Multi-factor embedding GNN-based traffic flow prediction considering intersection similarity

Existing studies on traffic flow prediction primarily rely on on-board devices to collect vehicle trajectory data, which can potentially infringe upon the privacy of users and limit the applicability of the method. Additionally, traffic flow prediction remains challenging due to the complex spatial...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neurocomputing (Amsterdam) Ročník 620; s. 129193
Hlavní autori: Zhong, Ruirui, Hu, Bingtao, Wang, Fei, Feng, Yixiong, Li, Zhiwu, Song, Xiuju, Wang, Yong, Lou, Shanhe, Tan, Jianrong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.03.2025
Predmet:
ISSN:0925-2312
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Existing studies on traffic flow prediction primarily rely on on-board devices to collect vehicle trajectory data, which can potentially infringe upon the privacy of users and limit the applicability of the method. Additionally, traffic flow prediction remains challenging due to the complex spatial and temporal dependencies within real-world traffic networks. To address these limitations, this paper introduces a framework for analyzing discrete vehicle trajectory data at urban intersections. By incorporating various external physical factors into traffic flow prediction, this framework derives embedding vectors from vehicle trajectory sequences and road network topology, modeling their spatio-temporal dependencies using Skip-Gram and GraphSAGE, respectively. Additionally, the intersection similarity is introduced to capture and integrate traffic flow patterns between the target intersection and similar intersections. A Spatio-Temporal Graph Convolutional Neural Network (ST-GCN) algorithm, which combines Graph Convolutional Networks (GCN) with Long Short-Term Memory (LSTM), is developed to achieve precise traffic flow prediction. Extensive experiments on a real-world traffic flow dataset from Qingdao, China, validate that the proposed method outperforms state-of-the-art baseline methods.
AbstractList Existing studies on traffic flow prediction primarily rely on on-board devices to collect vehicle trajectory data, which can potentially infringe upon the privacy of users and limit the applicability of the method. Additionally, traffic flow prediction remains challenging due to the complex spatial and temporal dependencies within real-world traffic networks. To address these limitations, this paper introduces a framework for analyzing discrete vehicle trajectory data at urban intersections. By incorporating various external physical factors into traffic flow prediction, this framework derives embedding vectors from vehicle trajectory sequences and road network topology, modeling their spatio-temporal dependencies using Skip-Gram and GraphSAGE, respectively. Additionally, the intersection similarity is introduced to capture and integrate traffic flow patterns between the target intersection and similar intersections. A Spatio-Temporal Graph Convolutional Neural Network (ST-GCN) algorithm, which combines Graph Convolutional Networks (GCN) with Long Short-Term Memory (LSTM), is developed to achieve precise traffic flow prediction. Extensive experiments on a real-world traffic flow dataset from Qingdao, China, validate that the proposed method outperforms state-of-the-art baseline methods.
ArticleNumber 129193
Author Hu, Bingtao
Wang, Fei
Song, Xiuju
Li, Zhiwu
Zhong, Ruirui
Tan, Jianrong
Feng, Yixiong
Lou, Shanhe
Wang, Yong
Author_xml – sequence: 1
  givenname: Ruirui
  orcidid: 0000-0002-6761-2744
  surname: Zhong
  fullname: Zhong, Ruirui
  organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
– sequence: 2
  givenname: Bingtao
  orcidid: 0000-0002-4939-8115
  surname: Hu
  fullname: Hu, Bingtao
  email: hubingtao@zju.edu.cn
  organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
– sequence: 3
  givenname: Fei
  surname: Wang
  fullname: Wang, Fei
  organization: College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266000, China
– sequence: 4
  givenname: Yixiong
  surname: Feng
  fullname: Feng, Yixiong
  organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
– sequence: 5
  givenname: Zhiwu
  orcidid: 0000-0003-1955-7661
  surname: Li
  fullname: Li, Zhiwu
  organization: Institute of Systems Engineering, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
– sequence: 6
  givenname: Xiuju
  surname: Song
  fullname: Song, Xiuju
  organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
– sequence: 7
  givenname: Yong
  surname: Wang
  fullname: Wang, Yong
  organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
– sequence: 8
  givenname: Shanhe
  surname: Lou
  fullname: Lou, Shanhe
  organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
– sequence: 9
  givenname: Jianrong
  surname: Tan
  fullname: Tan, Jianrong
  organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
BookMark eNqFkLFOwzAURT0UibbwBwz5gYTYTpOGAQlVUJBKWWBDshz7Gb0qsSvbBfXvcRUmBpjecN-50j0zMrHOAiFXtCxoSevrXWHhoNxQsJJVBWUtbfmETMuWLXLGKTsnsxB2ZUmblE3J-_Ohj5gbqaLzGQwdaI32I1tvt3knA-gsemkMqsz07ivbe9CoIjqbKWcDavCnb7QRfIAxCDhgLz3G4wU5M7IPcPlz5-Tt4f519ZhvXtZPq7tNrnhZx7yuuKJcc9C0M5pTRVmjoGtYBbxaslobVletbBetrpulbJad7lRtlEngQiVwTqqxV3kXggcj9h4H6Y-CluJkRezEaEWcrIjRSsJufmEKozxtSJux_w--HWFIwz4RvAgKwarkxycRQjv8u-Abru6G8g
CitedBy_id crossref_primary_10_1016_j_rineng_2025_107113
crossref_primary_10_3390_s25165127
crossref_primary_10_1007_s11227_025_07354_z
crossref_primary_10_1016_j_eswa_2025_126937
crossref_primary_10_1016_j_neucom_2025_130117
crossref_primary_10_1016_j_scs_2025_106407
Cites_doi 10.1016/j.knosys.2022.108990
10.1109/TITS.2020.3026025
10.1109/TII.2018.2805910
10.1109/TITS.2018.2873137
10.1016/j.neunet.2023.12.016
10.1109/TITS.2020.2983763
10.1016/j.neucom.2017.03.049
10.1016/j.aei.2022.101678
10.1007/s10489-021-02587-w
10.1061/(ASCE)0733-947X(2003)129:6(664)
10.3141/1857-09
10.1109/TCSVT.2012.2203741
10.1016/j.eswa.2022.117921
10.1109/TITS.2019.2935152
10.1109/TKDE.2019.2957755
10.1109/TITS.2006.869623
10.1109/TITS.2023.3279929
10.1111/tgis.12644
10.1109/TITS.2022.3148105
10.1016/j.future.2024.04.052
10.1109/TITS.2022.3208952
10.1109/ACCESS.2021.3050836
10.1002/for.3980140302
10.1080/15472450.2019.1582950
10.1016/j.inffus.2022.11.019
10.1016/j.trc.2014.02.006
10.1016/j.trc.2019.09.008
10.1016/j.engappai.2023.106041
10.1109/TVT.2016.2585575
10.1007/s10489-023-04494-8
10.1109/TFUZZ.2020.2986995
10.1016/j.future.2020.12.003
10.1016/j.simpat.2019.102025
10.1016/j.patcog.2022.108696
10.1016/j.ins.2019.07.039
10.1016/j.neucom.2021.03.024
10.1109/TNSE.2022.3146836
10.1109/ACCESS.2021.3062114
10.1109/TII.2021.3083596
10.1016/j.aei.2022.101858
10.1016/j.neucom.2023.02.017
10.1109/TII.2020.3009280
10.1016/j.neucom.2023.126662
10.1109/TITS.2012.2203122
10.1007/s11042-023-14418-w
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2024.129193
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_neucom_2024_129193
S0925231224019647
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
LG9
M41
R2-
SBC
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-643c13d3ed1bfd31c127ceb724e34826df2649a959d678a78bdbc6fcf6435c3d3
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001403350900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 06:34:04 EST 2025
Tue Nov 18 21:16:28 EST 2025
Sat Feb 01 16:08:13 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Representation learning
Traffic flow prediction
Multi-factor
Graph neural network
Spatio-temporal modeling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-643c13d3ed1bfd31c127ceb724e34826df2649a959d678a78bdbc6fcf6435c3d3
ORCID 0000-0002-6761-2744
0000-0003-1955-7661
0000-0002-4939-8115
ParticipantIDs crossref_primary_10_1016_j_neucom_2024_129193
crossref_citationtrail_10_1016_j_neucom_2024_129193
elsevier_sciencedirect_doi_10_1016_j_neucom_2024_129193
PublicationCentury 2000
PublicationDate 2025-03-01
2025-03-00
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yuan, Liu, Lou (b27) 2022
Mikolov, Sutskever, Chen, Corrado, Dean (b55) 2013; 26
Weng, Ivanovic, Kitani, Pavone (b6) 2022
Zhu, Wang, Tao, Deng, Zhao, Li (b31) 2021; 9
Guo, Lin, Feng, Song, Wan (b45) 2019; 33
Luo, Zheng, Wang, Tao, Jiang (b12) 2024; 171
Zhang, Yao, Shao, Chen (b56) 2019
Zhang, Zhang, Zheng, Perry (b54) 2017
Zhao, Song, Zhang, Liu, Wang, Lin, Deng, Li (b41) 2019; 21
Khaled, Elsir, Shen (b32) 2022; 249
Zhang, Shan, Little (b46) 2022; 128
Zhou, Yang, Zhong, Chen, Zhang (b28) 2020; 17
Li, Hu, Liang (b48) 2020; 28
Huang, Jiang, Tang (b23) 2023; 53
Méndez, Merayo, Núñez (b22) 2023; 121
Zhan, Zhang, Szeto, Chen (b21) 2020; 24
Hu, Fan, Zeng, Hang, Wang, Qi, Bhuiyan (b36) 2021; 18
Azimjonov, Özmen, Varan (b50) 2023; 82
Cai, Janowicz, Mai, Yan, Zhu (b30) 2020; 24
Hu, Feng, Sun, Gao, Tan (b4) 2019; 504
Liu, Jiang, Zhou, Li, Kwan (b10) 2023; 24
Zheng, Chai, Duanmu, Katos (b24) 2023; 92
Hamilton, Ying, Leskovec (b57) 2017; 30
Kušić, Schumann, Ivanjko (b2) 2023; 55
Liu, Ong, Chen (b51) 2020; 23
Ye, Szeto, Wong (b52) 2012; 13
Qi, Hossain, Nie, Li (b9) 2021; 117
Kipf, Welling (b58) 2016
Bui, Cho, Yi (b26) 2022; 52
Williams, Hoel (b18) 2003; 129
Guo, Huang, Williams (b34) 2014; 43
Xuan, Zhou, Qiu, Chen, Xu, Zheng, Yang (b39) 2022; 9
Mikolov, Chen, Corrado, Dean (b53) 2013
Chen, Qi, Wang, Chen, Zhang, Shi (b11) 2023; 556
Sun, Zhang, Yu (b15) 2006; 7
Zhou, Ren, Xia, Fan, Yang, Huang (b7) 2021; 445
Chen, Shu, Zhou, Zheng, Kawai, Fueda, Yan, Liang, Wang (b29) 2023; 24
Li, Chai, Ma, Wang (b38) 2021; 9
Holden (b16) 1995; 14
Jiang, Luo (b25) 2022; 207
Emami, Sarvi, Bagloee (b35) 2020; 102
Feng, Hu, Hao, Gao, Li, Tan (b1) 2018; 14
Lv, Hong, Chen, Chen, Zhu, Ji (b42) 2020; 22
Koesdwiady, Soua, Karray (b37) 2016; 65
Wang, Lv, Sheng, Sun, Zhao (b3) 2022; 53
Do, Vu, Vo, Liu, Phung (b43) 2019; 108
Duan, Mao, Liang, Zhang (b19) 2018; 20
Zhao, Luo, Yao, Wang, Hu, Su (b47) 2022
Xuan, Wang, Zhao, Yuan, Fu, Ruan, Chen (b40) 2019; 33
Wang, Zhang, Cheng, Yang (b14) 2022; 23
Dong, Jia, Sun, Li, Qin (b17) 2009
Chen, Chen (b8) 2019
Du, Ibrahim, Shehata, Badawy (b49) 2012; 23
Shen, Zhou, Zhang, Liu, Liu, Kong (b5) 2023; 531
Hu, Zhang, Xie, Liang, Li, Zomaya (b13) 2024; 158
Kamarianakis, Prastacos (b33) 2003; 1857
Yu, Yin, Zhu (b44) 2018
Zhou, Han, Xu, Lin, Han, Huang, Qin (b20) 2017; 247
Kušić (10.1016/j.neucom.2024.129193_b2) 2023; 55
Mikolov (10.1016/j.neucom.2024.129193_b55) 2013; 26
Huang (10.1016/j.neucom.2024.129193_b23) 2023; 53
Sun (10.1016/j.neucom.2024.129193_b15) 2006; 7
Zhou (10.1016/j.neucom.2024.129193_b7) 2021; 445
Kipf (10.1016/j.neucom.2024.129193_b58) 2016
Bui (10.1016/j.neucom.2024.129193_b26) 2022; 52
Holden (10.1016/j.neucom.2024.129193_b16) 1995; 14
Zhang (10.1016/j.neucom.2024.129193_b56) 2019
Wang (10.1016/j.neucom.2024.129193_b3) 2022; 53
Cai (10.1016/j.neucom.2024.129193_b30) 2020; 24
Hu (10.1016/j.neucom.2024.129193_b36) 2021; 18
Lv (10.1016/j.neucom.2024.129193_b42) 2020; 22
Zhou (10.1016/j.neucom.2024.129193_b28) 2020; 17
Chen (10.1016/j.neucom.2024.129193_b8) 2019
Shen (10.1016/j.neucom.2024.129193_b5) 2023; 531
Do (10.1016/j.neucom.2024.129193_b43) 2019; 108
Khaled (10.1016/j.neucom.2024.129193_b32) 2022; 249
Zhan (10.1016/j.neucom.2024.129193_b21) 2020; 24
Zhou (10.1016/j.neucom.2024.129193_b20) 2017; 247
Yu (10.1016/j.neucom.2024.129193_b44) 2018
Xuan (10.1016/j.neucom.2024.129193_b40) 2019; 33
Qi (10.1016/j.neucom.2024.129193_b9) 2021; 117
Koesdwiady (10.1016/j.neucom.2024.129193_b37) 2016; 65
Zhao (10.1016/j.neucom.2024.129193_b47) 2022
Ye (10.1016/j.neucom.2024.129193_b52) 2012; 13
Feng (10.1016/j.neucom.2024.129193_b1) 2018; 14
Chen (10.1016/j.neucom.2024.129193_b29) 2023; 24
Zheng (10.1016/j.neucom.2024.129193_b24) 2023; 92
Liu (10.1016/j.neucom.2024.129193_b10) 2023; 24
Mikolov (10.1016/j.neucom.2024.129193_b53) 2013
Hamilton (10.1016/j.neucom.2024.129193_b57) 2017; 30
Hu (10.1016/j.neucom.2024.129193_b13) 2024; 158
Zhao (10.1016/j.neucom.2024.129193_b41) 2019; 21
Li (10.1016/j.neucom.2024.129193_b48) 2020; 28
Chen (10.1016/j.neucom.2024.129193_b11) 2023; 556
Weng (10.1016/j.neucom.2024.129193_b6) 2022
Zhu (10.1016/j.neucom.2024.129193_b31) 2021; 9
Jiang (10.1016/j.neucom.2024.129193_b25) 2022; 207
Emami (10.1016/j.neucom.2024.129193_b35) 2020; 102
Kamarianakis (10.1016/j.neucom.2024.129193_b33) 2003; 1857
Hu (10.1016/j.neucom.2024.129193_b4) 2019; 504
Zhang (10.1016/j.neucom.2024.129193_b46) 2022; 128
Li (10.1016/j.neucom.2024.129193_b38) 2021; 9
Luo (10.1016/j.neucom.2024.129193_b12) 2024; 171
Yuan (10.1016/j.neucom.2024.129193_b27) 2022
Liu (10.1016/j.neucom.2024.129193_b51) 2020; 23
Wang (10.1016/j.neucom.2024.129193_b14) 2022; 23
Guo (10.1016/j.neucom.2024.129193_b45) 2019; 33
Williams (10.1016/j.neucom.2024.129193_b18) 2003; 129
Méndez (10.1016/j.neucom.2024.129193_b22) 2023; 121
Du (10.1016/j.neucom.2024.129193_b49) 2012; 23
Duan (10.1016/j.neucom.2024.129193_b19) 2018; 20
Guo (10.1016/j.neucom.2024.129193_b34) 2014; 43
Dong (10.1016/j.neucom.2024.129193_b17) 2009
Xuan (10.1016/j.neucom.2024.129193_b39) 2022; 9
Azimjonov (10.1016/j.neucom.2024.129193_b50) 2023; 82
Zhang (10.1016/j.neucom.2024.129193_b54) 2017
References_xml – volume: 556
  year: 2023
  ident: b11
  article-title: Temporal metrics based aggregated graph convolution network for traffic forecasting
  publication-title: Neurocomputing
– start-page: 1649
  year: 2009
  end-page: 1652
  ident: b17
  article-title: Road traffic flow prediction with a time-oriented ARIMA model
  publication-title: 2009 Fifth International Joint Conference on INC, IMS and IDC
– volume: 20
  start-page: 3212
  year: 2018
  end-page: 3223
  ident: b19
  article-title: A unified spatio-temporal model for short-term traffic flow prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 23
  start-page: 16137
  year: 2022
  end-page: 16147
  ident: b14
  article-title: Hierarchical traffic flow prediction based on spatial-temporal graph convolutional network
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 117
  start-page: 328
  year: 2021
  end-page: 337
  ident: b9
  article-title: Privacy-preserving blockchain-based federated learning for traffic flow prediction
  publication-title: Future Gener. Comput. Syst.
– volume: 249
  year: 2022
  ident: b32
  article-title: TFGAN: Traffic forecasting using generative adversarial network with multi-graph convolutional network
  publication-title: Knowl.-Based Syst.
– volume: 18
  start-page: 2811
  year: 2021
  end-page: 2819
  ident: b36
  article-title: Digital twin-assisted real-time traffic data prediction method for 5G-enabled internet of vehicles
  publication-title: IEEE Trans. Ind. Inform.
– volume: 108
  start-page: 12
  year: 2019
  end-page: 28
  ident: b43
  article-title: An effective spatial-temporal attention based neural network for traffic flow prediction
  publication-title: Transp. Res. C
– volume: 30
  year: 2017
  ident: b57
  article-title: Inductive representation learning on large graphs
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 890
  year: 2017
  end-page: 893
  ident: b54
  article-title: Service2vec: A vector representation for web services
  publication-title: 2017 Ieee International Conference on Web Services
– volume: 247
  start-page: 31
  year: 2017
  end-page: 38
  ident: b20
  article-title: -Agree AdaBoost stacked autoencoder for short-term traffic flow forecasting
  publication-title: Neurocomputing
– volume: 24
  start-page: 125
  year: 2020
  end-page: 141
  ident: b21
  article-title: Multi-step-ahead traffic speed forecasting using multi-output gradient boosting regression tree
  publication-title: J. Intell. Transp. Syst.
– volume: 28
  start-page: 3256
  year: 2020
  end-page: 3264
  ident: b48
  article-title: T2F-LSTM method for long-term traffic volume prediction
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 23
  start-page: 1755
  year: 2020
  end-page: 1766
  ident: b51
  article-title: GraphSAGE-based traffic speed forecasting for segment network with sparse data
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 14
  start-page: 159
  year: 1995
  end-page: 166
  ident: b16
  article-title: Vector auto regression modeling and forecasting
  publication-title: J. Forecast.
– volume: 9
  start-page: 11264
  year: 2021
  end-page: 11271
  ident: b38
  article-title: A hybrid deep learning framework for long-term traffic flow prediction
  publication-title: IEEE Access
– volume: 7
  start-page: 124
  year: 2006
  end-page: 132
  ident: b15
  article-title: A Bayesian network approach to traffic flow forecasting
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 837
  year: 2022
  end-page: 842
  ident: b47
  article-title: GraphSAGE-based generative adversarial network for short-term traffic speed prediction problem
  publication-title: 2022 17th International Conference on Control, Automation, Robotics and Vision
– volume: 445
  start-page: 298
  year: 2021
  end-page: 308
  ident: b7
  article-title: Ast-gnn: An attention-based spatio-temporal graph neural network for interaction-aware pedestrian trajectory prediction
  publication-title: Neurocomputing
– volume: 33
  start-page: 922
  year: 2019
  end-page: 929
  ident: b45
  article-title: Attention based spatial-temporal graph convolutional networks for traffic flow forecasting
  publication-title: Proc. AAAI Conf. Artif. Intell.
– volume: 207
  year: 2022
  ident: b25
  article-title: Graph neural network for traffic forecasting: A survey
  publication-title: Expert Syst. Appl.
– volume: 171
  start-page: 251
  year: 2024
  end-page: 262
  ident: b12
  article-title: GT-LSTM: A spatio-temporal ensemble network for traffic flow prediction
  publication-title: Neural Netw.
– volume: 14
  start-page: 4200
  year: 2018
  end-page: 4211
  ident: b1
  article-title: Design of distributed cyber–physical systems for connected and automated vehicles with implementing methodologies
  publication-title: IEEE Trans. Ind. Inform.
– volume: 24
  start-page: 11210
  year: 2023
  end-page: 11224
  ident: b10
  article-title: GraphSAGE-based dynamic spatial–temporal graph convolutional network for traffic prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 614
  year: 2019
  end-page: 625
  ident: b56
  article-title: NSCaching: simple and efficient negative sampling for knowledge graph embedding
  publication-title: 2019 IEEE 35th International Conference on Data Engineering
– volume: 9
  start-page: 1516
  year: 2022
  end-page: 1526
  ident: b39
  article-title: AvgNet: Adaptive visibility graph neural network and its application in modulation classification
  publication-title: IEEE Trans. Netw. Sci. Eng.
– volume: 52
  start-page: 2763
  year: 2022
  end-page: 2774
  ident: b26
  article-title: Spatial-temporal graph neural network for traffic forecasting: An overview and open research issues
  publication-title: Appl. Intell.
– volume: 65
  start-page: 9508
  year: 2016
  end-page: 9517
  ident: b37
  article-title: Improving traffic flow prediction with weather information in connected cars: A deep learning approach
  publication-title: IEEE Trans. Veh. Technol.
– volume: 22
  start-page: 3337
  year: 2020
  end-page: 3348
  ident: b42
  article-title: Temporal multi-graph convolutional network for traffic flow prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 53
  year: 2022
  ident: b3
  article-title: A deep spatio-temporal meta-learning model for urban traffic revitalization index prediction in the COVID-19 pandemic
  publication-title: Adv. Eng. Inform.
– volume: 55
  year: 2023
  ident: b2
  article-title: A digital twin in transportation: Real-time synergy of traffic data streams and simulation for virtualizing motorway dynamics
  publication-title: Adv. Eng. Inform.
– start-page: 6573
  year: 2022
  end-page: 6582
  ident: b6
  article-title: Whose track is it anyway? improving robustness to tracking errors with affinity-based trajectory prediction
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 3634
  year: 2018
  end-page: 3640
  ident: b44
  article-title: Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting
  publication-title: Proceedings of the 27th International Joint Conference on Artificial Intelligence
– volume: 24
  start-page: 736
  year: 2020
  end-page: 755
  ident: b30
  article-title: Traffic transformer: Capturing the continuity and periodicity of time series for traffic forecasting
  publication-title: Trans. GIS
– volume: 9
  start-page: 35973
  year: 2021
  end-page: 35983
  ident: b31
  article-title: AST-GCN: Attribute-augmented spatiotemporal graph convolutional network for traffic forecasting
  publication-title: IEEE Access
– volume: 13
  start-page: 1727
  year: 2012
  end-page: 1737
  ident: b52
  article-title: Short-term traffic speed forecasting based on data recorded at irregular intervals
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 129
  start-page: 664
  year: 2003
  end-page: 672
  ident: b18
  article-title: Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results
  publication-title: J. Transp. Eng.
– volume: 92
  start-page: 93
  year: 2023
  end-page: 114
  ident: b24
  article-title: Hybrid deep learning models for traffic prediction in large-scale road networks
  publication-title: Inf. Fusion
– volume: 82
  start-page: 25155
  year: 2023
  end-page: 25174
  ident: b50
  article-title: A vision-based real-time traffic flow monitoring system for road intersections
  publication-title: Multimedia Tools Appl.
– volume: 33
  start-page: 2776
  year: 2019
  end-page: 2789
  ident: b40
  article-title: Subgraph networks with application to structural feature space expansion
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 531
  start-page: 151
  year: 2023
  end-page: 162
  ident: b5
  article-title: Bidirectional spatial–temporal traffic data imputation via graph attention recurrent neural network
  publication-title: Neurocomputing
– volume: 53
  start-page: 19372
  year: 2023
  end-page: 19383
  ident: b23
  article-title: MAPredRNN: multi-attention predictive RNN for traffic flow prediction by dynamic spatio-temporal data fusion
  publication-title: Appl. Intell.
– volume: 504
  start-page: 202
  year: 2019
  end-page: 220
  ident: b4
  article-title: Driving preference analysis and electricity pricing strategy comparison for electric vehicles in smart city
  publication-title: Inform. Sci.
– volume: 102
  year: 2020
  ident: b35
  article-title: Short-term traffic flow prediction based on faded memory Kalman filter fusing data from connected vehicles and bluetooth sensors
  publication-title: Simul. Model. Pract. Theory
– volume: 17
  start-page: 2802
  year: 2020
  end-page: 2812
  ident: b28
  article-title: Variational graph neural networks for road traffic prediction in intelligent transportation systems
  publication-title: IEEE Trans. Ind. Inform.
– volume: 24
  start-page: 8727
  year: 2023
  end-page: 8737
  ident: b29
  article-title: Graph attention network with spatial-temporal clustering for traffic flow forecasting in intelligent transportation system
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 21
  start-page: 3848
  year: 2019
  end-page: 3858
  ident: b41
  article-title: T-gcn: A temporal graph convolutional network for traffic prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 158
  start-page: 323
  year: 2024
  end-page: 332
  ident: b13
  article-title: Dynamic multi-scale spatial–temporal graph convolutional network for traffic flow prediction
  publication-title: Future Gener. Comput. Syst.
– start-page: 1
  year: 2019
  end-page: 5
  ident: b8
  article-title: A review on traffic prediction methods for intelligent transportation system in smart cities
  publication-title: 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics
– start-page: 1305
  year: 2022
  end-page: 1310
  ident: b27
  article-title: Higher-order masked graph neural networks for traffic flow prediction
  publication-title: 2022 IEEE International Conference on Data Mining
– year: 2013
  ident: b53
  article-title: Efficient estimation of word representations in vector space
– volume: 121
  year: 2023
  ident: b22
  article-title: Long-term traffic flow forecasting using a hybrid CNN-BiLSTM model
  publication-title: Eng. Appl. Artif. Intell.
– volume: 128
  year: 2022
  ident: b46
  article-title: Causal GraphSAGE: A robust graph method for classification based on causal sampling
  publication-title: Pattern Recognit.
– volume: 1857
  start-page: 74
  year: 2003
  end-page: 84
  ident: b33
  article-title: Forecasting traffic flow conditions in an urban network: Comparison of multivariate and univariate approaches
  publication-title: Transp. Res. Rec.
– volume: 26
  year: 2013
  ident: b55
  article-title: Distributed representations of words and phrases and their compositionality
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 43
  start-page: 50
  year: 2014
  end-page: 64
  ident: b34
  article-title: Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification
  publication-title: Transp. Res. C
– volume: 23
  start-page: 311
  year: 2012
  end-page: 325
  ident: b49
  article-title: Automatic license plate recognition (ALPR): A state-of-the-art review
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– year: 2016
  ident: b58
  article-title: Semi-supervised classification with graph convolutional networks
– volume: 249
  year: 2022
  ident: 10.1016/j.neucom.2024.129193_b32
  article-title: TFGAN: Traffic forecasting using generative adversarial network with multi-graph convolutional network
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.108990
– volume: 23
  start-page: 1755
  issue: 3
  year: 2020
  ident: 10.1016/j.neucom.2024.129193_b51
  article-title: GraphSAGE-based traffic speed forecasting for segment network with sparse data
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.3026025
– volume: 14
  start-page: 4200
  issue: 9
  year: 2018
  ident: 10.1016/j.neucom.2024.129193_b1
  article-title: Design of distributed cyber–physical systems for connected and automated vehicles with implementing methodologies
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2018.2805910
– volume: 20
  start-page: 3212
  issue: 9
  year: 2018
  ident: 10.1016/j.neucom.2024.129193_b19
  article-title: A unified spatio-temporal model for short-term traffic flow prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2018.2873137
– start-page: 3634
  year: 2018
  ident: 10.1016/j.neucom.2024.129193_b44
  article-title: Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting
– volume: 171
  start-page: 251
  year: 2024
  ident: 10.1016/j.neucom.2024.129193_b12
  article-title: GT-LSTM: A spatio-temporal ensemble network for traffic flow prediction
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2023.12.016
– volume: 30
  year: 2017
  ident: 10.1016/j.neucom.2024.129193_b57
  article-title: Inductive representation learning on large graphs
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 22
  start-page: 3337
  issue: 6
  year: 2020
  ident: 10.1016/j.neucom.2024.129193_b42
  article-title: Temporal multi-graph convolutional network for traffic flow prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.2983763
– volume: 247
  start-page: 31
  year: 2017
  ident: 10.1016/j.neucom.2024.129193_b20
  article-title: δ-Agree AdaBoost stacked autoencoder for short-term traffic flow forecasting
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.03.049
– volume: 53
  year: 2022
  ident: 10.1016/j.neucom.2024.129193_b3
  article-title: A deep spatio-temporal meta-learning model for urban traffic revitalization index prediction in the COVID-19 pandemic
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2022.101678
– volume: 52
  start-page: 2763
  issue: 3
  year: 2022
  ident: 10.1016/j.neucom.2024.129193_b26
  article-title: Spatial-temporal graph neural network for traffic forecasting: An overview and open research issues
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-02587-w
– volume: 129
  start-page: 664
  issue: 6
  year: 2003
  ident: 10.1016/j.neucom.2024.129193_b18
  article-title: Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results
  publication-title: J. Transp. Eng.
  doi: 10.1061/(ASCE)0733-947X(2003)129:6(664)
– volume: 1857
  start-page: 74
  issue: 1
  year: 2003
  ident: 10.1016/j.neucom.2024.129193_b33
  article-title: Forecasting traffic flow conditions in an urban network: Comparison of multivariate and univariate approaches
  publication-title: Transp. Res. Rec.
  doi: 10.3141/1857-09
– volume: 26
  year: 2013
  ident: 10.1016/j.neucom.2024.129193_b55
  article-title: Distributed representations of words and phrases and their compositionality
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 33
  start-page: 922
  issue: 01
  year: 2019
  ident: 10.1016/j.neucom.2024.129193_b45
  article-title: Attention based spatial-temporal graph convolutional networks for traffic flow forecasting
  publication-title: Proc. AAAI Conf. Artif. Intell.
– volume: 23
  start-page: 311
  issue: 2
  year: 2012
  ident: 10.1016/j.neucom.2024.129193_b49
  article-title: Automatic license plate recognition (ALPR): A state-of-the-art review
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2012.2203741
– volume: 207
  year: 2022
  ident: 10.1016/j.neucom.2024.129193_b25
  article-title: Graph neural network for traffic forecasting: A survey
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117921
– volume: 21
  start-page: 3848
  issue: 9
  year: 2019
  ident: 10.1016/j.neucom.2024.129193_b41
  article-title: T-gcn: A temporal graph convolutional network for traffic prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2935152
– year: 2016
  ident: 10.1016/j.neucom.2024.129193_b58
– volume: 33
  start-page: 2776
  issue: 6
  year: 2019
  ident: 10.1016/j.neucom.2024.129193_b40
  article-title: Subgraph networks with application to structural feature space expansion
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2957755
– volume: 7
  start-page: 124
  issue: 1
  year: 2006
  ident: 10.1016/j.neucom.2024.129193_b15
  article-title: A Bayesian network approach to traffic flow forecasting
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2006.869623
– start-page: 1
  year: 2019
  ident: 10.1016/j.neucom.2024.129193_b8
  article-title: A review on traffic prediction methods for intelligent transportation system in smart cities
– year: 2013
  ident: 10.1016/j.neucom.2024.129193_b53
– volume: 24
  start-page: 11210
  issue: 10
  year: 2023
  ident: 10.1016/j.neucom.2024.129193_b10
  article-title: GraphSAGE-based dynamic spatial–temporal graph convolutional network for traffic prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2023.3279929
– volume: 24
  start-page: 736
  issue: 3
  year: 2020
  ident: 10.1016/j.neucom.2024.129193_b30
  article-title: Traffic transformer: Capturing the continuity and periodicity of time series for traffic forecasting
  publication-title: Trans. GIS
  doi: 10.1111/tgis.12644
– volume: 23
  start-page: 16137
  issue: 9
  year: 2022
  ident: 10.1016/j.neucom.2024.129193_b14
  article-title: Hierarchical traffic flow prediction based on spatial-temporal graph convolutional network
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2022.3148105
– volume: 158
  start-page: 323
  year: 2024
  ident: 10.1016/j.neucom.2024.129193_b13
  article-title: Dynamic multi-scale spatial–temporal graph convolutional network for traffic flow prediction
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2024.04.052
– volume: 24
  start-page: 8727
  issue: 8
  year: 2023
  ident: 10.1016/j.neucom.2024.129193_b29
  article-title: Graph attention network with spatial-temporal clustering for traffic flow forecasting in intelligent transportation system
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2022.3208952
– volume: 9
  start-page: 11264
  year: 2021
  ident: 10.1016/j.neucom.2024.129193_b38
  article-title: A hybrid deep learning framework for long-term traffic flow prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3050836
– volume: 14
  start-page: 159
  issue: 3
  year: 1995
  ident: 10.1016/j.neucom.2024.129193_b16
  article-title: Vector auto regression modeling and forecasting
  publication-title: J. Forecast.
  doi: 10.1002/for.3980140302
– volume: 24
  start-page: 125
  issue: 2
  year: 2020
  ident: 10.1016/j.neucom.2024.129193_b21
  article-title: Multi-step-ahead traffic speed forecasting using multi-output gradient boosting regression tree
  publication-title: J. Intell. Transp. Syst.
  doi: 10.1080/15472450.2019.1582950
– volume: 92
  start-page: 93
  year: 2023
  ident: 10.1016/j.neucom.2024.129193_b24
  article-title: Hybrid deep learning models for traffic prediction in large-scale road networks
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2022.11.019
– volume: 43
  start-page: 50
  year: 2014
  ident: 10.1016/j.neucom.2024.129193_b34
  article-title: Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2014.02.006
– volume: 108
  start-page: 12
  year: 2019
  ident: 10.1016/j.neucom.2024.129193_b43
  article-title: An effective spatial-temporal attention based neural network for traffic flow prediction
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2019.09.008
– volume: 121
  year: 2023
  ident: 10.1016/j.neucom.2024.129193_b22
  article-title: Long-term traffic flow forecasting using a hybrid CNN-BiLSTM model
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106041
– volume: 65
  start-page: 9508
  issue: 12
  year: 2016
  ident: 10.1016/j.neucom.2024.129193_b37
  article-title: Improving traffic flow prediction with weather information in connected cars: A deep learning approach
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2016.2585575
– volume: 53
  start-page: 19372
  issue: 16
  year: 2023
  ident: 10.1016/j.neucom.2024.129193_b23
  article-title: MAPredRNN: multi-attention predictive RNN for traffic flow prediction by dynamic spatio-temporal data fusion
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-023-04494-8
– volume: 28
  start-page: 3256
  issue: 12
  year: 2020
  ident: 10.1016/j.neucom.2024.129193_b48
  article-title: T2F-LSTM method for long-term traffic volume prediction
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2020.2986995
– volume: 117
  start-page: 328
  year: 2021
  ident: 10.1016/j.neucom.2024.129193_b9
  article-title: Privacy-preserving blockchain-based federated learning for traffic flow prediction
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.12.003
– volume: 102
  year: 2020
  ident: 10.1016/j.neucom.2024.129193_b35
  article-title: Short-term traffic flow prediction based on faded memory Kalman filter fusing data from connected vehicles and bluetooth sensors
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2019.102025
– volume: 128
  year: 2022
  ident: 10.1016/j.neucom.2024.129193_b46
  article-title: Causal GraphSAGE: A robust graph method for classification based on causal sampling
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2022.108696
– volume: 504
  start-page: 202
  year: 2019
  ident: 10.1016/j.neucom.2024.129193_b4
  article-title: Driving preference analysis and electricity pricing strategy comparison for electric vehicles in smart city
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.07.039
– volume: 445
  start-page: 298
  year: 2021
  ident: 10.1016/j.neucom.2024.129193_b7
  article-title: Ast-gnn: An attention-based spatio-temporal graph neural network for interaction-aware pedestrian trajectory prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.024
– start-page: 837
  year: 2022
  ident: 10.1016/j.neucom.2024.129193_b47
  article-title: GraphSAGE-based generative adversarial network for short-term traffic speed prediction problem
– volume: 9
  start-page: 1516
  issue: 3
  year: 2022
  ident: 10.1016/j.neucom.2024.129193_b39
  article-title: AvgNet: Adaptive visibility graph neural network and its application in modulation classification
  publication-title: IEEE Trans. Netw. Sci. Eng.
  doi: 10.1109/TNSE.2022.3146836
– volume: 9
  start-page: 35973
  year: 2021
  ident: 10.1016/j.neucom.2024.129193_b31
  article-title: AST-GCN: Attribute-augmented spatiotemporal graph convolutional network for traffic forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3062114
– start-page: 6573
  year: 2022
  ident: 10.1016/j.neucom.2024.129193_b6
  article-title: Whose track is it anyway? improving robustness to tracking errors with affinity-based trajectory prediction
– volume: 18
  start-page: 2811
  issue: 4
  year: 2021
  ident: 10.1016/j.neucom.2024.129193_b36
  article-title: Digital twin-assisted real-time traffic data prediction method for 5G-enabled internet of vehicles
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2021.3083596
– volume: 55
  year: 2023
  ident: 10.1016/j.neucom.2024.129193_b2
  article-title: A digital twin in transportation: Real-time synergy of traffic data streams and simulation for virtualizing motorway dynamics
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2022.101858
– volume: 531
  start-page: 151
  year: 2023
  ident: 10.1016/j.neucom.2024.129193_b5
  article-title: Bidirectional spatial–temporal traffic data imputation via graph attention recurrent neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.02.017
– volume: 17
  start-page: 2802
  issue: 4
  year: 2020
  ident: 10.1016/j.neucom.2024.129193_b28
  article-title: Variational graph neural networks for road traffic prediction in intelligent transportation systems
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2020.3009280
– start-page: 1649
  year: 2009
  ident: 10.1016/j.neucom.2024.129193_b17
  article-title: Road traffic flow prediction with a time-oriented ARIMA model
– start-page: 614
  year: 2019
  ident: 10.1016/j.neucom.2024.129193_b56
  article-title: NSCaching: simple and efficient negative sampling for knowledge graph embedding
– start-page: 1305
  year: 2022
  ident: 10.1016/j.neucom.2024.129193_b27
  article-title: Higher-order masked graph neural networks for traffic flow prediction
– start-page: 890
  year: 2017
  ident: 10.1016/j.neucom.2024.129193_b54
  article-title: Service2vec: A vector representation for web services
– volume: 556
  year: 2023
  ident: 10.1016/j.neucom.2024.129193_b11
  article-title: Temporal metrics based aggregated graph convolution network for traffic forecasting
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.126662
– volume: 13
  start-page: 1727
  issue: 4
  year: 2012
  ident: 10.1016/j.neucom.2024.129193_b52
  article-title: Short-term traffic speed forecasting based on data recorded at irregular intervals
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2012.2203122
– volume: 82
  start-page: 25155
  issue: 16
  year: 2023
  ident: 10.1016/j.neucom.2024.129193_b50
  article-title: A vision-based real-time traffic flow monitoring system for road intersections
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-023-14418-w
SSID ssj0017129
Score 2.4926107
Snippet Existing studies on traffic flow prediction primarily rely on on-board devices to collect vehicle trajectory data, which can potentially infringe upon the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 129193
SubjectTerms Graph neural network
Multi-factor
Representation learning
Spatio-temporal modeling
Traffic flow prediction
Title Multi-factor embedding GNN-based traffic flow prediction considering intersection similarity
URI https://dx.doi.org/10.1016/j.neucom.2024.129193
Volume 620
WOSCitedRecordID wos001403350900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017129
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JTxsxFLbSwKEX9groIh96Q0bxLHF8jCpoqVCEEEgBIY3irQxKJigkkAM_nuexZ0lBUA69jEYe22PN-_T8-c1bEPpuBLAO2YqIhg2AREpKIkTMiYatWIPWpFzmgcLHrNfr9Pv8pNF4LGJh7ocsyzrzOb_9r6KGNhC2DZ19h7jLSaEB7kHocAWxw_WfBJ-H1BJXR2dPj4RWedzKz16P2C1L2aoQNm_EnhmOH2yOAJW6cuHS1-50US4266Z2D-7SUQoH4HS68As4T-sh86IQ3tzQHdmsC8pCrDQvXF57n9_TWTqZpRWKcmBZ9_3BuDLqu66HuuwHXzZvukjnsJI_dRtFEFdOWoWxEdqASS7o3XbQqmlO4B3U1Up8ptSdfeFmP9Mz6-EDL4j2q-6LObT_2ttKj8PCme0mcbMkdpbEzfIBLQUs5p0mWuoeHfR_l3-hGA1crka_-iL0MvcPfL6al6lNja6craEVf87AXYePddTQ2QZaLWp4YK_SN9FVHS64hAsu4YI9XLCFC67ggmtwwXW44AouW-j88ODsxy_iK24QCUfHKQF6KmmoQq2oMCqkkgZMasGCSNskSG1lgD_zAY-5ApIzYB2hhGwbaWBgLGHgJ9TMxpneRlgzbugA9pPQiAhoq2jpFjUmaquYGx5GOygsPlYifTp6WxVlmLwmqh1EylG3Lh3LG_1ZIYfEU0pHFRMA16sjd9_5ps_oY4X8L6g5ncz0V7Qs76fp3eSbR9YTN2acqA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-factor+embedding+GNN-based+traffic+flow+prediction+considering+intersection+similarity&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Zhong%2C+Ruirui&rft.au=Hu%2C+Bingtao&rft.au=Wang%2C+Fei&rft.au=Feng%2C+Yixiong&rft.date=2025-03-01&rft.issn=0925-2312&rft.volume=620&rft.spage=129193&rft_id=info:doi/10.1016%2Fj.neucom.2024.129193&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2024_129193
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon