An improved checkerboard detection algorithm based on adaptive filters

Checkerboard corner extraction is a crucial step in camera calibration. However, most existing algorithms are not good enough if the lens distortion is too large. This study aims to propose a checkerboard corner detection algorithm based on adaptive filters to address this problem. First, adaptive f...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Pattern recognition letters Ročník 172; s. 22 - 28
Hlavní autoři: Sang, Qiang, Huang, Tao, Wang, Hongyi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.08.2023
Témata:
ISSN:0167-8655, 1872-7344
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Checkerboard corner extraction is a crucial step in camera calibration. However, most existing algorithms are not good enough if the lens distortion is too large. This study aims to propose a checkerboard corner detection algorithm based on adaptive filters to address this problem. First, adaptive filters based on local image features are used to generate response maps of checkerboard images. Next, a non-max suppression and a scoring system are applied for further screening. Finally, the whole checkerboard structure is restored via inertia growth. The algorithm proposed is subject to rigorous experimental validation using synthetic and real images. Compared with several state of the art methods, our algorithm has the best performance.
ISSN:0167-8655
1872-7344
DOI:10.1016/j.patrec.2023.05.032