Map-Balance-Reduce: An improved parallel programming model for load balancing of MapReduce

With the advent of the era of big data, the demand of massive data processing applications is also growing. Currently, MapReduce is the most commonly used data processing programming model. However, in some data processing cases, it has some defects. MapReduce programming based on key/value pairs, m...

Full description

Saved in:
Bibliographic Details
Published in:Future generation computer systems Vol. 105; pp. 993 - 1001
Main Authors: Li, Jianjiang, Liu, Yajun, Pan, Jian, Zhang, Peng, Chen, Wei, Wang, Lizhe
Format: Journal Article
Language:English
Published: Elsevier B.V 01.04.2020
Subjects:
ISSN:0167-739X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract With the advent of the era of big data, the demand of massive data processing applications is also growing. Currently, MapReduce is the most commonly used data processing programming model. However, in some data processing cases, it has some defects. MapReduce programming based on key/value pairs, matches the output of the Map tasks that will be transported to Reduce task nodes. The data with same key can only be processed by a Reduce node. If the data corresponding to a particular key or several keys accounts for most of all data, the Reduce node task will generate unbalanced load. In view of this defect, this paper proposes a new parallel programming model—Map-Balance-Reduce (MBR) programming model. It runs on our improved Hadoop framework and can effectively process the special data with unbalanced keys. This paper is based on two different scheduling, the processing and self-adaption scheduling. These two scheduling are designed to achieve MBR programming model. The actual testing results show that compared with MapReduce programming model, the MBR programming model under Hadoop can achieve the improvement of 9.7% to 17.6% in efficiency when testing data distributes unevenly. Furthermore, when testing conventional even-distributed data, it will only bring 1.02% time cost. •A new programming of “Map-Balance-Reduce” is proposed.•New scheduling algorithms of preprocessing scheduling and self-adaption scheduling are designed.•The proposed work can efficiently process unevenly distributed data for MapReduce.
AbstractList With the advent of the era of big data, the demand of massive data processing applications is also growing. Currently, MapReduce is the most commonly used data processing programming model. However, in some data processing cases, it has some defects. MapReduce programming based on key/value pairs, matches the output of the Map tasks that will be transported to Reduce task nodes. The data with same key can only be processed by a Reduce node. If the data corresponding to a particular key or several keys accounts for most of all data, the Reduce node task will generate unbalanced load. In view of this defect, this paper proposes a new parallel programming model—Map-Balance-Reduce (MBR) programming model. It runs on our improved Hadoop framework and can effectively process the special data with unbalanced keys. This paper is based on two different scheduling, the processing and self-adaption scheduling. These two scheduling are designed to achieve MBR programming model. The actual testing results show that compared with MapReduce programming model, the MBR programming model under Hadoop can achieve the improvement of 9.7% to 17.6% in efficiency when testing data distributes unevenly. Furthermore, when testing conventional even-distributed data, it will only bring 1.02% time cost. •A new programming of “Map-Balance-Reduce” is proposed.•New scheduling algorithms of preprocessing scheduling and self-adaption scheduling are designed.•The proposed work can efficiently process unevenly distributed data for MapReduce.
Author Pan, Jian
Chen, Wei
Wang, Lizhe
Zhang, Peng
Li, Jianjiang
Liu, Yajun
Author_xml – sequence: 1
  givenname: Jianjiang
  surname: Li
  fullname: Li, Jianjiang
  organization: Department of Computer Science and Technology, University of Science and Technology Beijing, Beijing, 100083, PR China
– sequence: 2
  givenname: Yajun
  surname: Liu
  fullname: Liu, Yajun
  organization: Department of Computer Science and Technology, University of Science and Technology Beijing, Beijing, 100083, PR China
– sequence: 3
  givenname: Jian
  surname: Pan
  fullname: Pan, Jian
  organization: Department of Computer Science and Technology, University of Science and Technology Beijing, Beijing, 100083, PR China
– sequence: 4
  givenname: Peng
  surname: Zhang
  fullname: Zhang, Peng
  organization: Department of Computer Science and Technology, University of Science and Technology Beijing, Beijing, 100083, PR China
– sequence: 5
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  organization: Department of Computer Science and Technology, University of Science and Technology Beijing, Beijing, 100083, PR China
– sequence: 6
  givenname: Lizhe
  orcidid: 0000-0003-2766-0845
  surname: Wang
  fullname: Wang, Lizhe
  email: lizhe.wang@gmail.com
  organization: School of Computer Science, China University of Geosciences, Wuhan, 430074, PR China
BookMark eNqFkM1KAzEURrOoYKu-gYu8wIxJM03aLoRa_IOKIAriJtxJbkrKzGTITAu-vanjyoWuLrlfzgf3TMioCQ0ScslZzhmXV7vc7ft9xHzKuMqZyBkXIzJOkcqUWLyfkknX7RhLqeBj8vEEbXYDFTQGsxe0e4NLumqor9sYDmhpCxGqCiua3tsIde2bLa2DTRsXIq0CWFp-88cgOJoKh55zcuKg6vDiZ56Rt7vb1_VDtnm-f1yvNpkRTPaZFGhMKWUhjZvNrZQgUXLGBFMKZwiFVEbJeSHLKTDjrAQHRfqzmPKSWafEGSmGXhND10V0uo2-hvipOdNHJ3qnByf66EQzoZOThC1_Ycb30PvQ9BF89R98PcCYDjt4jLozHpND6yOaXtvg_y74AvudhWI
CitedBy_id crossref_primary_10_1016_j_ins_2018_11_007
crossref_primary_10_1186_s13677_019_0139_6
crossref_primary_10_3233_IDT_190363
crossref_primary_10_1007_s11227_023_05434_6
crossref_primary_10_1016_j_procs_2023_11_030
crossref_primary_10_1007_s11227_019_02855_0
crossref_primary_10_1007_s11227_023_05310_3
crossref_primary_10_1109_ACCESS_2023_3298049
crossref_primary_10_1007_s11036_021_01793_7
crossref_primary_10_1142_S0219649221500519
crossref_primary_10_1016_j_procs_2023_01_041
crossref_primary_10_1007_s11227_020_03279_x
crossref_primary_10_1007_s10489_022_03164_5
crossref_primary_10_1007_s11227_018_2391_9
crossref_primary_10_1109_ACCESS_2021_3133666
crossref_primary_10_1007_s11227_018_2578_0
crossref_primary_10_59717_j_xinn_life_2024_100079
crossref_primary_10_1002_cpe_7528
crossref_primary_10_1007_s10766_019_00627_0
crossref_primary_10_3390_math12243930
Cites_doi 10.1109/TIP.2016.2568752
10.1002/cpe.3642
10.1109/TIP.2016.2627801
10.1109/TIP.2015.2507942
10.1145/1327452.1327492
10.1145/2830544.2830546
10.1016/j.adhoc.2015.07.011
10.1007/s11432-011-4259-y
10.1109/TIP.2016.2617462
10.1109/TSP.2012.2222392
10.1016/j.future.2013.12.039
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.future.2017.03.013
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 1001
ExternalDocumentID 10_1016_j_future_2017_03_013
S0167739X17303710
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABDPE
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AFJKZ
AFTJW
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
~HD
9DU
AAYXX
ACLOT
CITATION
ID FETCH-LOGICAL-c306t-63eccb6646cf58d66a6e61003077e5ea467c76846b2a0cfd6afa4a6e921b0df73
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000515213000074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-739X
IngestDate Sat Nov 29 06:59:15 EST 2025
Tue Nov 18 21:43:44 EST 2025
Sat Sep 13 17:02:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Scheduling
Load balancing
Distributed computing
MapReduce
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-63eccb6646cf58d66a6e61003077e5ea467c76846b2a0cfd6afa4a6e921b0df73
ORCID 0000-0003-2766-0845
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_future_2017_03_013
crossref_citationtrail_10_1016_j_future_2017_03_013
elsevier_sciencedirect_doi_10_1016_j_future_2017_03_013
PublicationCentury 2000
PublicationDate April 2020
2020-04-00
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationTitle Future generation computer systems
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Tian, Zhou, He, Zha (br000045) 2009
Lu, Zheng, Li (br000030) 2017; 26
Gaizhen (br000075) 2011
Elnikety, Elsayed, Ramadan (br000095) 2011
Mao, Morris, Kaashoek (br000050) 2010
Xue, Shu, Liu, Xue (br000170) 2011; 54
Yuan, Zheng, Lu (br000020) 2017; 26
Liu, Fang, Hu, Zhang (br000120) 2001
Xu, Cai, Aydt, Lees (br000165) 2014
Hsueh, Lin, Chiu (br000140) 2014
B. Catanzaro, N. Sundaram, K. Keutzer, A map reduce framework for programming gpus, in: Proc. Third Workshop Software Tools for MultiCore Systems, STMCS, 2008.
Vu, Alaghband (br000160) 2015
Karapiperis, Verykios (br000150) 2015; 17
Kolb, Thor, Rahm (br000135) 2011
Rajasekaran, Reif (br000125) 2007
Elteir, Lin, Feng (br000115) 2010
Lin, Wang, Hsueh (br000105) 2015
Li, Guo, Lu (br000025) 2016; 25
Zou, Xue, Liu (br000070) 2014; 37
Zaki, Li, Parthasarathy (br000100) 1996
D. Gillick, A. Faria, J. DeNero, Mapreduce: Distributed computing for machine learning, Berkley, Dec 18.
Apache. hadoop, 2016.
Yao, Bai, Zeng, Liang, Fan (br000010) 2015; 27
.
Li, Wang, Lu (br000035) 2016; 25
Ren (br000015) 2015; 27
Kathiravelu, Veiga (br000130) 2014
Mestre, Pires, Nascimento (br000145) 2015
Hwang, Sung (br000085) 2013; 61
Green, Munguía, Bader (br000155) 2014
Dean, Ghemawat (br000040) 2008; 51
Hu, Zhao, Yan, Zeng, Guo (br000065) 2015; 35
J. Zawodny, Yahoo! launches worlds largest hadoop production application, Yahoo! Developer Network sBlog.
Ren, Zeng, Liu, Cheng (br000005) 2016; 2016
Gunarathne, Wu, Qiu, Fox (br000090) 2010
Lu (10.1016/j.future.2017.03.013_br000030) 2017; 26
Gunarathne (10.1016/j.future.2017.03.013_br000090) 2010
Tian (10.1016/j.future.2017.03.013_br000045) 2009
Dean (10.1016/j.future.2017.03.013_br000040) 2008; 51
Liu (10.1016/j.future.2017.03.013_br000120) 2001
Rajasekaran (10.1016/j.future.2017.03.013_br000125) 2007
Gaizhen (10.1016/j.future.2017.03.013_br000075) 2011
Mestre (10.1016/j.future.2017.03.013_br000145) 2015
Hsueh (10.1016/j.future.2017.03.013_br000140) 2014
Zou (10.1016/j.future.2017.03.013_br000070) 2014; 37
Kolb (10.1016/j.future.2017.03.013_br000135) 2011
Ren (10.1016/j.future.2017.03.013_br000005) 2016; 2016
10.1016/j.future.2017.03.013_br000055
10.1016/j.future.2017.03.013_br000110
Yao (10.1016/j.future.2017.03.013_br000010) 2015; 27
Elteir (10.1016/j.future.2017.03.013_br000115) 2010
Yuan (10.1016/j.future.2017.03.013_br000020) 2017; 26
Kathiravelu (10.1016/j.future.2017.03.013_br000130) 2014
Ren (10.1016/j.future.2017.03.013_br000015) 2015; 27
Lin (10.1016/j.future.2017.03.013_br000105) 2015
Li (10.1016/j.future.2017.03.013_br000025) 2016; 25
Hwang (10.1016/j.future.2017.03.013_br000085) 2013; 61
Vu (10.1016/j.future.2017.03.013_br000160) 2015
Mao (10.1016/j.future.2017.03.013_br000050) 2010
Hu (10.1016/j.future.2017.03.013_br000065) 2015; 35
Xu (10.1016/j.future.2017.03.013_br000165) 2014
10.1016/j.future.2017.03.013_br000060
Green (10.1016/j.future.2017.03.013_br000155) 2014
10.1016/j.future.2017.03.013_br000080
Karapiperis (10.1016/j.future.2017.03.013_br000150) 2015; 17
Xue (10.1016/j.future.2017.03.013_br000170) 2011; 54
Li (10.1016/j.future.2017.03.013_br000035) 2016; 25
Zaki (10.1016/j.future.2017.03.013_br000100) 1996
Elnikety (10.1016/j.future.2017.03.013_br000095) 2011
References_xml – start-page: 79
  year: 2014
  end-page: 88
  ident: br000130
  article-title: An adaptive distributed simulator for cloud and mapreduce algorithms and architectures
  publication-title: 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing
– start-page: 981
  year: 2015
  end-page: 987
  ident: br000145
  article-title: Adaptive sorted neighborhood blocking for entity matching with mapreduce
  publication-title: Proceedings of the 30th Annual ACM Symposium on Applied Computing
– volume: 54
  start-page: 1119
  year: 2011
  end-page: 1128
  ident: br000170
  article-title: Corslet: A shared storage system keeping your data private
  publication-title: Sci. China Inf. Sci.
– volume: 26
  start-page: 51
  year: 2017
  end-page: 64
  ident: br000020
  article-title: Discovering diverse subset for unsupervised hyperspectral band selection
  publication-title: IEEE Trans. Image Process.
– reference: Apache. hadoop, 2016.
– reference: D. Gillick, A. Faria, J. DeNero, Mapreduce: Distributed computing for machine learning, Berkley, Dec 18.
– start-page: 154
  year: 2011
  end-page: 156
  ident: br000075
  article-title: The application of mapreduce in the cloud computing
  publication-title: Intelligence Information Processing and Trusted Computing (IPTC)
– start-page: 218
  year: 2009
  end-page: 224
  ident: br000045
  article-title: A dynamic mapreduce scheduler for heterogeneous workloads
  publication-title: Eighth International Conference on Grid and Cooperative Computing, 2009
– start-page: 3
  year: 2014
  end-page: 9
  ident: br000140
  article-title: A load-balanced mapreduce algorithm for blocking-based entity-resolution with multiple keys
  publication-title: Proceedings of the Twelfth Australasian Symposium on Parallel and Distributed Computing-Volume 152
– start-page: 81
  year: 2011
  end-page: 90
  ident: br000095
  article-title: ihadoop: asynchronous iterations for mapreduce
  publication-title: 2011 IEEE Third International Conference on Cloud Computing Technology and Science
– year: 2001
  ident: br000120
  article-title: An effective dynamic load balancing method
  publication-title: J. Softw.
– start-page: 3
  year: 2014
  end-page: 10
  ident: br000155
  article-title: Load balanced clustering coefficients
  publication-title: Proceedings of the First Workshop on Parallel Programming for Analytics Applications
– start-page: 565
  year: 2010
  end-page: 572
  ident: br000090
  article-title: Mapreduce in the clouds for science
  publication-title: 2010 IEEE Second International Conference on Cloud Computing Technology and Science
– year: 2010
  ident: br000050
  article-title: Optimizing mapreduce for multicore architectures
  publication-title: Computer Science and Artificial Intelligence Laboratory, Tech. Rep.
– volume: 61
  start-page: 411
  year: 2013
  end-page: 419
  ident: br000085
  article-title: Load balanced resampling for real-time particle filtering on graphics processing units
  publication-title: IEEE Trans. Signal Process.
– volume: 25
  start-page: 3329
  year: 2016
  end-page: 3342
  ident: br000025
  article-title: Spatiotemporal statistics for video quality assessment
  publication-title: IEEE Trans. Image Process.
– volume: 26
  start-page: 355
  year: 2017
  end-page: 368
  ident: br000030
  article-title: Latent semantic minimal hashing for image retrieval
  publication-title: IEEE Trans. Image Process.
– year: 2007
  ident: br000125
  article-title: Handbook of Parallel Computing: Models, Algorithms and Applications
– volume: 27
  start-page: 5780
  year: 2015
  end-page: 5792
  ident: br000010
  article-title: Migrate or not? exploring virtual machine migration in roadside cloudlet-based vehicular cloud
  publication-title: Concurr. Comput.: Pract. Exper.
– volume: 35
  start-page: 116
  year: 2015
  end-page: 126
  ident: br000065
  article-title: A mapreduce based parallel niche genetic algorithm for contaminant source identification in water distribution network
  publication-title: Ad Hoc Networks
– volume: 37
  start-page: 378
  year: 2014
  end-page: 389
  ident: br000070
  article-title: A case study of large-scale parallel i/o analysis and optimization for numerical weather prediction system
  publication-title: Future Gener. Comput. Syst.
– start-page: 2397
  year: 2011
  end-page: 2400
  ident: br000135
  article-title: Block-based load balancing for entity resolution with mapreduce
  publication-title: Proceedings of the 20th ACM International Conference on Information and Knowledge Management
– volume: 17
  start-page: 1
  year: 2015
  end-page: 7
  ident: br000150
  article-title: Load-balancing the distance computations in record linkage
  publication-title: ACM SIGKDD Explor. Newslett.
– volume: 25
  start-page: 740
  year: 2016
  end-page: 755
  ident: br000035
  article-title: Surveillance video synopsis via scaling down objects
  publication-title: IEEE Trans. Image Process.
– start-page: 282
  year: 1996
  end-page: 291
  ident: br000100
  article-title: Customized dynamic load balancing for a network of workstations
  publication-title: Proceedings of 5th IEEE International Symposium on High Performance Distributed Computing, 1996
– volume: 51
  start-page: 107
  year: 2008
  end-page: 113
  ident: br000040
  article-title: Mapreduce: simplified data processing on large clusters
  publication-title: Commun. ACM
– reference: .
– start-page: 3483
  year: 2014
  end-page: 3494
  ident: br000165
  article-title: Efficient graph-based dynamic load-balancing for parallel large-scale agent-based traffic simulation
  publication-title: Simulation Conference (WSC), 2014 Winter
– reference: J. Zawodny, Yahoo! launches worlds largest hadoop production application, Yahoo! Developer Network sBlog.
– start-page: 397
  year: 2010
  end-page: 405
  ident: br000115
  article-title: Enhancing mapreduce via asynchronous data processing
  publication-title: 2010 IEEE 16th International Conference on Parallel and Distributed Systems
– volume: 27
  start-page: 173
  year: 2015
  end-page: 195
  ident: br000015
  article-title: uleepp: An ultra-lightweight energy-efficient and privacy-protected scheme for pervasive and mobile wbsn-cloud communications
  publication-title: Ad Hoc Sens. Wirel. Netw.
– start-page: 49
  year: 2015
  end-page: 58
  ident: br000160
  article-title: A load balancing parallel method for frequent pattern mining on multi-core cluster
  publication-title: Proceedings of the Symposium on High Performance Computing
– reference: B. Catanzaro, N. Sundaram, K. Keutzer, A map reduce framework for programming gpus, in: Proc. Third Workshop Software Tools for MultiCore Systems, STMCS, 2008.
– start-page: 50
  year: 2015
  ident: br000105
  article-title: Improving mapreduce-based entity-resolution by data-load balancing
  publication-title: Proceedings of the ASE BigData & SocialInformatics 2015
– volume: 2016
  start-page: 5232846:1
  year: 2016
  end-page: 5232846:9
  ident: br000005
  article-title: F2AC: A lightweight, fine-grained, and flexible access control scheme for file storage in mobile cloud computing
  publication-title: Mobile Inf. Syst.
– volume: 25
  start-page: 3329
  issue: 7
  year: 2016
  ident: 10.1016/j.future.2017.03.013_br000025
  article-title: Spatiotemporal statistics for video quality assessment
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2568752
– ident: 10.1016/j.future.2017.03.013_br000055
– ident: 10.1016/j.future.2017.03.013_br000080
– start-page: 565
  year: 2010
  ident: 10.1016/j.future.2017.03.013_br000090
  article-title: Mapreduce in the clouds for science
– volume: 27
  start-page: 5780
  issue: 18
  year: 2015
  ident: 10.1016/j.future.2017.03.013_br000010
  article-title: Migrate or not? exploring virtual machine migration in roadside cloudlet-based vehicular cloud
  publication-title: Concurr. Comput.: Pract. Exper.
  doi: 10.1002/cpe.3642
– start-page: 3
  year: 2014
  ident: 10.1016/j.future.2017.03.013_br000140
  article-title: A load-balanced mapreduce algorithm for blocking-based entity-resolution with multiple keys
– volume: 26
  start-page: 355
  issue: 1
  year: 2017
  ident: 10.1016/j.future.2017.03.013_br000030
  article-title: Latent semantic minimal hashing for image retrieval
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2627801
– volume: 25
  start-page: 740
  issue: 2
  year: 2016
  ident: 10.1016/j.future.2017.03.013_br000035
  article-title: Surveillance video synopsis via scaling down objects
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2507942
– ident: 10.1016/j.future.2017.03.013_br000110
– start-page: 3483
  year: 2014
  ident: 10.1016/j.future.2017.03.013_br000165
  article-title: Efficient graph-based dynamic load-balancing for parallel large-scale agent-based traffic simulation
– volume: 51
  start-page: 107
  issue: 1
  year: 2008
  ident: 10.1016/j.future.2017.03.013_br000040
  article-title: Mapreduce: simplified data processing on large clusters
  publication-title: Commun. ACM
  doi: 10.1145/1327452.1327492
– volume: 17
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.future.2017.03.013_br000150
  article-title: Load-balancing the distance computations in record linkage
  publication-title: ACM SIGKDD Explor. Newslett.
  doi: 10.1145/2830544.2830546
– volume: 35
  start-page: 116
  year: 2015
  ident: 10.1016/j.future.2017.03.013_br000065
  article-title: A mapreduce based parallel niche genetic algorithm for contaminant source identification in water distribution network
  publication-title: Ad Hoc Networks
  doi: 10.1016/j.adhoc.2015.07.011
– start-page: 282
  year: 1996
  ident: 10.1016/j.future.2017.03.013_br000100
  article-title: Customized dynamic load balancing for a network of workstations
– volume: 54
  start-page: 1119
  issue: 6
  year: 2011
  ident: 10.1016/j.future.2017.03.013_br000170
  article-title: Corslet: A shared storage system keeping your data private
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-011-4259-y
– volume: 26
  start-page: 51
  issue: 1
  year: 2017
  ident: 10.1016/j.future.2017.03.013_br000020
  article-title: Discovering diverse subset for unsupervised hyperspectral band selection
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2617462
– volume: 61
  start-page: 411
  issue: 2
  year: 2013
  ident: 10.1016/j.future.2017.03.013_br000085
  article-title: Load balanced resampling for real-time particle filtering on graphics processing units
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2012.2222392
– year: 2001
  ident: 10.1016/j.future.2017.03.013_br000120
  article-title: An effective dynamic load balancing method
  publication-title: J. Softw.
– start-page: 981
  year: 2015
  ident: 10.1016/j.future.2017.03.013_br000145
  article-title: Adaptive sorted neighborhood blocking for entity matching with mapreduce
– start-page: 2397
  year: 2011
  ident: 10.1016/j.future.2017.03.013_br000135
  article-title: Block-based load balancing for entity resolution with mapreduce
– volume: 27
  start-page: 173
  issue: 3–4
  year: 2015
  ident: 10.1016/j.future.2017.03.013_br000015
  article-title: uleepp: An ultra-lightweight energy-efficient and privacy-protected scheme for pervasive and mobile wbsn-cloud communications
  publication-title: Ad Hoc Sens. Wirel. Netw.
– start-page: 79
  year: 2014
  ident: 10.1016/j.future.2017.03.013_br000130
  article-title: An adaptive distributed simulator for cloud and mapreduce algorithms and architectures
– volume: 2016
  start-page: 5232846:1
  year: 2016
  ident: 10.1016/j.future.2017.03.013_br000005
  article-title: F2AC: A lightweight, fine-grained, and flexible access control scheme for file storage in mobile cloud computing
  publication-title: Mobile Inf. Syst.
– start-page: 50
  year: 2015
  ident: 10.1016/j.future.2017.03.013_br000105
  article-title: Improving mapreduce-based entity-resolution by data-load balancing
– start-page: 397
  year: 2010
  ident: 10.1016/j.future.2017.03.013_br000115
  article-title: Enhancing mapreduce via asynchronous data processing
– year: 2007
  ident: 10.1016/j.future.2017.03.013_br000125
– start-page: 218
  year: 2009
  ident: 10.1016/j.future.2017.03.013_br000045
  article-title: A dynamic mapreduce scheduler for heterogeneous workloads
– year: 2010
  ident: 10.1016/j.future.2017.03.013_br000050
  article-title: Optimizing mapreduce for multicore architectures
– ident: 10.1016/j.future.2017.03.013_br000060
– start-page: 3
  year: 2014
  ident: 10.1016/j.future.2017.03.013_br000155
  article-title: Load balanced clustering coefficients
– start-page: 154
  year: 2011
  ident: 10.1016/j.future.2017.03.013_br000075
  article-title: The application of mapreduce in the cloud computing
– start-page: 81
  year: 2011
  ident: 10.1016/j.future.2017.03.013_br000095
  article-title: ihadoop: asynchronous iterations for mapreduce
– start-page: 49
  year: 2015
  ident: 10.1016/j.future.2017.03.013_br000160
  article-title: A load balancing parallel method for frequent pattern mining on multi-core cluster
– volume: 37
  start-page: 378
  year: 2014
  ident: 10.1016/j.future.2017.03.013_br000070
  article-title: A case study of large-scale parallel i/o analysis and optimization for numerical weather prediction system
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2013.12.039
SSID ssj0001731
Score 2.4112644
Snippet With the advent of the era of big data, the demand of massive data processing applications is also growing. Currently, MapReduce is the most commonly used data...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 993
SubjectTerms Distributed computing
Load balancing
MapReduce
Scheduling
Title Map-Balance-Reduce: An improved parallel programming model for load balancing of MapReduce
URI https://dx.doi.org/10.1016/j.future.2017.03.013
Volume 105
WOSCitedRecordID wos000515213000074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0167-739X
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001731
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELeqjgdeYHyJMYb8wGuQ09R2zFtBm7YKpgoNqeIlcmwHrcrSarTT_oX915w_G7FpsAceGlVWfGlzv9ydL-f7IfRel0RqQwhYv5rBAoWyTFKuM6PAv9KyLnJVO7IJfnpazudiNhjcxL0wVy3vuvL6Wqz-q6phDJRtt84-QN1JKAzAd1A6HEHtcPwnxX-Vq-yTLVhUJvtmG7OakPw7d_kDCDBtu--2NW0szrqw6QJHieOKDtulhKjUSQgl0SDSS-qHskeuG4mlYDYBRSowRIT20Cla_-IqBqYAxAV8fm6HN84ByMUmIXTm87HTHmhTSntmwtyQpBiRXm1LyFuCPeaFY83dGl5Ce6ZTeKbE4IVta6g7LbxPNiw--JYrtjaPuy61ebH1aPEt_h-OLpUfxsq2ReWlVFZKRYqKWP7jnRGnohyincnJ4Xya3HrOA7ll-CdxH6YrFrz9a-6Oc3qxy9kuehIWHXjiwfIMDUz3HD2NhB442PcX6Mdt7HzEkw5H5OCIHNxDDnbIwYAcbJGDE3LwssEJOS_R96PDs8_HWSDfyBSsItcZK-DhrhkbM9XQUjMmmYFQ2_oEbqiR4GCVfYnL6pEkqtFMNnIM54hRXhPd8OIVGnbLzrxGmMOaVhgqx1TXYy10LYjiQuYN3EpupNhDRbxVlQqd6S1BSlvdp6g9lKVZK9-Z5S_n86iFKkSXPmqsAFr3znzzwCvto8fbZ-AtGq4vN-YAPVJX6_Nfl-8Crn4Doj-fUw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Map-Balance-Reduce%3A+An+improved+parallel+programming+model+for+load+balancing+of+MapReduce&rft.jtitle=Future+generation+computer+systems&rft.au=Li%2C+Jianjiang&rft.au=Liu%2C+Yajun&rft.au=Pan%2C+Jian&rft.au=Zhang%2C+Peng&rft.date=2020-04-01&rft.issn=0167-739X&rft.volume=105&rft.spage=993&rft.epage=1001&rft_id=info:doi/10.1016%2Fj.future.2017.03.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2017_03_013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon