Multi-factor embedding GNN-based traffic flow prediction considering intersection similarity
Existing studies on traffic flow prediction primarily rely on on-board devices to collect vehicle trajectory data, which can potentially infringe upon the privacy of users and limit the applicability of the method. Additionally, traffic flow prediction remains challenging due to the complex spatial...
Saved in:
| Published in: | Neurocomputing (Amsterdam) Vol. 620; p. 129193 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.03.2025
|
| Subjects: | |
| ISSN: | 0925-2312 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Existing studies on traffic flow prediction primarily rely on on-board devices to collect vehicle trajectory data, which can potentially infringe upon the privacy of users and limit the applicability of the method. Additionally, traffic flow prediction remains challenging due to the complex spatial and temporal dependencies within real-world traffic networks. To address these limitations, this paper introduces a framework for analyzing discrete vehicle trajectory data at urban intersections. By incorporating various external physical factors into traffic flow prediction, this framework derives embedding vectors from vehicle trajectory sequences and road network topology, modeling their spatio-temporal dependencies using Skip-Gram and GraphSAGE, respectively. Additionally, the intersection similarity is introduced to capture and integrate traffic flow patterns between the target intersection and similar intersections. A Spatio-Temporal Graph Convolutional Neural Network (ST-GCN) algorithm, which combines Graph Convolutional Networks (GCN) with Long Short-Term Memory (LSTM), is developed to achieve precise traffic flow prediction. Extensive experiments on a real-world traffic flow dataset from Qingdao, China, validate that the proposed method outperforms state-of-the-art baseline methods. |
|---|---|
| AbstractList | Existing studies on traffic flow prediction primarily rely on on-board devices to collect vehicle trajectory data, which can potentially infringe upon the privacy of users and limit the applicability of the method. Additionally, traffic flow prediction remains challenging due to the complex spatial and temporal dependencies within real-world traffic networks. To address these limitations, this paper introduces a framework for analyzing discrete vehicle trajectory data at urban intersections. By incorporating various external physical factors into traffic flow prediction, this framework derives embedding vectors from vehicle trajectory sequences and road network topology, modeling their spatio-temporal dependencies using Skip-Gram and GraphSAGE, respectively. Additionally, the intersection similarity is introduced to capture and integrate traffic flow patterns between the target intersection and similar intersections. A Spatio-Temporal Graph Convolutional Neural Network (ST-GCN) algorithm, which combines Graph Convolutional Networks (GCN) with Long Short-Term Memory (LSTM), is developed to achieve precise traffic flow prediction. Extensive experiments on a real-world traffic flow dataset from Qingdao, China, validate that the proposed method outperforms state-of-the-art baseline methods. |
| ArticleNumber | 129193 |
| Author | Hu, Bingtao Wang, Fei Song, Xiuju Li, Zhiwu Zhong, Ruirui Tan, Jianrong Feng, Yixiong Lou, Shanhe Wang, Yong |
| Author_xml | – sequence: 1 givenname: Ruirui orcidid: 0000-0002-6761-2744 surname: Zhong fullname: Zhong, Ruirui organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China – sequence: 2 givenname: Bingtao orcidid: 0000-0002-4939-8115 surname: Hu fullname: Hu, Bingtao email: hubingtao@zju.edu.cn organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China – sequence: 3 givenname: Fei surname: Wang fullname: Wang, Fei organization: College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266000, China – sequence: 4 givenname: Yixiong surname: Feng fullname: Feng, Yixiong organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China – sequence: 5 givenname: Zhiwu orcidid: 0000-0003-1955-7661 surname: Li fullname: Li, Zhiwu organization: Institute of Systems Engineering, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China – sequence: 6 givenname: Xiuju surname: Song fullname: Song, Xiuju organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China – sequence: 7 givenname: Yong surname: Wang fullname: Wang, Yong organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China – sequence: 8 givenname: Shanhe surname: Lou fullname: Lou, Shanhe organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China – sequence: 9 givenname: Jianrong surname: Tan fullname: Tan, Jianrong organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China |
| BookMark | eNqFkLFOwzAURT0UibbwBwz5gYTYTpOGAQlVUJBKWWBDshz7Gb0qsSvbBfXvcRUmBpjecN-50j0zMrHOAiFXtCxoSevrXWHhoNxQsJJVBWUtbfmETMuWLXLGKTsnsxB2ZUmblE3J-_Ohj5gbqaLzGQwdaI32I1tvt3knA-gsemkMqsz07ivbe9CoIjqbKWcDavCnb7QRfIAxCDhgLz3G4wU5M7IPcPlz5-Tt4f519ZhvXtZPq7tNrnhZx7yuuKJcc9C0M5pTRVmjoGtYBbxaslobVletbBetrpulbJad7lRtlEngQiVwTqqxV3kXggcj9h4H6Y-CluJkRezEaEWcrIjRSsJufmEKozxtSJux_w--HWFIwz4RvAgKwarkxycRQjv8u-Abru6G8g |
| CitedBy_id | crossref_primary_10_1016_j_rineng_2025_107113 crossref_primary_10_3390_s25165127 crossref_primary_10_1007_s11227_025_07354_z crossref_primary_10_1016_j_eswa_2025_126937 crossref_primary_10_1016_j_neucom_2025_130117 crossref_primary_10_1016_j_scs_2025_106407 |
| Cites_doi | 10.1016/j.knosys.2022.108990 10.1109/TITS.2020.3026025 10.1109/TII.2018.2805910 10.1109/TITS.2018.2873137 10.1016/j.neunet.2023.12.016 10.1109/TITS.2020.2983763 10.1016/j.neucom.2017.03.049 10.1016/j.aei.2022.101678 10.1007/s10489-021-02587-w 10.1061/(ASCE)0733-947X(2003)129:6(664) 10.3141/1857-09 10.1109/TCSVT.2012.2203741 10.1016/j.eswa.2022.117921 10.1109/TITS.2019.2935152 10.1109/TKDE.2019.2957755 10.1109/TITS.2006.869623 10.1109/TITS.2023.3279929 10.1111/tgis.12644 10.1109/TITS.2022.3148105 10.1016/j.future.2024.04.052 10.1109/TITS.2022.3208952 10.1109/ACCESS.2021.3050836 10.1002/for.3980140302 10.1080/15472450.2019.1582950 10.1016/j.inffus.2022.11.019 10.1016/j.trc.2014.02.006 10.1016/j.trc.2019.09.008 10.1016/j.engappai.2023.106041 10.1109/TVT.2016.2585575 10.1007/s10489-023-04494-8 10.1109/TFUZZ.2020.2986995 10.1016/j.future.2020.12.003 10.1016/j.simpat.2019.102025 10.1016/j.patcog.2022.108696 10.1016/j.ins.2019.07.039 10.1016/j.neucom.2021.03.024 10.1109/TNSE.2022.3146836 10.1109/ACCESS.2021.3062114 10.1109/TII.2021.3083596 10.1016/j.aei.2022.101858 10.1016/j.neucom.2023.02.017 10.1109/TII.2020.3009280 10.1016/j.neucom.2023.126662 10.1109/TITS.2012.2203122 10.1007/s11042-023-14418-w |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2024.129193 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_neucom_2024_129193 S0925231224019647 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEIPS AEKER AENEX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB HLZ HVGLF HZ~ LG9 M41 R2- SBC WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c306t-643c13d3ed1bfd31c127ceb724e34826df2649a959d678a78bdbc6fcf6435c3d3 |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001403350900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Sat Nov 29 06:34:04 EST 2025 Tue Nov 18 21:16:28 EST 2025 Sat Feb 01 16:08:13 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Representation learning Traffic flow prediction Multi-factor Graph neural network Spatio-temporal modeling |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-643c13d3ed1bfd31c127ceb724e34826df2649a959d678a78bdbc6fcf6435c3d3 |
| ORCID | 0000-0002-6761-2744 0000-0003-1955-7661 0000-0002-4939-8115 |
| ParticipantIDs | crossref_primary_10_1016_j_neucom_2024_129193 crossref_citationtrail_10_1016_j_neucom_2024_129193 elsevier_sciencedirect_doi_10_1016_j_neucom_2024_129193 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-01 2025-03-00 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Yuan, Liu, Lou (b27) 2022 Mikolov, Sutskever, Chen, Corrado, Dean (b55) 2013; 26 Weng, Ivanovic, Kitani, Pavone (b6) 2022 Zhu, Wang, Tao, Deng, Zhao, Li (b31) 2021; 9 Guo, Lin, Feng, Song, Wan (b45) 2019; 33 Luo, Zheng, Wang, Tao, Jiang (b12) 2024; 171 Zhang, Yao, Shao, Chen (b56) 2019 Zhang, Zhang, Zheng, Perry (b54) 2017 Zhao, Song, Zhang, Liu, Wang, Lin, Deng, Li (b41) 2019; 21 Khaled, Elsir, Shen (b32) 2022; 249 Zhang, Shan, Little (b46) 2022; 128 Zhou, Yang, Zhong, Chen, Zhang (b28) 2020; 17 Li, Hu, Liang (b48) 2020; 28 Huang, Jiang, Tang (b23) 2023; 53 Méndez, Merayo, Núñez (b22) 2023; 121 Zhan, Zhang, Szeto, Chen (b21) 2020; 24 Hu, Fan, Zeng, Hang, Wang, Qi, Bhuiyan (b36) 2021; 18 Azimjonov, Özmen, Varan (b50) 2023; 82 Cai, Janowicz, Mai, Yan, Zhu (b30) 2020; 24 Hu, Feng, Sun, Gao, Tan (b4) 2019; 504 Liu, Jiang, Zhou, Li, Kwan (b10) 2023; 24 Zheng, Chai, Duanmu, Katos (b24) 2023; 92 Hamilton, Ying, Leskovec (b57) 2017; 30 Kušić, Schumann, Ivanjko (b2) 2023; 55 Liu, Ong, Chen (b51) 2020; 23 Ye, Szeto, Wong (b52) 2012; 13 Qi, Hossain, Nie, Li (b9) 2021; 117 Kipf, Welling (b58) 2016 Bui, Cho, Yi (b26) 2022; 52 Williams, Hoel (b18) 2003; 129 Guo, Huang, Williams (b34) 2014; 43 Xuan, Zhou, Qiu, Chen, Xu, Zheng, Yang (b39) 2022; 9 Mikolov, Chen, Corrado, Dean (b53) 2013 Chen, Qi, Wang, Chen, Zhang, Shi (b11) 2023; 556 Sun, Zhang, Yu (b15) 2006; 7 Zhou, Ren, Xia, Fan, Yang, Huang (b7) 2021; 445 Chen, Shu, Zhou, Zheng, Kawai, Fueda, Yan, Liang, Wang (b29) 2023; 24 Li, Chai, Ma, Wang (b38) 2021; 9 Holden (b16) 1995; 14 Jiang, Luo (b25) 2022; 207 Emami, Sarvi, Bagloee (b35) 2020; 102 Feng, Hu, Hao, Gao, Li, Tan (b1) 2018; 14 Lv, Hong, Chen, Chen, Zhu, Ji (b42) 2020; 22 Koesdwiady, Soua, Karray (b37) 2016; 65 Wang, Lv, Sheng, Sun, Zhao (b3) 2022; 53 Do, Vu, Vo, Liu, Phung (b43) 2019; 108 Duan, Mao, Liang, Zhang (b19) 2018; 20 Zhao, Luo, Yao, Wang, Hu, Su (b47) 2022 Xuan, Wang, Zhao, Yuan, Fu, Ruan, Chen (b40) 2019; 33 Wang, Zhang, Cheng, Yang (b14) 2022; 23 Dong, Jia, Sun, Li, Qin (b17) 2009 Chen, Chen (b8) 2019 Du, Ibrahim, Shehata, Badawy (b49) 2012; 23 Shen, Zhou, Zhang, Liu, Liu, Kong (b5) 2023; 531 Hu, Zhang, Xie, Liang, Li, Zomaya (b13) 2024; 158 Kamarianakis, Prastacos (b33) 2003; 1857 Yu, Yin, Zhu (b44) 2018 Zhou, Han, Xu, Lin, Han, Huang, Qin (b20) 2017; 247 Kušić (10.1016/j.neucom.2024.129193_b2) 2023; 55 Mikolov (10.1016/j.neucom.2024.129193_b55) 2013; 26 Huang (10.1016/j.neucom.2024.129193_b23) 2023; 53 Sun (10.1016/j.neucom.2024.129193_b15) 2006; 7 Zhou (10.1016/j.neucom.2024.129193_b7) 2021; 445 Kipf (10.1016/j.neucom.2024.129193_b58) 2016 Bui (10.1016/j.neucom.2024.129193_b26) 2022; 52 Holden (10.1016/j.neucom.2024.129193_b16) 1995; 14 Zhang (10.1016/j.neucom.2024.129193_b56) 2019 Wang (10.1016/j.neucom.2024.129193_b3) 2022; 53 Cai (10.1016/j.neucom.2024.129193_b30) 2020; 24 Hu (10.1016/j.neucom.2024.129193_b36) 2021; 18 Lv (10.1016/j.neucom.2024.129193_b42) 2020; 22 Zhou (10.1016/j.neucom.2024.129193_b28) 2020; 17 Chen (10.1016/j.neucom.2024.129193_b8) 2019 Shen (10.1016/j.neucom.2024.129193_b5) 2023; 531 Do (10.1016/j.neucom.2024.129193_b43) 2019; 108 Khaled (10.1016/j.neucom.2024.129193_b32) 2022; 249 Zhan (10.1016/j.neucom.2024.129193_b21) 2020; 24 Zhou (10.1016/j.neucom.2024.129193_b20) 2017; 247 Yu (10.1016/j.neucom.2024.129193_b44) 2018 Xuan (10.1016/j.neucom.2024.129193_b40) 2019; 33 Qi (10.1016/j.neucom.2024.129193_b9) 2021; 117 Koesdwiady (10.1016/j.neucom.2024.129193_b37) 2016; 65 Zhao (10.1016/j.neucom.2024.129193_b47) 2022 Ye (10.1016/j.neucom.2024.129193_b52) 2012; 13 Feng (10.1016/j.neucom.2024.129193_b1) 2018; 14 Chen (10.1016/j.neucom.2024.129193_b29) 2023; 24 Zheng (10.1016/j.neucom.2024.129193_b24) 2023; 92 Liu (10.1016/j.neucom.2024.129193_b10) 2023; 24 Mikolov (10.1016/j.neucom.2024.129193_b53) 2013 Hamilton (10.1016/j.neucom.2024.129193_b57) 2017; 30 Hu (10.1016/j.neucom.2024.129193_b13) 2024; 158 Zhao (10.1016/j.neucom.2024.129193_b41) 2019; 21 Li (10.1016/j.neucom.2024.129193_b48) 2020; 28 Chen (10.1016/j.neucom.2024.129193_b11) 2023; 556 Weng (10.1016/j.neucom.2024.129193_b6) 2022 Zhu (10.1016/j.neucom.2024.129193_b31) 2021; 9 Jiang (10.1016/j.neucom.2024.129193_b25) 2022; 207 Emami (10.1016/j.neucom.2024.129193_b35) 2020; 102 Kamarianakis (10.1016/j.neucom.2024.129193_b33) 2003; 1857 Hu (10.1016/j.neucom.2024.129193_b4) 2019; 504 Zhang (10.1016/j.neucom.2024.129193_b46) 2022; 128 Li (10.1016/j.neucom.2024.129193_b38) 2021; 9 Luo (10.1016/j.neucom.2024.129193_b12) 2024; 171 Yuan (10.1016/j.neucom.2024.129193_b27) 2022 Liu (10.1016/j.neucom.2024.129193_b51) 2020; 23 Wang (10.1016/j.neucom.2024.129193_b14) 2022; 23 Guo (10.1016/j.neucom.2024.129193_b45) 2019; 33 Williams (10.1016/j.neucom.2024.129193_b18) 2003; 129 Méndez (10.1016/j.neucom.2024.129193_b22) 2023; 121 Du (10.1016/j.neucom.2024.129193_b49) 2012; 23 Duan (10.1016/j.neucom.2024.129193_b19) 2018; 20 Guo (10.1016/j.neucom.2024.129193_b34) 2014; 43 Dong (10.1016/j.neucom.2024.129193_b17) 2009 Xuan (10.1016/j.neucom.2024.129193_b39) 2022; 9 Azimjonov (10.1016/j.neucom.2024.129193_b50) 2023; 82 Zhang (10.1016/j.neucom.2024.129193_b54) 2017 |
| References_xml | – volume: 556 year: 2023 ident: b11 article-title: Temporal metrics based aggregated graph convolution network for traffic forecasting publication-title: Neurocomputing – start-page: 1649 year: 2009 end-page: 1652 ident: b17 article-title: Road traffic flow prediction with a time-oriented ARIMA model publication-title: 2009 Fifth International Joint Conference on INC, IMS and IDC – volume: 20 start-page: 3212 year: 2018 end-page: 3223 ident: b19 article-title: A unified spatio-temporal model for short-term traffic flow prediction publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 23 start-page: 16137 year: 2022 end-page: 16147 ident: b14 article-title: Hierarchical traffic flow prediction based on spatial-temporal graph convolutional network publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 117 start-page: 328 year: 2021 end-page: 337 ident: b9 article-title: Privacy-preserving blockchain-based federated learning for traffic flow prediction publication-title: Future Gener. Comput. Syst. – volume: 249 year: 2022 ident: b32 article-title: TFGAN: Traffic forecasting using generative adversarial network with multi-graph convolutional network publication-title: Knowl.-Based Syst. – volume: 18 start-page: 2811 year: 2021 end-page: 2819 ident: b36 article-title: Digital twin-assisted real-time traffic data prediction method for 5G-enabled internet of vehicles publication-title: IEEE Trans. Ind. Inform. – volume: 108 start-page: 12 year: 2019 end-page: 28 ident: b43 article-title: An effective spatial-temporal attention based neural network for traffic flow prediction publication-title: Transp. Res. C – volume: 30 year: 2017 ident: b57 article-title: Inductive representation learning on large graphs publication-title: Adv. Neural Inf. Process. Syst. – start-page: 890 year: 2017 end-page: 893 ident: b54 article-title: Service2vec: A vector representation for web services publication-title: 2017 Ieee International Conference on Web Services – volume: 247 start-page: 31 year: 2017 end-page: 38 ident: b20 article-title: -Agree AdaBoost stacked autoencoder for short-term traffic flow forecasting publication-title: Neurocomputing – volume: 24 start-page: 125 year: 2020 end-page: 141 ident: b21 article-title: Multi-step-ahead traffic speed forecasting using multi-output gradient boosting regression tree publication-title: J. Intell. Transp. Syst. – volume: 28 start-page: 3256 year: 2020 end-page: 3264 ident: b48 article-title: T2F-LSTM method for long-term traffic volume prediction publication-title: IEEE Trans. Fuzzy Syst. – volume: 23 start-page: 1755 year: 2020 end-page: 1766 ident: b51 article-title: GraphSAGE-based traffic speed forecasting for segment network with sparse data publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 14 start-page: 159 year: 1995 end-page: 166 ident: b16 article-title: Vector auto regression modeling and forecasting publication-title: J. Forecast. – volume: 9 start-page: 11264 year: 2021 end-page: 11271 ident: b38 article-title: A hybrid deep learning framework for long-term traffic flow prediction publication-title: IEEE Access – volume: 7 start-page: 124 year: 2006 end-page: 132 ident: b15 article-title: A Bayesian network approach to traffic flow forecasting publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 837 year: 2022 end-page: 842 ident: b47 article-title: GraphSAGE-based generative adversarial network for short-term traffic speed prediction problem publication-title: 2022 17th International Conference on Control, Automation, Robotics and Vision – volume: 445 start-page: 298 year: 2021 end-page: 308 ident: b7 article-title: Ast-gnn: An attention-based spatio-temporal graph neural network for interaction-aware pedestrian trajectory prediction publication-title: Neurocomputing – volume: 33 start-page: 922 year: 2019 end-page: 929 ident: b45 article-title: Attention based spatial-temporal graph convolutional networks for traffic flow forecasting publication-title: Proc. AAAI Conf. Artif. Intell. – volume: 207 year: 2022 ident: b25 article-title: Graph neural network for traffic forecasting: A survey publication-title: Expert Syst. Appl. – volume: 171 start-page: 251 year: 2024 end-page: 262 ident: b12 article-title: GT-LSTM: A spatio-temporal ensemble network for traffic flow prediction publication-title: Neural Netw. – volume: 14 start-page: 4200 year: 2018 end-page: 4211 ident: b1 article-title: Design of distributed cyber–physical systems for connected and automated vehicles with implementing methodologies publication-title: IEEE Trans. Ind. Inform. – volume: 24 start-page: 11210 year: 2023 end-page: 11224 ident: b10 article-title: GraphSAGE-based dynamic spatial–temporal graph convolutional network for traffic prediction publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 614 year: 2019 end-page: 625 ident: b56 article-title: NSCaching: simple and efficient negative sampling for knowledge graph embedding publication-title: 2019 IEEE 35th International Conference on Data Engineering – volume: 9 start-page: 1516 year: 2022 end-page: 1526 ident: b39 article-title: AvgNet: Adaptive visibility graph neural network and its application in modulation classification publication-title: IEEE Trans. Netw. Sci. Eng. – volume: 52 start-page: 2763 year: 2022 end-page: 2774 ident: b26 article-title: Spatial-temporal graph neural network for traffic forecasting: An overview and open research issues publication-title: Appl. Intell. – volume: 65 start-page: 9508 year: 2016 end-page: 9517 ident: b37 article-title: Improving traffic flow prediction with weather information in connected cars: A deep learning approach publication-title: IEEE Trans. Veh. Technol. – volume: 22 start-page: 3337 year: 2020 end-page: 3348 ident: b42 article-title: Temporal multi-graph convolutional network for traffic flow prediction publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 53 year: 2022 ident: b3 article-title: A deep spatio-temporal meta-learning model for urban traffic revitalization index prediction in the COVID-19 pandemic publication-title: Adv. Eng. Inform. – volume: 55 year: 2023 ident: b2 article-title: A digital twin in transportation: Real-time synergy of traffic data streams and simulation for virtualizing motorway dynamics publication-title: Adv. Eng. Inform. – start-page: 6573 year: 2022 end-page: 6582 ident: b6 article-title: Whose track is it anyway? improving robustness to tracking errors with affinity-based trajectory prediction publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 3634 year: 2018 end-page: 3640 ident: b44 article-title: Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting publication-title: Proceedings of the 27th International Joint Conference on Artificial Intelligence – volume: 24 start-page: 736 year: 2020 end-page: 755 ident: b30 article-title: Traffic transformer: Capturing the continuity and periodicity of time series for traffic forecasting publication-title: Trans. GIS – volume: 9 start-page: 35973 year: 2021 end-page: 35983 ident: b31 article-title: AST-GCN: Attribute-augmented spatiotemporal graph convolutional network for traffic forecasting publication-title: IEEE Access – volume: 13 start-page: 1727 year: 2012 end-page: 1737 ident: b52 article-title: Short-term traffic speed forecasting based on data recorded at irregular intervals publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 129 start-page: 664 year: 2003 end-page: 672 ident: b18 article-title: Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results publication-title: J. Transp. Eng. – volume: 92 start-page: 93 year: 2023 end-page: 114 ident: b24 article-title: Hybrid deep learning models for traffic prediction in large-scale road networks publication-title: Inf. Fusion – volume: 82 start-page: 25155 year: 2023 end-page: 25174 ident: b50 article-title: A vision-based real-time traffic flow monitoring system for road intersections publication-title: Multimedia Tools Appl. – volume: 33 start-page: 2776 year: 2019 end-page: 2789 ident: b40 article-title: Subgraph networks with application to structural feature space expansion publication-title: IEEE Trans. Knowl. Data Eng. – volume: 531 start-page: 151 year: 2023 end-page: 162 ident: b5 article-title: Bidirectional spatial–temporal traffic data imputation via graph attention recurrent neural network publication-title: Neurocomputing – volume: 53 start-page: 19372 year: 2023 end-page: 19383 ident: b23 article-title: MAPredRNN: multi-attention predictive RNN for traffic flow prediction by dynamic spatio-temporal data fusion publication-title: Appl. Intell. – volume: 504 start-page: 202 year: 2019 end-page: 220 ident: b4 article-title: Driving preference analysis and electricity pricing strategy comparison for electric vehicles in smart city publication-title: Inform. Sci. – volume: 102 year: 2020 ident: b35 article-title: Short-term traffic flow prediction based on faded memory Kalman filter fusing data from connected vehicles and bluetooth sensors publication-title: Simul. Model. Pract. Theory – volume: 17 start-page: 2802 year: 2020 end-page: 2812 ident: b28 article-title: Variational graph neural networks for road traffic prediction in intelligent transportation systems publication-title: IEEE Trans. Ind. Inform. – volume: 24 start-page: 8727 year: 2023 end-page: 8737 ident: b29 article-title: Graph attention network with spatial-temporal clustering for traffic flow forecasting in intelligent transportation system publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 21 start-page: 3848 year: 2019 end-page: 3858 ident: b41 article-title: T-gcn: A temporal graph convolutional network for traffic prediction publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 158 start-page: 323 year: 2024 end-page: 332 ident: b13 article-title: Dynamic multi-scale spatial–temporal graph convolutional network for traffic flow prediction publication-title: Future Gener. Comput. Syst. – start-page: 1 year: 2019 end-page: 5 ident: b8 article-title: A review on traffic prediction methods for intelligent transportation system in smart cities publication-title: 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics – start-page: 1305 year: 2022 end-page: 1310 ident: b27 article-title: Higher-order masked graph neural networks for traffic flow prediction publication-title: 2022 IEEE International Conference on Data Mining – year: 2013 ident: b53 article-title: Efficient estimation of word representations in vector space – volume: 121 year: 2023 ident: b22 article-title: Long-term traffic flow forecasting using a hybrid CNN-BiLSTM model publication-title: Eng. Appl. Artif. Intell. – volume: 128 year: 2022 ident: b46 article-title: Causal GraphSAGE: A robust graph method for classification based on causal sampling publication-title: Pattern Recognit. – volume: 1857 start-page: 74 year: 2003 end-page: 84 ident: b33 article-title: Forecasting traffic flow conditions in an urban network: Comparison of multivariate and univariate approaches publication-title: Transp. Res. Rec. – volume: 26 year: 2013 ident: b55 article-title: Distributed representations of words and phrases and their compositionality publication-title: Adv. Neural Inf. Process. Syst. – volume: 43 start-page: 50 year: 2014 end-page: 64 ident: b34 article-title: Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification publication-title: Transp. Res. C – volume: 23 start-page: 311 year: 2012 end-page: 325 ident: b49 article-title: Automatic license plate recognition (ALPR): A state-of-the-art review publication-title: IEEE Trans. Circuits Syst. Video Technol. – year: 2016 ident: b58 article-title: Semi-supervised classification with graph convolutional networks – volume: 249 year: 2022 ident: 10.1016/j.neucom.2024.129193_b32 article-title: TFGAN: Traffic forecasting using generative adversarial network with multi-graph convolutional network publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.108990 – volume: 23 start-page: 1755 issue: 3 year: 2020 ident: 10.1016/j.neucom.2024.129193_b51 article-title: GraphSAGE-based traffic speed forecasting for segment network with sparse data publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3026025 – volume: 14 start-page: 4200 issue: 9 year: 2018 ident: 10.1016/j.neucom.2024.129193_b1 article-title: Design of distributed cyber–physical systems for connected and automated vehicles with implementing methodologies publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2018.2805910 – volume: 20 start-page: 3212 issue: 9 year: 2018 ident: 10.1016/j.neucom.2024.129193_b19 article-title: A unified spatio-temporal model for short-term traffic flow prediction publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2018.2873137 – start-page: 3634 year: 2018 ident: 10.1016/j.neucom.2024.129193_b44 article-title: Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting – volume: 171 start-page: 251 year: 2024 ident: 10.1016/j.neucom.2024.129193_b12 article-title: GT-LSTM: A spatio-temporal ensemble network for traffic flow prediction publication-title: Neural Netw. doi: 10.1016/j.neunet.2023.12.016 – volume: 30 year: 2017 ident: 10.1016/j.neucom.2024.129193_b57 article-title: Inductive representation learning on large graphs publication-title: Adv. Neural Inf. Process. Syst. – volume: 22 start-page: 3337 issue: 6 year: 2020 ident: 10.1016/j.neucom.2024.129193_b42 article-title: Temporal multi-graph convolutional network for traffic flow prediction publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.2983763 – volume: 247 start-page: 31 year: 2017 ident: 10.1016/j.neucom.2024.129193_b20 article-title: δ-Agree AdaBoost stacked autoencoder for short-term traffic flow forecasting publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.03.049 – volume: 53 year: 2022 ident: 10.1016/j.neucom.2024.129193_b3 article-title: A deep spatio-temporal meta-learning model for urban traffic revitalization index prediction in the COVID-19 pandemic publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2022.101678 – volume: 52 start-page: 2763 issue: 3 year: 2022 ident: 10.1016/j.neucom.2024.129193_b26 article-title: Spatial-temporal graph neural network for traffic forecasting: An overview and open research issues publication-title: Appl. Intell. doi: 10.1007/s10489-021-02587-w – volume: 129 start-page: 664 issue: 6 year: 2003 ident: 10.1016/j.neucom.2024.129193_b18 article-title: Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results publication-title: J. Transp. Eng. doi: 10.1061/(ASCE)0733-947X(2003)129:6(664) – volume: 1857 start-page: 74 issue: 1 year: 2003 ident: 10.1016/j.neucom.2024.129193_b33 article-title: Forecasting traffic flow conditions in an urban network: Comparison of multivariate and univariate approaches publication-title: Transp. Res. Rec. doi: 10.3141/1857-09 – volume: 26 year: 2013 ident: 10.1016/j.neucom.2024.129193_b55 article-title: Distributed representations of words and phrases and their compositionality publication-title: Adv. Neural Inf. Process. Syst. – volume: 33 start-page: 922 issue: 01 year: 2019 ident: 10.1016/j.neucom.2024.129193_b45 article-title: Attention based spatial-temporal graph convolutional networks for traffic flow forecasting publication-title: Proc. AAAI Conf. Artif. Intell. – volume: 23 start-page: 311 issue: 2 year: 2012 ident: 10.1016/j.neucom.2024.129193_b49 article-title: Automatic license plate recognition (ALPR): A state-of-the-art review publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2012.2203741 – volume: 207 year: 2022 ident: 10.1016/j.neucom.2024.129193_b25 article-title: Graph neural network for traffic forecasting: A survey publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117921 – volume: 21 start-page: 3848 issue: 9 year: 2019 ident: 10.1016/j.neucom.2024.129193_b41 article-title: T-gcn: A temporal graph convolutional network for traffic prediction publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2019.2935152 – year: 2016 ident: 10.1016/j.neucom.2024.129193_b58 – volume: 33 start-page: 2776 issue: 6 year: 2019 ident: 10.1016/j.neucom.2024.129193_b40 article-title: Subgraph networks with application to structural feature space expansion publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2019.2957755 – volume: 7 start-page: 124 issue: 1 year: 2006 ident: 10.1016/j.neucom.2024.129193_b15 article-title: A Bayesian network approach to traffic flow forecasting publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2006.869623 – start-page: 1 year: 2019 ident: 10.1016/j.neucom.2024.129193_b8 article-title: A review on traffic prediction methods for intelligent transportation system in smart cities – year: 2013 ident: 10.1016/j.neucom.2024.129193_b53 – volume: 24 start-page: 11210 issue: 10 year: 2023 ident: 10.1016/j.neucom.2024.129193_b10 article-title: GraphSAGE-based dynamic spatial–temporal graph convolutional network for traffic prediction publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2023.3279929 – volume: 24 start-page: 736 issue: 3 year: 2020 ident: 10.1016/j.neucom.2024.129193_b30 article-title: Traffic transformer: Capturing the continuity and periodicity of time series for traffic forecasting publication-title: Trans. GIS doi: 10.1111/tgis.12644 – volume: 23 start-page: 16137 issue: 9 year: 2022 ident: 10.1016/j.neucom.2024.129193_b14 article-title: Hierarchical traffic flow prediction based on spatial-temporal graph convolutional network publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3148105 – volume: 158 start-page: 323 year: 2024 ident: 10.1016/j.neucom.2024.129193_b13 article-title: Dynamic multi-scale spatial–temporal graph convolutional network for traffic flow prediction publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2024.04.052 – volume: 24 start-page: 8727 issue: 8 year: 2023 ident: 10.1016/j.neucom.2024.129193_b29 article-title: Graph attention network with spatial-temporal clustering for traffic flow forecasting in intelligent transportation system publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3208952 – volume: 9 start-page: 11264 year: 2021 ident: 10.1016/j.neucom.2024.129193_b38 article-title: A hybrid deep learning framework for long-term traffic flow prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3050836 – volume: 14 start-page: 159 issue: 3 year: 1995 ident: 10.1016/j.neucom.2024.129193_b16 article-title: Vector auto regression modeling and forecasting publication-title: J. Forecast. doi: 10.1002/for.3980140302 – volume: 24 start-page: 125 issue: 2 year: 2020 ident: 10.1016/j.neucom.2024.129193_b21 article-title: Multi-step-ahead traffic speed forecasting using multi-output gradient boosting regression tree publication-title: J. Intell. Transp. Syst. doi: 10.1080/15472450.2019.1582950 – volume: 92 start-page: 93 year: 2023 ident: 10.1016/j.neucom.2024.129193_b24 article-title: Hybrid deep learning models for traffic prediction in large-scale road networks publication-title: Inf. Fusion doi: 10.1016/j.inffus.2022.11.019 – volume: 43 start-page: 50 year: 2014 ident: 10.1016/j.neucom.2024.129193_b34 article-title: Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification publication-title: Transp. Res. C doi: 10.1016/j.trc.2014.02.006 – volume: 108 start-page: 12 year: 2019 ident: 10.1016/j.neucom.2024.129193_b43 article-title: An effective spatial-temporal attention based neural network for traffic flow prediction publication-title: Transp. Res. C doi: 10.1016/j.trc.2019.09.008 – volume: 121 year: 2023 ident: 10.1016/j.neucom.2024.129193_b22 article-title: Long-term traffic flow forecasting using a hybrid CNN-BiLSTM model publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106041 – volume: 65 start-page: 9508 issue: 12 year: 2016 ident: 10.1016/j.neucom.2024.129193_b37 article-title: Improving traffic flow prediction with weather information in connected cars: A deep learning approach publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2016.2585575 – volume: 53 start-page: 19372 issue: 16 year: 2023 ident: 10.1016/j.neucom.2024.129193_b23 article-title: MAPredRNN: multi-attention predictive RNN for traffic flow prediction by dynamic spatio-temporal data fusion publication-title: Appl. Intell. doi: 10.1007/s10489-023-04494-8 – volume: 28 start-page: 3256 issue: 12 year: 2020 ident: 10.1016/j.neucom.2024.129193_b48 article-title: T2F-LSTM method for long-term traffic volume prediction publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2020.2986995 – volume: 117 start-page: 328 year: 2021 ident: 10.1016/j.neucom.2024.129193_b9 article-title: Privacy-preserving blockchain-based federated learning for traffic flow prediction publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2020.12.003 – volume: 102 year: 2020 ident: 10.1016/j.neucom.2024.129193_b35 article-title: Short-term traffic flow prediction based on faded memory Kalman filter fusing data from connected vehicles and bluetooth sensors publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2019.102025 – volume: 128 year: 2022 ident: 10.1016/j.neucom.2024.129193_b46 article-title: Causal GraphSAGE: A robust graph method for classification based on causal sampling publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2022.108696 – volume: 504 start-page: 202 year: 2019 ident: 10.1016/j.neucom.2024.129193_b4 article-title: Driving preference analysis and electricity pricing strategy comparison for electric vehicles in smart city publication-title: Inform. Sci. doi: 10.1016/j.ins.2019.07.039 – volume: 445 start-page: 298 year: 2021 ident: 10.1016/j.neucom.2024.129193_b7 article-title: Ast-gnn: An attention-based spatio-temporal graph neural network for interaction-aware pedestrian trajectory prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.024 – start-page: 837 year: 2022 ident: 10.1016/j.neucom.2024.129193_b47 article-title: GraphSAGE-based generative adversarial network for short-term traffic speed prediction problem – volume: 9 start-page: 1516 issue: 3 year: 2022 ident: 10.1016/j.neucom.2024.129193_b39 article-title: AvgNet: Adaptive visibility graph neural network and its application in modulation classification publication-title: IEEE Trans. Netw. Sci. Eng. doi: 10.1109/TNSE.2022.3146836 – volume: 9 start-page: 35973 year: 2021 ident: 10.1016/j.neucom.2024.129193_b31 article-title: AST-GCN: Attribute-augmented spatiotemporal graph convolutional network for traffic forecasting publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3062114 – start-page: 6573 year: 2022 ident: 10.1016/j.neucom.2024.129193_b6 article-title: Whose track is it anyway? improving robustness to tracking errors with affinity-based trajectory prediction – volume: 18 start-page: 2811 issue: 4 year: 2021 ident: 10.1016/j.neucom.2024.129193_b36 article-title: Digital twin-assisted real-time traffic data prediction method for 5G-enabled internet of vehicles publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2021.3083596 – volume: 55 year: 2023 ident: 10.1016/j.neucom.2024.129193_b2 article-title: A digital twin in transportation: Real-time synergy of traffic data streams and simulation for virtualizing motorway dynamics publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2022.101858 – volume: 531 start-page: 151 year: 2023 ident: 10.1016/j.neucom.2024.129193_b5 article-title: Bidirectional spatial–temporal traffic data imputation via graph attention recurrent neural network publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.02.017 – volume: 17 start-page: 2802 issue: 4 year: 2020 ident: 10.1016/j.neucom.2024.129193_b28 article-title: Variational graph neural networks for road traffic prediction in intelligent transportation systems publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2020.3009280 – start-page: 1649 year: 2009 ident: 10.1016/j.neucom.2024.129193_b17 article-title: Road traffic flow prediction with a time-oriented ARIMA model – start-page: 614 year: 2019 ident: 10.1016/j.neucom.2024.129193_b56 article-title: NSCaching: simple and efficient negative sampling for knowledge graph embedding – start-page: 1305 year: 2022 ident: 10.1016/j.neucom.2024.129193_b27 article-title: Higher-order masked graph neural networks for traffic flow prediction – start-page: 890 year: 2017 ident: 10.1016/j.neucom.2024.129193_b54 article-title: Service2vec: A vector representation for web services – volume: 556 year: 2023 ident: 10.1016/j.neucom.2024.129193_b11 article-title: Temporal metrics based aggregated graph convolution network for traffic forecasting publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.126662 – volume: 13 start-page: 1727 issue: 4 year: 2012 ident: 10.1016/j.neucom.2024.129193_b52 article-title: Short-term traffic speed forecasting based on data recorded at irregular intervals publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2012.2203122 – volume: 82 start-page: 25155 issue: 16 year: 2023 ident: 10.1016/j.neucom.2024.129193_b50 article-title: A vision-based real-time traffic flow monitoring system for road intersections publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-023-14418-w |
| SSID | ssj0017129 |
| Score | 2.4925365 |
| Snippet | Existing studies on traffic flow prediction primarily rely on on-board devices to collect vehicle trajectory data, which can potentially infringe upon the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 129193 |
| SubjectTerms | Graph neural network Multi-factor Representation learning Spatio-temporal modeling Traffic flow prediction |
| Title | Multi-factor embedding GNN-based traffic flow prediction considering intersection similarity |
| URI | https://dx.doi.org/10.1016/j.neucom.2024.129193 |
| Volume | 620 |
| WOSCitedRecordID | wos001403350900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017129 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZZuoe97NJttLsUPeytqNSObVmPYbS7UMLY2pGNMWNJx61L4pQ06fLzd3TxpU3ZDfZigizJRudD-XR8zncIeRWrPIRCpAyiNGGRSvZZCkXMVJRryCMJoS0H9PmIj0bpeCw-9Hrf61yYqwmvqnS1Ehf_1dTYhsY2qbN_Ye5mUmzA32h0vKLZ8fpHhrcptczV0dmFqQRt81bejEbM_GVpUxXC6EbsFpPZD6MRoEtXLlz52p0uy8WoboK7cVlOSzwAl4trn4CtrIeyRSG8u2E4NaoL2kCscS98PfMxvx-X5XxZtiiywDLh-_msdeq7rofQ9MOVtU1fyhW-yWnXRxHGbZCWc5ytJc84DyR2RHp5bTNObGrc-sbufAznexUsTZQPPiTaQ6oSuPKKNySzP5mpzcxIV4zgGL9DNkIei7RPNobvDsbvm-9MPAidGqN_lTq50kYArj_rdvLSISTHD8l9f5KgQ4eAR6QH1SZ5UFfpoH7Tfky-dQFBG0DQBhDUA4IaQNAWELQDCNoFBG0B8YScHB4cv37LfE0NpvBwuGBIQFUw0APQgSz0IFBByBVIHkZgZI4SXSBDFrmIhUYak_NUaqmSQhU4MFY48CnpV7MKtghNBOBUEIocaT8yacFjqSQgh92XiYJgmwzqxcqUF5w3dU8mWR1ZeJ65Jc7MEmduibcJa0ZdOMGV3_TntR0yTxodGcwQOr8c-eyfRz4n91qUvyD9xXwJL8lddbUoL-c7HmM_AU_NltE |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-factor+embedding+GNN-based+traffic+flow+prediction+considering+intersection+similarity&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Zhong%2C+Ruirui&rft.au=Hu%2C+Bingtao&rft.au=Wang%2C+Fei&rft.au=Feng%2C+Yixiong&rft.date=2025-03-01&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.volume=620&rft_id=info:doi/10.1016%2Fj.neucom.2024.129193&rft.externalDocID=S0925231224019647 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |