978 ident: b0160 article-title: Sparsity-driven weighted ensemble classifier publication-title: Int. J. Comput. Intell. Syst. – start-page: 2:1 year: 2018 end-page: 2:6 ident: b0095 article-title: A gene expression programming method for multi-target regression publication-title: International Conference on Learning and Optimization Algorithms: Theory and Applications – reference: M. Lichman, UCI machine learning repository. http://archive.ics.uci.edu/ml (2013). – volume: 220 start-page: 1159 year: 2009 end-page: 1168 ident: b0015 article-title: Using single and multi-target regression trees and ensembles to model a compound index of vegetation condition publication-title: Ecol. Model. – volume: 6 start-page: 165 year: 2011 end-page: 170 ident: b0145 article-title: Robust gene expression programming publication-title: Procedia Comput. Sci. – volume: 1 start-page: 80 year: 1945 end-page: 83 ident: b0240 article-title: Individual comparisons by ranking methods publication-title: Biometr. Bull. – start-page: 25 year: 2005 end-page: 29 ident: b0140 article-title: Prefix gene expression programming publication-title: Genetic and Evolutionary Computation Conference – reference: S. Stijven, E. Vladislavleva, A. Kordon, L. Willem, M.E. Kotanchek, Genetic Programming Theory and Practice XIII, Springer, Cham, 2016, Ch. Prime-Time: Symbolic Regression Takes Its Place in the Real World, pp. 241–260. – volume: 209 start-page: 1 year: 2012 end-page: 15 ident: b0120 article-title: Artificial bee colony programming for symbolic regression publication-title: Inf. Sci. – volume: 41 start-page: 142 year: 2017 ident: b0110 article-title: Data based prediction of blood glucose concentrations using evolutionary methods publication-title: J. Med. Syst. – volume: 42 start-page: 463 year: 2012 end-page: 484 ident: b0170 article-title: A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches publication-title: IEEE Trans. Syst. Man Cybern. C – volume: 29 start-page: 474 year: 2007 end-page: 480 ident: b0190 article-title: Modeling slump flow of concrete using second-order regressions and artificial neural networks publication-title: Cem. Concr. Compos. – volume: 13 start-page: 87 year: 2001 end-page: 129 ident: b0090 article-title: Gene expression programming: a new adaptive algorithm for solving problems publication-title: Complex Syst. – volume: 11 start-page: 86 year: 1940 end-page: 92 ident: b0230 article-title: A comparison of alternative tests of significance for the problem of m) publication-title: Ann. Math. Stat. – volume: 25 start-page: 305 year: 2018 end-page: 320 ident: b0005 article-title: An ensemble-based method for the selection of instances in the multi-target regression problem publication-title: Integr. Comput. Aided Eng. – volume: 104 start-page: 55 year: 2016 end-page: 98 ident: b0050 article-title: Multi-target regression via input space expansion: treating targets as inputs publication-title: Mach. Learn. – volume: 81 start-page: 826 year: 1986 end-page: 831 ident: b0235 article-title: Modified sequentially rejective multiple test procedures publication-title: J. Am. Stat. Assoc. – reference: G. Tsoumakas, E. Spyromitros-Xioufis, A. Vrekou, I. Vlahavas, Multi-target regression via random linear target combinations, in: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2014, pp. 225–240. – volume: 12 start-page: 2411 year: 2011 end-page: 2414 ident: b0245 article-title: Mulan: a java library for multi-label learning publication-title: J. Mach. Learn. Res. – reference: Kaggle, Kaggle competition: online product sales. https://www.kaggle.com/c/online-sales (2012). – volume: 52 start-page: 406 year: 2007 end-page: 422 ident: b0055 article-title: Input selection and shrinkage in multiresponse linear regression publication-title: Comput. Stat. Data Anal. – reference: Kaggle, Kaggle competition: see click predict fix. https://www.kaggle.com/c/see-click-predict-fi (2013). – volume: 8 start-page: 804 year: 2011 end-page: 808 ident: b0020 article-title: Multioutput support vector regression for remote sensing biophysical parameter estimation publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 12 start-page: 54 year: 2017 end-page: 72 ident: b0085 article-title: Gene expression programming: a survey publication-title: IEEE Comput. Intell. Mag. – year: 1975 ident: b0130 article-title: Adaptation in Natural and Artificial Systems – volume: 11 start-page: 86 issue: 1 year: 1940 ident: 10.1016/j.neucom.2020.12.060_b0230 article-title: A comparison of alternative tests of significance for the problem of m)rankings publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177731944 – volume: 81 start-page: 826 issue: 395 year: 1986 ident: 10.1016/j.neucom.2020.12.060_b0235 article-title: Modified sequentially rejective multiple test procedures publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1986.10478341 – year: 1992 ident: 10.1016/j.neucom.2020.12.060_b0125 – year: 1975 ident: 10.1016/j.neucom.2020.12.060_b0130 – ident: 10.1016/j.neucom.2020.12.060_b0155 – volume: 41 start-page: 142 issue: 9 year: 2017 ident: 10.1016/j.neucom.2020.12.060_b0110 article-title: Data based prediction of blood glucose concentrations using evolutionary methods publication-title: J. Med. Syst. doi: 10.1007/s10916-017-0788-2 – volume: 14 start-page: 375 issue: 3 year: 2004 ident: 10.1016/j.neucom.2020.12.060_b0115 article-title: EGIPSYS: an enhanced gene expression programming approach for symbolic regression problems publication-title: Int. J. Appl. Math. Comput. Sci. – volume: 40 start-page: 497 issue: 2 year: 2018 ident: 10.1016/j.neucom.2020.12.060_b0030 article-title: Multi-target regression via robust low-rank learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2688363 – volume: 42 start-page: 463 issue: 4 year: 2012 ident: 10.1016/j.neucom.2020.12.060_b0170 article-title: A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches publication-title: IEEE Trans. Syst. Man Cybern. C doi: 10.1109/TSMCC.2011.2161285 – volume: 11 start-page: 282 year: 2018 ident: 10.1016/j.neucom.2020.12.060_b0010 article-title: A locally weighted learning method based on a data gravitation model for multi-target regression publication-title: Int. J. Comput. Intell. Syst. doi: 10.2991/ijcis.11.1.22 – volume: 1 start-page: 80 issue: 6 year: 1945 ident: 10.1016/j.neucom.2020.12.060_b0240 article-title: Individual comparisons by ranking methods publication-title: Biometr. Bull. doi: 10.2307/3001968 – volume: 85 start-page: 333 issue: 3 year: 2011 ident: 10.1016/j.neucom.2020.12.060_b0175 article-title: Classifier chains for multi-label classification publication-title: Mach. Learn. doi: 10.1007/s10994-011-5256-5 – start-page: 2:1 year: 2018 ident: 10.1016/j.neucom.2020.12.060_b0095 article-title: A gene expression programming method for multi-target regression publication-title: International Conference on Learning and Optimization Algorithms: Theory and Applications – volume: 209 start-page: 1 year: 2012 ident: 10.1016/j.neucom.2020.12.060_b0120 article-title: Artificial bee colony programming for symbolic regression publication-title: Inf. Sci. doi: 10.1016/j.ins.2012.05.002 – ident: 10.1016/j.neucom.2020.12.060_b0100 doi: 10.1007/978-3-662-44845-8_15 – volume: 60 start-page: 447 year: 2017 ident: 10.1016/j.neucom.2020.12.060_b0080 article-title: Statistical genetic programming for symbolic regression publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.06.050 – year: 1997 ident: 10.1016/j.neucom.2020.12.060_b0200 – ident: 10.1016/j.neucom.2020.12.060_b0215 – volume: 373 start-page: 2055 year: 2009 ident: 10.1016/j.neucom.2020.12.060_b0225 article-title: Multi-target regression with rule ensembles publication-title: J. Mach. Learn. Res. – volume: 23 start-page: 1079 issue: 7 year: 2011 ident: 10.1016/j.neucom.2020.12.060_b0180 article-title: Random k)labelsets for multi-label classification publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2010.164 – volume: 29 start-page: 474 issue: 6 year: 2007 ident: 10.1016/j.neucom.2020.12.060_b0190 article-title: Modeling slump flow of concrete using second-order regressions and artificial neural networks publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2007.02.001 – start-page: 1422 year: 2018 ident: 10.1016/j.neucom.2020.12.060_b0150 article-title: An efficient cooperative co-evolutionary gene expression programming publication-title: International Conference on SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI – volume: 6 start-page: 165 year: 2011 ident: 10.1016/j.neucom.2020.12.060_b0145 article-title: Robust gene expression programming publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2011.08.032 – volume: 21 start-page: 471 issue: 6 year: 2008 ident: 10.1016/j.neucom.2020.12.060_b0210 article-title: An empirical study on sea water quality prediction publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2008.03.005 – volume: 26 start-page: 147 issue: 2–3 year: 1997 ident: 10.1016/j.neucom.2020.12.060_b0185 article-title: First order regression publication-title: Mach. Learn. doi: 10.1023/A:1007365207130 – volume: 11 start-page: 540 issue: 1 year: 2018 ident: 10.1016/j.neucom.2020.12.060_b0135 article-title: A gene expression programming algorithm for discovering classification rules in the multi-objective space publication-title: Int. J. Comput. Intell. Syst. doi: 10.2991/ijcis.11.1.40 – volume: 12 start-page: 2411 year: 2011 ident: 10.1016/j.neucom.2020.12.060_b0245 article-title: Mulan: a java library for multi-label learning publication-title: J. Mach. Learn. Res. – volume: 5 start-page: 216 issue: 5 year: 2015 ident: 10.1016/j.neucom.2020.12.060_b0040 article-title: A survey on multi-output regression publication-title: Wiley Interdisc. Rev. Data Min. Knowl. Disc. doi: 10.1002/widm.1157 – volume: 104 start-page: 55 issue: 1 year: 2016 ident: 10.1016/j.neucom.2020.12.060_b0050 article-title: Multi-target regression via input space expansion: treating targets as inputs publication-title: Mach. Learn. doi: 10.1007/s10994-016-5546-z – volume: 13 start-page: 7 issue: 1 year: 2000 ident: 10.1016/j.neucom.2020.12.060_b0220 article-title: Predicting chemical parameters of river water quality from bioindicator data publication-title: Appl. Intell. doi: 10.1023/A:1008323212047 – volume: 49 start-page: 560 year: 2012 ident: 10.1016/j.neucom.2020.12.060_b0025 article-title: Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools publication-title: Energy Build. doi: 10.1016/j.enbuild.2012.03.003 – start-page: 25 year: 2005 ident: 10.1016/j.neucom.2020.12.060_b0140 article-title: Prefix gene expression programming publication-title: Genetic and Evolutionary Computation Conference – volume: 8 start-page: 804 issue: 4 year: 2011 ident: 10.1016/j.neucom.2020.12.060_b0020 article-title: Multioutput support vector regression for remote sensing biophysical parameter estimation publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2011.2109934 – ident: 10.1016/j.neucom.2020.12.060_b0065 doi: 10.1109/CEC.2017.7969548 – volume: 25 start-page: 305 issue: 4 year: 2018 ident: 10.1016/j.neucom.2020.12.060_b0005 article-title: An ensemble-based method for the selection of instances in the multi-target regression problem publication-title: Integr. Comput. Aided Eng. doi: 10.3233/ICA-180581 – volume: 12 start-page: 54 issue: 3 year: 2017 ident: 10.1016/j.neucom.2020.12.060_b0085 article-title: Gene expression programming: a survey publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2017.2708618 – ident: 10.1016/j.neucom.2020.12.060_b0195 – volume: 220 start-page: 1159 issue: 8 year: 2009 ident: 10.1016/j.neucom.2020.12.060_b0015 article-title: Using single and multi-target regression trees and ensembles to model a compound index of vegetation condition publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2009.01.037 – volume: 1950014 year: 2019 ident: 10.1016/j.neucom.2020.12.060_b0035 article-title: Performing multi-target regression via a parameter sharing-based deep network publication-title: Int. J. Neural Syst. – start-page: 1393 year: 2016 ident: 10.1016/j.neucom.2020.12.060_b0105 article-title: Predicting glycemia in diabetic patients by evolutionary computation and continuous glucose monitoring publication-title: Genetic and Evolutionary Computation Conference Companion – volume: 9 start-page: 46 issue: 4 year: 2018 ident: 10.1016/j.neucom.2020.12.060_b0045 article-title: Evolutionary strategy to perform batch-mode active learning on multi-label data publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/3161606 – ident: 10.1016/j.neucom.2020.12.060_b0205 – volume: 52 start-page: 406 issue: 1 year: 2007 ident: 10.1016/j.neucom.2020.12.060_b0055 article-title: Input selection and shrinkage in multiresponse linear regression publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2007.01.025 – ident: 10.1016/j.neucom.2020.12.060_b0070 doi: 10.1007/978-3-319-34223-8_14 – volume: 11 start-page: 962 issue: 1 year: 2018 ident: 10.1016/j.neucom.2020.12.060_b0160 article-title: Sparsity-driven weighted ensemble classifier publication-title: Int. J. Comput. Intell. Syst. doi: 10.2991/ijcis.11.1.73 – volume: 13 start-page: 87 year: 2001 ident: 10.1016/j.neucom.2020.12.060_b0090 article-title: Gene expression programming: a new adaptive algorithm for solving problems publication-title: Complex Syst. – volume: 24 start-page: 123 issue: 2 year: 1996 ident: 10.1016/j.neucom.2020.12.060_b0165 article-title: Bagging predictors publication-title: Mach. Learn. doi: 10.1023/A:1018054314350 – volume: 415–416 start-page: 53 year: 2017 ident: 10.1016/j.neucom.2020.12.060_b0060 article-title: Multi-target support vector regression via correlation regressor chains publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.06.017 – volume: 137 start-page: 293 year: 2014 ident: 10.1016/j.neucom.2020.12.060_b0075 article-title: An improved gene expression programming approach for symbolic regression problems publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.05.062 |
| SSID | ssj0017129 |
| Score | 2.376691 |
| Snippet | •Three multi-target regression ensemble models with different architectures.•Use gene-expression programming to build each member of the ensemble.•Individuals... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 275 |
| SubjectTerms | Ensemble-based model Gene expression programming Multi-target regression Symbolic regression |
| Title | Performing multi-target regression via gene expression programming-based ensemble models |
| URI | https://dx.doi.org/10.1016/j.neucom.2020.12.060 |
| Volume | 432 |
| WOSCitedRecordID | wos000620904600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxsxEBbG6aGXvkuTtkGH3ozCSvaudo-mJLShSQNJg2-LXi4OyTrYjkl-Tf9qZyTtg7okbaGXtVlWXqH5PPNpNA9CPmTSajDUjmkxxZScJGcqlYLxTIP10EWivB_y_Is8Ps4nk-Kk1_tR58KsL2VV5be3xfV_FTXcA2Fj6uxfiLv5UbgB30HocAWxw_WPBH8SUgHQBeCjBVkI9h4s3PcQ81oN1jOFrZMd1vev78VALRzH0LTZAWxw3RUmVvluOcsujfUlPYxvCBFdDeMrrLhgEV6Na-FofqeqeX3OMDjaa0533F3QTl-XRjXRwQcAVtA93hgqPdOdAefeNHqee-pgdquZP-DnVddpIbiPdZGtJ20jmya4JEXKgG8G7eyCQs4BOJjq3tXYo-gSjTo3tF6J5lsE-71hGYKT4mKvcjcYJgSTSrwfOHQz-KXm9ilOBWciMMkrw2qyW_CaIu-TrfHn_clhc1AluQjlHOPU6-xMH0K4-a7fs58Oozl7Rp7ErQgdBwg9Jz1XvSBP6zYfNGr9l2TSIop2EUVbRFFAFEVE0RZRdANRtEYUDYh6Rb4d7J99_MRiQw5mYGe5Yhlwz8TlFjgvfCrtxDTBin1TWKQksTzViXDWKjEyhdSZlAUwH6NTbhW3uU6Gr0m_mlfuDaGZMoXKuDUjJOQ8zTObKSzEpJUZgsbYJsN6oUoTq9Vj05TLsg5LvCjD8pa4vCUXJSzvNmHNqOtQreWB52UtgzIyzsAkS4DNvSN3_nnkW_K4_Ue8I_3V4sa9J4_MejVbLnYjvn4Cmtan2w |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performing+multi-target+regression+via+gene+expression+programming-based+ensemble+models&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Moyano%2C+Jose+M.&rft.au=Reyes%2C+Oscar&rft.au=Fardoun%2C+Habib+M.&rft.au=Ventura%2C+Sebasti%C3%A1n&rft.date=2021-04-07&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=432&rft.spage=275&rft.epage=287&rft_id=info:doi/10.1016%2Fj.neucom.2020.12.060&rft.externalDocID=S0925231220319603 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |