An Efficient Density-based clustering algorithm for face groping

This paper focuses on the following problem: Given a large number of unlabeled face images, group them into individual clusters, and the number of clusters cannot be known in advance. To this end, an Efficient Density-based clustering incorporated with the model of Graph partitioning (EDG) is propos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) Jg. 462; S. 331 - 343
Hauptverfasser: Pei, Shenfei, Nie, Feiping, Wang, Rong, Li, Xuelong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 28.10.2021
Schlagworte:
ISSN:0925-2312
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper focuses on the following problem: Given a large number of unlabeled face images, group them into individual clusters, and the number of clusters cannot be known in advance. To this end, an Efficient Density-based clustering incorporated with the model of Graph partitioning (EDG) is proposed. 1. Inspired by the progress of graph partitioning clustering, a novel criterion that can be seen as a variant of the Normalized-cut model is employed to measure the similarity between two samples. 2. We only consider the similarities and connections on a subset of all possible pairs, i.e. the top-K nearest neighbors for each sample. Therefore, the computing and storage costs are linear w.r.t. the number of samples. In order to assess the performance of EDG on face images, extensive experiments based on a two-stage framework have been conducted on 19 benchmark datasets (14 middle-scale and 5 large-scale) from the literature. The experimental results have shown the effectiveness and robustness of our model, compared with the state-of-the-art methods.[code]
AbstractList This paper focuses on the following problem: Given a large number of unlabeled face images, group them into individual clusters, and the number of clusters cannot be known in advance. To this end, an Efficient Density-based clustering incorporated with the model of Graph partitioning (EDG) is proposed. 1. Inspired by the progress of graph partitioning clustering, a novel criterion that can be seen as a variant of the Normalized-cut model is employed to measure the similarity between two samples. 2. We only consider the similarities and connections on a subset of all possible pairs, i.e. the top-K nearest neighbors for each sample. Therefore, the computing and storage costs are linear w.r.t. the number of samples. In order to assess the performance of EDG on face images, extensive experiments based on a two-stage framework have been conducted on 19 benchmark datasets (14 middle-scale and 5 large-scale) from the literature. The experimental results have shown the effectiveness and robustness of our model, compared with the state-of-the-art methods.[code]
Author Wang, Rong
Li, Xuelong
Pei, Shenfei
Nie, Feiping
Author_xml – sequence: 1
  givenname: Shenfei
  surname: Pei
  fullname: Pei, Shenfei
  email: shenfeipei@gmail.com
  organization: School of Computer Science and School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xian, Shaanxi 710072, PR China
– sequence: 2
  givenname: Feiping
  surname: Nie
  fullname: Nie, Feiping
  email: feipingnie@gmail.com
  organization: School of Computer Science and School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xian, Shaanxi 710072, PR China
– sequence: 3
  givenname: Rong
  surname: Wang
  fullname: Wang, Rong
  email: wangrong07@tsinghua.org.cn
  organization: School of Cybersecurity and School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xian, Shaanxi 710072, PR China
– sequence: 4
  givenname: Xuelong
  surname: Li
  fullname: Li, Xuelong
  email: xuelong_li@nwpu.edu.cn
  organization: School of Computer Science and School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xian, Shaanxi 710072, PR China
BookMark eNqFkM1KAzEUhbOoYFt9Axd5gRmTTGbauBBLrT9QcKPrkEluaso0KUkq9O1NqSsXCod7uRzOge9O0MgHDwjdUFJTQrvbbe3hoMOuZoTRmsyK-AiNiWBtxRrKLtEkpS0hdEaZGKOHhccra5124DN-BJ9cPla9SmCwHg4pQ3R-g9WwCdHlzx22IWKrNOBNDPtiXaELq4YE1z97ij6eVu_Ll2r99vy6XKwr3ZAuV61mmjeCKDE3XLC-F7bhpJwNh9a0xSOalQEtzI2ec8EN76wgfWt6ZQw0U8TPvTqGlCJYuY9up-JRUiJP5HIrz-TyRC7JrIiX2N2vmHZZZRd8jsoN_4Xvz2EoYF8OokynP2kwLoLO0gT3d8E3K7572A
CitedBy_id crossref_primary_10_1016_j_neunet_2022_07_025
crossref_primary_10_3389_fnbot_2022_981390
crossref_primary_10_3390_rs17152647
crossref_primary_10_1016_j_neucom_2025_131576
crossref_primary_10_1007_s44336_024_00008_3
crossref_primary_10_1016_j_eswa_2025_128197
crossref_primary_10_1016_j_ins_2024_121249
crossref_primary_10_1016_j_neucom_2024_127329
crossref_primary_10_1016_j_dsp_2022_103695
Cites_doi 10.1109/TGRS.2019.2913004
10.1109/TPAMI.2017.2679100
10.1609/aaai.v31i1.10814
10.1109/ACCESS.2019.2931334
10.1007/978-3-319-93040-4_34
10.1016/j.eswa.2019.05.030
10.1109/TKDE.2017.2787640
10.1007/s11222-007-9033-z
10.1007/s11042-016-4324-z
10.1016/j.jocs.2018.08.005
10.1016/j.neucom.2019.01.074
10.1007/s11263-016-0940-3
10.1073/pnas.0437847100
10.1016/j.knosys.2017.07.010
10.1007/978-3-030-29349-9_5
10.1016/S0262-8856(97)00070-X
10.1103/PhysRevE.99.062301
10.1126/science.1242072
10.1109/TPAMI.2004.1262185
10.1109/TGRS.2018.2867444
10.1016/j.knosys.2019.06.032
10.1016/j.ins.2018.03.031
10.1016/j.patcog.2017.06.023
10.3390/rs11040399
10.1016/j.ins.2016.08.086
10.1073/pnas.1700770114
10.1109/34.868688
10.1109/TIFS.2018.2833032
10.1007/978-981-13-0761-4_48
10.1109/ACCESS.2020.2972034
10.1109/TMM.2015.2420374
10.1007/978-981-10-8476-8_9
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2021.07.074
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 343
ExternalDocumentID 10_1016_j_neucom_2021_07_074
S0925231221011565
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYFN
AAYWO
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACLOT
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFPUW
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
~HD
29N
9DU
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AFJKZ
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
ID FETCH-LOGICAL-c306t-5c2c4390a98d492bb9f3400a934e5d5c430c2430e5e8dc8494d46f90b5dbadde3
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000698041400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 07:39:36 EST 2025
Tue Nov 18 22:41:13 EST 2025
Sat Sep 27 17:13:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Fast clustering
Graph partitioning
99-00
Linkage-based
Density-based
00-01
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-5c2c4390a98d492bb9f3400a934e5d5c430c2430e5e8dc8494d46f90b5dbadde3
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_neucom_2021_07_074
crossref_citationtrail_10_1016_j_neucom_2021_07_074
elsevier_sciencedirect_doi_10_1016_j_neucom_2021_07_074
PublicationCentury 2000
PublicationDate 2021-10-28
PublicationDateYYYYMMDD 2021-10-28
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-28
  day: 28
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References C. Fu, D. Cai, Efanna: An extremely fast approximate nearest neighbor search algorithm based on knn graph, arXiv preprint arXiv:1609.07228.
Phillips, Wechsler, Huang, Rauss (b0205) 1998; 16
Sharma, Sharma (b0130) 2017
Liu, Luo, Wang, Tang (b0235) 2015
Xu, Wang, Deng (b0160) 2016; 373
Khan, Hussain, Usman (b0020) 2018; 77
F. Nie, W. Zhu, X. Li, Unsupervised large graph embedding, in: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI’17, AAAI Press, 2017, pp. 2422–2428.
Lin, Chen, Castillo, Chellappa (b0275) 2018
Li (b0115) 2020; 8
Janani, Vijayarani (b0005) 2019; 134
Wang, Li, Feng, Wang (b0100) 2015; 41
Wang, Nie, Wang, He, Li (b0080) 2019; 57
Hassner, Harel, Paz, Enbar (b0200) 2015
Zhao, Yuan, Wang (b0090) 2019; 11
Donoho, Elad (b0095) 2003; 100
Campello, Moulavi, Sander (b0125) 2013
Khan, Ishtiaq, Nazir, Shaheen (b0015) 2018; 28
Shah, Koltun (b0255) 2017; 114
Rothe, Timofte, Gool (b0240) 2018; 126
Ankerst, Breunig, Kriegel, Sander (b0260) 1999
Lai, Zhou, Hu, Bian, Song (b0135) 2019; 7
D. Yi, Z. Lei, S. Liao, S.Z. Li, Learning face representation from scratch, arXiv preprint arXiv:1411.7923.
Tu, Zhang, Kang, Zhang, Li (b0175) 2019; 57
Learned-Miller, Huang, RoyChowdhury, Li, Hua (b0210) 2016
Sarfraz, Sharma, Stiefelhagen (b0035) 2019
Lin, Chen, Chellappa (b0040) 2017
M. Li, J.T.-Y. Kwok, B. Lü, Making large-scale nyström approximation possible, in: ICML 2010-Proceedings, 27th International Conference on Machine Learning, 2010, p. 631.
Z. Guo, T. Huang, Z. Cai, W. Zhu, A new local density for density peak clustering, in: Advances in Knowledge Discovery and Data Mining, Springer International Publishing, 2018, pp. 426–438.
Bai, Cheng, Liang, Shen, Guo (b0155) 2017; 71
Chen, Hu, Fan, Shen, Zhang, Liu, Du, Li, Chen, Li (b0150) 2020; 187
G. Zhong, C.-M. Pun, Revisiting nyström extension for hypergraph clustering, Neurocomputing.
A. David, Vassilvitskii s.: K-means++: The advantages of careful seeding, in: 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), New Orleans, Louisiana, 2007, pp. 1027–1035.
R. Jain, R.S. Sharma, Image segmentation through fuzzy clustering: A survey, in: Harmony Search and Nature Inspired Optimization Algorithms, Springer, 2019, pp. 497–508.
V. Vitelli, A novel framework for joint sparse clustering and alignment of functional data, arXiv preprint arXiv:1912.00687.
Lee, Malik, Shi, Mucha (b0025) 2019; 99
Hahsler, Piekenbrock, Doran (b0140) 2019; 25
Otto, Wang, Jain (b0270) 2018; 40
A.Y. Ng, M.I. Jordan, Y. Weiss, On spectral clustering: Analysis and an algorithm, in: Advances in Neural Information Processing Systems, 2002, pp. 849–856.
Kazemi, Sullivan (b0280) 2014
Shi, Malik (b0060) 2000; 22
Wu, He, Sun, Tan (b0285) 2018; 13
Yaohui, Zhengming, Fang (b0165) 2017; 133
Wolf, Hassner, Maoz (b0245) 2011
N. Tremblay, A. Loukas, Approximating spectral clustering via sampling: a review, in: Sampling Techniques for Supervised or Unsupervised Tasks, Springer, 2020, pp. 129–183.
D. Han, A. Agrawal, W.-K. Liao, A. Choudhary, A fast dbscan algorithm with spark implementation, in: Big Data in Engineering Applications, Springer, 2018, pp. 173–192.
Bryant, Cios (b0045) 2018; 30
Fowlkes, Belongie, Chung, Malik (b0065) 2004; 26
Reddy, Vinzamuri (b0180) 2018
Luxburg (b0190) 2007; 17
Rodriguez, Laio (b0145) 2014; 344
Ester, Kriegel, Sander, Xu (b0110) 1996
Xu, Li, Li, Zou, Gu (b0030) 2019; 337
T. Zheng, W. Deng, Cross-pose lfw: A database for studying cross-pose face recognition in unconstrained environments, Tech. Rep. 18-01, Beijing University of Posts and Telecommunications (February 2018).
Gupta, Chandra (b0185) 2019
T. Zheng, W. Deng, J. Hu, Cross-age LFW: A database for studying cross-age face recognition in unconstrained environments, CoRR abs/1708.08197. arXiv:1708.08197.
Liu, Wang, Yu (b0050) 2018; 450
Chen, Chen, Hsu (b0230) 2015; 17
10.1016/j.neucom.2021.07.074_b0215
Otto (10.1016/j.neucom.2021.07.074_b0270) 2018; 40
Sarfraz (10.1016/j.neucom.2021.07.074_b0035) 2019
Zhao (10.1016/j.neucom.2021.07.074_b0090) 2019; 11
10.1016/j.neucom.2021.07.074_b0010
10.1016/j.neucom.2021.07.074_b0055
10.1016/j.neucom.2021.07.074_b0250
10.1016/j.neucom.2021.07.074_b0170
Reddy (10.1016/j.neucom.2021.07.074_b0180) 2018
Janani (10.1016/j.neucom.2021.07.074_b0005) 2019; 134
Learned-Miller (10.1016/j.neucom.2021.07.074_b0210) 2016
10.1016/j.neucom.2021.07.074_b0225
10.1016/j.neucom.2021.07.074_b0105
Kazemi (10.1016/j.neucom.2021.07.074_b0280) 2014
Khan (10.1016/j.neucom.2021.07.074_b0020) 2018; 77
Donoho (10.1016/j.neucom.2021.07.074_b0095) 2003; 100
Lin (10.1016/j.neucom.2021.07.074_b0040) 2017
Khan (10.1016/j.neucom.2021.07.074_b0015) 2018; 28
10.1016/j.neucom.2021.07.074_b0265
Chen (10.1016/j.neucom.2021.07.074_b0230) 2015; 17
Shah (10.1016/j.neucom.2021.07.074_b0255) 2017; 114
Shi (10.1016/j.neucom.2021.07.074_b0060) 2000; 22
Yaohui (10.1016/j.neucom.2021.07.074_b0165) 2017; 133
Rothe (10.1016/j.neucom.2021.07.074_b0240) 2018; 126
Rodriguez (10.1016/j.neucom.2021.07.074_b0145) 2014; 344
10.1016/j.neucom.2021.07.074_b0220
Wolf (10.1016/j.neucom.2021.07.074_b0245) 2011
Li (10.1016/j.neucom.2021.07.074_b0115) 2020; 8
Phillips (10.1016/j.neucom.2021.07.074_b0205) 1998; 16
Lai (10.1016/j.neucom.2021.07.074_b0135) 2019; 7
Lee (10.1016/j.neucom.2021.07.074_b0025) 2019; 99
Hahsler (10.1016/j.neucom.2021.07.074_b0140) 2019; 25
Tu (10.1016/j.neucom.2021.07.074_b0175) 2019; 57
Wu (10.1016/j.neucom.2021.07.074_b0285) 2018; 13
Hassner (10.1016/j.neucom.2021.07.074_b0200) 2015
Chen (10.1016/j.neucom.2021.07.074_b0150) 2020; 187
Fowlkes (10.1016/j.neucom.2021.07.074_b0065) 2004; 26
10.1016/j.neucom.2021.07.074_b0195
10.1016/j.neucom.2021.07.074_b0075
10.1016/j.neucom.2021.07.074_b0070
Lin (10.1016/j.neucom.2021.07.074_b0275) 2018
Liu (10.1016/j.neucom.2021.07.074_b0050) 2018; 450
Liu (10.1016/j.neucom.2021.07.074_b0235) 2015
Ester (10.1016/j.neucom.2021.07.074_b0110) 1996
Wang (10.1016/j.neucom.2021.07.074_b0100) 2015; 41
Sharma (10.1016/j.neucom.2021.07.074_b0130) 2017
Xu (10.1016/j.neucom.2021.07.074_b0030) 2019; 337
Wang (10.1016/j.neucom.2021.07.074_b0080) 2019; 57
Luxburg (10.1016/j.neucom.2021.07.074_b0190) 2007; 17
10.1016/j.neucom.2021.07.074_b0120
Gupta (10.1016/j.neucom.2021.07.074_b0185) 2019
10.1016/j.neucom.2021.07.074_b0085
Campello (10.1016/j.neucom.2021.07.074_b0125) 2013
Xu (10.1016/j.neucom.2021.07.074_b0160) 2016; 373
Bryant (10.1016/j.neucom.2021.07.074_b0045) 2018; 30
Bai (10.1016/j.neucom.2021.07.074_b0155) 2017; 71
Ankerst (10.1016/j.neucom.2021.07.074_b0260) 1999
References_xml – volume: 8
  start-page: 47468
  year: 2020
  end-page: 47476
  ident: b0115
  article-title: An improved dbscan algorithm based on the neighbor similarity and fast nearest neighbor query
  publication-title: IEEE Access
– start-page: 3730
  year: 2015
  end-page: 3738
  ident: b0235
  article-title: Deep learning face attributes in the wild
  publication-title: Proceedings of International Conference on Computer Vision (ICCV)
– start-page: 8128
  year: 2018
  end-page: 8137
  ident: b0275
  article-title: Deep density clustering of unconstrained faces
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 337
  start-page: 287
  year: 2019
  end-page: 302
  ident: b0030
  article-title: Eadp: An extended adaptive density peaks clustering for overlapping community detection in social networks
  publication-title: Neurocomputing
– volume: 7
  start-page: 104085
  year: 2019
  end-page: 104095
  ident: b0135
  article-title: A new dbscan parameters determination method based on improved mvo
  publication-title: IEEE Access
– volume: 450
  start-page: 200
  year: 2018
  end-page: 226
  ident: b0050
  article-title: Shared-nearest-neighbor-based clustering by fast search and find of density peaks
  publication-title: Information Sciences
– volume: 30
  start-page: 1109
  year: 2018
  end-page: 1121
  ident: b0045
  article-title: Rnn-dbscan: A density-based clustering algorithm using reverse nearest neighbor density estimates
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 13
  start-page: 2884
  year: 2018
  end-page: 2896
  ident: b0285
  article-title: A light cnn for deep face representation with noisy labels
  publication-title: IEEE Transactions on Information Forensics and Security
– start-page: 189
  year: 2016
  end-page: 248
  ident: b0210
  article-title: Labeled faces in the wild: A survey
  publication-title: Advances in Face Detection and Facial Image Analysis
– reference: D. Yi, Z. Lei, S. Liao, S.Z. Li, Learning face representation from scratch, arXiv preprint arXiv:1411.7923.
– reference: A. David, Vassilvitskii s.: K-means++: The advantages of careful seeding, in: 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), New Orleans, Louisiana, 2007, pp. 1027–1035.
– reference: F. Nie, W. Zhu, X. Li, Unsupervised large graph embedding, in: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI’17, AAAI Press, 2017, pp. 2422–2428.
– volume: 57
  start-page: 7352
  year: 2019
  end-page: 7364
  ident: b0080
  article-title: Scalable graph-based clustering with nonnegative relaxation for large hyperspectral image
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– start-page: 8934
  year: 2019
  end-page: 8943
  ident: b0035
  article-title: Efficient parameter-free clustering using first neighbor relations
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 4295
  year: 2015
  end-page: 4304
  ident: b0200
  article-title: Effective face frontalization in unconstrained images
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 11
  start-page: 399
  year: 2019
  ident: b0090
  article-title: Fast spectral clustering for unsupervised hyperspectral image classification
  publication-title: Remote Sensing
– reference: T. Zheng, W. Deng, J. Hu, Cross-age LFW: A database for studying cross-age face recognition in unconstrained environments, CoRR abs/1708.08197. arXiv:1708.08197.
– start-page: 294
  year: 2017
  end-page: 301
  ident: b0040
  article-title: A proximity-aware hierarchical clustering of faces
  publication-title: 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017)
– start-page: 49
  year: 1999
  end-page: 60
  ident: b0260
  article-title: Optics: Ordering points to identify the clustering structure
  publication-title: Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, SIGMOD ’99
– volume: 41
  start-page: 1373
  year: 2015
  end-page: 1384
  ident: b0100
  article-title: A survey on sparse subspace clustering
  publication-title: Acta Automatica Sinica
– volume: 26
  start-page: 214
  year: 2004
  end-page: 225
  ident: b0065
  article-title: Spectral grouping using the nystrom method
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 100
  start-page: 2197
  year: 2003
  end-page: 2202
  ident: b0095
  article-title: Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization
  publication-title: Proceedings of the National Academy of Sciences
– volume: 373
  start-page: 200
  year: 2016
  end-page: 218
  ident: b0160
  article-title: Denpehc: Density peak based efficient hierarchical clustering
  publication-title: Information Sciences
– volume: 57
  start-page: 1573
  year: 2019
  end-page: 1584
  ident: b0175
  article-title: Density peak-based noisy label detection for hyperspectral image classification
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– reference: G. Zhong, C.-M. Pun, Revisiting nyström extension for hypergraph clustering, Neurocomputing.
– reference: N. Tremblay, A. Loukas, Approximating spectral clustering via sampling: a review, in: Sampling Techniques for Supervised or Unsupervised Tasks, Springer, 2020, pp. 129–183.
– start-page: 226
  year: 1996
  end-page: 231
  ident: b0110
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining
– start-page: 787
  year: 2017
  end-page: 792
  ident: b0130
  article-title: Knn-dbscan: Using k-nearest neighbor information for parameter-free density based clustering
  publication-title: 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT)
– start-page: 801
  year: 2019
  end-page: 805
  ident: b0185
  article-title: A comparative study of clustering algorithms
  publication-title: 2019 6th International Conference on Computing for Sustainable Global Development (INDIACom)
– volume: 71
  start-page: 375
  year: 2017
  end-page: 386
  ident: b0155
  article-title: Fast density clustering strategies based on the k-means algorithm
  publication-title: Pattern Recognition
– reference: T. Zheng, W. Deng, Cross-pose lfw: A database for studying cross-pose face recognition in unconstrained environments, Tech. Rep. 18-01, Beijing University of Posts and Telecommunications (February 2018).
– volume: 17
  start-page: 395
  year: 2007
  end-page: 416
  ident: b0190
  article-title: A tutorial on spectral clustering
  publication-title: Statistics and Computing
– start-page: 160
  year: 2013
  end-page: 172
  ident: b0125
  article-title: Density-based clustering based on hierarchical density estimates
  publication-title: Advances in Knowledge Discovery and Data Mining
– volume: 22
  start-page: 888
  year: 2000
  end-page: 905
  ident: b0060
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 134
  start-page: 192
  year: 2019
  end-page: 200
  ident: b0005
  article-title: Text document clustering using spectral clustering algorithm with particle swarm optimization
  publication-title: Expert Systems with Applications
– reference: R. Jain, R.S. Sharma, Image segmentation through fuzzy clustering: A survey, in: Harmony Search and Nature Inspired Optimization Algorithms, Springer, 2019, pp. 497–508.
– volume: 187
  year: 2020
  ident: b0150
  article-title: Fast density peak clustering for large scale data based on knn
  publication-title: Knowledge-Based Systems
– volume: 99
  year: 2019
  ident: b0025
  article-title: Social clustering in epidemic spread on coevolving networks
  publication-title: Physical Review E
– volume: 77
  start-page: 1133
  year: 2018
  end-page: 1165
  ident: b0020
  article-title: Reliable facial expression recognition for multi-scale images using weber local binary image based cosine transform features
  publication-title: Multimedia Tools and Applications
– reference: M. Li, J.T.-Y. Kwok, B. Lü, Making large-scale nyström approximation possible, in: ICML 2010-Proceedings, 27th International Conference on Machine Learning, 2010, p. 631.
– volume: 114
  start-page: 9814
  year: 2017
  end-page: 9819
  ident: b0255
  article-title: Robust continuous clustering
  publication-title: Proceedings of the National Academy of Sciences
– volume: 40
  start-page: 289
  year: 2018
  end-page: 303
  ident: b0270
  article-title: Clustering millions of faces by identity
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: C. Fu, D. Cai, Efanna: An extremely fast approximate nearest neighbor search algorithm based on knn graph, arXiv preprint arXiv:1609.07228.
– volume: 17
  start-page: 804
  year: 2015
  end-page: 815
  ident: b0230
  article-title: Face recognition and retrieval using cross-age reference coding with cross-age celebrity dataset
  publication-title: IEEE Transactions on Multimedia
– volume: 25
  start-page: 409
  year: 2019
  end-page: 416
  ident: b0140
  article-title: dbscan: Fast density-based clustering with r
  publication-title: Journal of Statistical Software
– start-page: 87
  year: 2018
  end-page: 110
  ident: b0180
  article-title: A survey of partitional and hierarchical clustering algorithms
  publication-title: Data Clustering
– volume: 16
  start-page: 295
  year: 1998
  end-page: 306
  ident: b0205
  article-title: The feret database and evaluation procedure for face-recognition algorithms
  publication-title: Image and Vision Computing
– reference: D. Han, A. Agrawal, W.-K. Liao, A. Choudhary, A fast dbscan algorithm with spark implementation, in: Big Data in Engineering Applications, Springer, 2018, pp. 173–192.
– reference: Z. Guo, T. Huang, Z. Cai, W. Zhu, A new local density for density peak clustering, in: Advances in Knowledge Discovery and Data Mining, Springer International Publishing, 2018, pp. 426–438.
– volume: 344
  start-page: 1492
  year: 2014
  end-page: 1496
  ident: b0145
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
– reference: A.Y. Ng, M.I. Jordan, Y. Weiss, On spectral clustering: Analysis and an algorithm, in: Advances in Neural Information Processing Systems, 2002, pp. 849–856.
– start-page: 1867
  year: 2014
  end-page: 1874
  ident: b0280
  article-title: One millisecond face alignment with an ensemble of regression trees
  publication-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 529
  year: 2011
  end-page: 534
  ident: b0245
  article-title: Face recognition in unconstrained videos with matched background similarity
  publication-title: CVPR 2011
– volume: 28
  start-page: 94
  year: 2018
  end-page: 100
  ident: b0015
  article-title: Face recognition under varying expressions and illumination using particle swarm optimization
  publication-title: Journal of Computational Science
– volume: 133
  start-page: 208
  year: 2017
  end-page: 220
  ident: b0165
  article-title: Adaptive density peak clustering based on k-nearest neighbors with aggregating strategy
  publication-title: Knowledge-Based Systems
– volume: 126
  start-page: 144
  year: 2018
  end-page: 157
  ident: b0240
  article-title: Deep expectation of real and apparent age from a single image without facial landmarks
  publication-title: International Journal of Computer Vision
– reference: V. Vitelli, A novel framework for joint sparse clustering and alignment of functional data, arXiv preprint arXiv:1912.00687.
– start-page: 4295
  year: 2015
  ident: 10.1016/j.neucom.2021.07.074_b0200
  article-title: Effective face frontalization in unconstrained images
– start-page: 3730
  year: 2015
  ident: 10.1016/j.neucom.2021.07.074_b0235
  article-title: Deep learning face attributes in the wild
– start-page: 49
  year: 1999
  ident: 10.1016/j.neucom.2021.07.074_b0260
  article-title: Optics: Ordering points to identify the clustering structure
– ident: 10.1016/j.neucom.2021.07.074_b0250
– ident: 10.1016/j.neucom.2021.07.074_b0215
– volume: 57
  start-page: 7352
  issue: 10
  year: 2019
  ident: 10.1016/j.neucom.2021.07.074_b0080
  article-title: Scalable graph-based clustering with nonnegative relaxation for large hyperspectral image
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2019.2913004
– start-page: 801
  year: 2019
  ident: 10.1016/j.neucom.2021.07.074_b0185
  article-title: A comparative study of clustering algorithms
– volume: 40
  start-page: 289
  issue: 2
  year: 2018
  ident: 10.1016/j.neucom.2021.07.074_b0270
  article-title: Clustering millions of faces by identity
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2017.2679100
– ident: 10.1016/j.neucom.2021.07.074_b0265
  doi: 10.1609/aaai.v31i1.10814
– volume: 7
  start-page: 104085
  year: 2019
  ident: 10.1016/j.neucom.2021.07.074_b0135
  article-title: A new dbscan parameters determination method based on improved mvo
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2931334
– volume: 41
  start-page: 1373
  issue: 8
  year: 2015
  ident: 10.1016/j.neucom.2021.07.074_b0100
  article-title: A survey on sparse subspace clustering
  publication-title: Acta Automatica Sinica
– ident: 10.1016/j.neucom.2021.07.074_b0170
  doi: 10.1007/978-3-319-93040-4_34
– volume: 134
  start-page: 192
  year: 2019
  ident: 10.1016/j.neucom.2021.07.074_b0005
  article-title: Text document clustering using spectral clustering algorithm with particle swarm optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.05.030
– volume: 30
  start-page: 1109
  issue: 6
  year: 2018
  ident: 10.1016/j.neucom.2021.07.074_b0045
  article-title: Rnn-dbscan: A density-based clustering algorithm using reverse nearest neighbor density estimates
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2017.2787640
– ident: 10.1016/j.neucom.2021.07.074_b0220
– volume: 17
  start-page: 395
  issue: 4
  year: 2007
  ident: 10.1016/j.neucom.2021.07.074_b0190
  article-title: A tutorial on spectral clustering
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-007-9033-z
– volume: 77
  start-page: 1133
  issue: 1
  year: 2018
  ident: 10.1016/j.neucom.2021.07.074_b0020
  article-title: Reliable facial expression recognition for multi-scale images using weber local binary image based cosine transform features
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-016-4324-z
– ident: 10.1016/j.neucom.2021.07.074_b0075
– volume: 28
  start-page: 94
  year: 2018
  ident: 10.1016/j.neucom.2021.07.074_b0015
  article-title: Face recognition under varying expressions and illumination using particle swarm optimization
  publication-title: Journal of Computational Science
  doi: 10.1016/j.jocs.2018.08.005
– volume: 337
  start-page: 287
  year: 2019
  ident: 10.1016/j.neucom.2021.07.074_b0030
  article-title: Eadp: An extended adaptive density peaks clustering for overlapping community detection in social networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.074
– volume: 25
  start-page: 409
  year: 2019
  ident: 10.1016/j.neucom.2021.07.074_b0140
  article-title: dbscan: Fast density-based clustering with r
  publication-title: Journal of Statistical Software
– volume: 126
  start-page: 144
  issue: 2–4
  year: 2018
  ident: 10.1016/j.neucom.2021.07.074_b0240
  article-title: Deep expectation of real and apparent age from a single image without facial landmarks
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-016-0940-3
– volume: 100
  start-page: 2197
  issue: 5
  year: 2003
  ident: 10.1016/j.neucom.2021.07.074_b0095
  article-title: Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0437847100
– volume: 133
  start-page: 208
  year: 2017
  ident: 10.1016/j.neucom.2021.07.074_b0165
  article-title: Adaptive density peak clustering based on k-nearest neighbors with aggregating strategy
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2017.07.010
– ident: 10.1016/j.neucom.2021.07.074_b0085
  doi: 10.1007/978-3-030-29349-9_5
– volume: 16
  start-page: 295
  issue: 5
  year: 1998
  ident: 10.1016/j.neucom.2021.07.074_b0205
  article-title: The feret database and evaluation procedure for face-recognition algorithms
  publication-title: Image and Vision Computing
  doi: 10.1016/S0262-8856(97)00070-X
– volume: 99
  issue: 6
  year: 2019
  ident: 10.1016/j.neucom.2021.07.074_b0025
  article-title: Social clustering in epidemic spread on coevolving networks
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.99.062301
– volume: 344
  start-page: 1492
  issue: 6191
  year: 2014
  ident: 10.1016/j.neucom.2021.07.074_b0145
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
  doi: 10.1126/science.1242072
– ident: 10.1016/j.neucom.2021.07.074_b0070
– start-page: 226
  year: 1996
  ident: 10.1016/j.neucom.2021.07.074_b0110
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
– start-page: 787
  year: 2017
  ident: 10.1016/j.neucom.2021.07.074_b0130
  article-title: Knn-dbscan: Using k-nearest neighbor information for parameter-free density based clustering
– volume: 26
  start-page: 214
  issue: 2
  year: 2004
  ident: 10.1016/j.neucom.2021.07.074_b0065
  article-title: Spectral grouping using the nystrom method
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2004.1262185
– volume: 57
  start-page: 1573
  issue: 3
  year: 2019
  ident: 10.1016/j.neucom.2021.07.074_b0175
  article-title: Density peak-based noisy label detection for hyperspectral image classification
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2018.2867444
– volume: 187
  year: 2020
  ident: 10.1016/j.neucom.2021.07.074_b0150
  article-title: Fast density peak clustering for large scale data based on knn
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.06.032
– volume: 450
  start-page: 200
  year: 2018
  ident: 10.1016/j.neucom.2021.07.074_b0050
  article-title: Shared-nearest-neighbor-based clustering by fast search and find of density peaks
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2018.03.031
– volume: 71
  start-page: 375
  year: 2017
  ident: 10.1016/j.neucom.2021.07.074_b0155
  article-title: Fast density clustering strategies based on the k-means algorithm
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2017.06.023
– start-page: 87
  year: 2018
  ident: 10.1016/j.neucom.2021.07.074_b0180
  article-title: A survey of partitional and hierarchical clustering algorithms
– start-page: 8934
  year: 2019
  ident: 10.1016/j.neucom.2021.07.074_b0035
  article-title: Efficient parameter-free clustering using first neighbor relations
– start-page: 160
  year: 2013
  ident: 10.1016/j.neucom.2021.07.074_b0125
  article-title: Density-based clustering based on hierarchical density estimates
– volume: 11
  start-page: 399
  issue: 4
  year: 2019
  ident: 10.1016/j.neucom.2021.07.074_b0090
  article-title: Fast spectral clustering for unsupervised hyperspectral image classification
  publication-title: Remote Sensing
  doi: 10.3390/rs11040399
– volume: 373
  start-page: 200
  year: 2016
  ident: 10.1016/j.neucom.2021.07.074_b0160
  article-title: Denpehc: Density peak based efficient hierarchical clustering
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2016.08.086
– ident: 10.1016/j.neucom.2021.07.074_b0195
– start-page: 189
  year: 2016
  ident: 10.1016/j.neucom.2021.07.074_b0210
  article-title: Labeled faces in the wild: A survey
– volume: 114
  start-page: 9814
  issue: 37
  year: 2017
  ident: 10.1016/j.neucom.2021.07.074_b0255
  article-title: Robust continuous clustering
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1700770114
– volume: 22
  start-page: 888
  issue: 8
  year: 2000
  ident: 10.1016/j.neucom.2021.07.074_b0060
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.868688
– volume: 13
  start-page: 2884
  issue: 11
  year: 2018
  ident: 10.1016/j.neucom.2021.07.074_b0285
  article-title: A light cnn for deep face representation with noisy labels
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2018.2833032
– start-page: 294
  year: 2017
  ident: 10.1016/j.neucom.2021.07.074_b0040
  article-title: A proximity-aware hierarchical clustering of faces
– ident: 10.1016/j.neucom.2021.07.074_b0105
– start-page: 529
  year: 2011
  ident: 10.1016/j.neucom.2021.07.074_b0245
  article-title: Face recognition in unconstrained videos with matched background similarity
– start-page: 1867
  year: 2014
  ident: 10.1016/j.neucom.2021.07.074_b0280
  article-title: One millisecond face alignment with an ensemble of regression trees
– ident: 10.1016/j.neucom.2021.07.074_b0010
  doi: 10.1007/978-981-13-0761-4_48
– volume: 8
  start-page: 47468
  year: 2020
  ident: 10.1016/j.neucom.2021.07.074_b0115
  article-title: An improved dbscan algorithm based on the neighbor similarity and fast nearest neighbor query
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2972034
– volume: 17
  start-page: 804
  issue: 6
  year: 2015
  ident: 10.1016/j.neucom.2021.07.074_b0230
  article-title: Face recognition and retrieval using cross-age reference coding with cross-age celebrity dataset
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2015.2420374
– start-page: 8128
  year: 2018
  ident: 10.1016/j.neucom.2021.07.074_b0275
  article-title: Deep density clustering of unconstrained faces
– ident: 10.1016/j.neucom.2021.07.074_b0055
– ident: 10.1016/j.neucom.2021.07.074_b0120
  doi: 10.1007/978-981-10-8476-8_9
– ident: 10.1016/j.neucom.2021.07.074_b0225
SSID ssj0017129
Score 2.384044
Snippet This paper focuses on the following problem: Given a large number of unlabeled face images, group them into individual clusters, and the number of clusters...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 331
SubjectTerms Density-based
Fast clustering
Graph partitioning
Linkage-based
Title An Efficient Density-based clustering algorithm for face groping
URI https://dx.doi.org/10.1016/j.neucom.2021.07.074
Volume 462
WOSCitedRecordID wos000698041400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017129
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLag44EX7oiNgfzAGzLKYjuJ34imIUDThGBIfYvi25apc6eunfbzOb4kaRka7AGpsiq3PmlzvnznxDkXhN7lVILfawVptbSEFTYjrbGUlFUhwD7RPRUThQ_Lo6NqOhXfUkjQZWgnUDpXXV-Li_-qapgDZfvU2TuoexAKE_AelA4jqB3Gf1J87Xy75C4kOgKdOB90Qbyx0u_VbOXrIoS8xNnJfNEtT89DnKFt4fI-WYTkqXV3NZTuUKHxQ9pSqM-9BO1hJEZaDSEBP06Ns6Ybn3TEyGHTDVLDxn0kl-_zce4wLJ-uzKyfTNsQeYiDy9eYMxM5J-AsblArS0wbybHPzYp2lsbyTDcoPO4mnH1wZuXjefyxQnnV2Mxns2L2b5ZsiC_sQ9fOmiil8VKarIQXu4-28pKLaoK26i8H06_DM6dyL4-VGdMf6RMtQzTgzV_zZ0dmzTk5foIepbsKXEc0PEX3jHuGHvcdO3Ai8OfoY-3wAA68AQ48ggMP4MAADuzBgRM4XqCfnw6O9z-T1EODKLgZXBKucgU-Z9aKSjORSyksBdpuBWWGaw6fZSqHwXBTaVUxwTRcsCKTXEtv-uhLNHFzZ14hLHVlaGFpKVvGrCqEMLLILGeKs9Yys41of0IalQrM-z4ns-Y2dWwjMqy6iAVW_vL9sj_XTXISo_PXAIBuXblzxyO9Rg9HoO-iyXKxMm_QA3W17C4XbxN6fgG6qopl
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Density-based+clustering+algorithm+for+face+groping&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Pei%2C+Shenfei&rft.au=Nie%2C+Feiping&rft.au=Wang%2C+Rong&rft.au=Li%2C+Xuelong&rft.date=2021-10-28&rft.issn=0925-2312&rft.volume=462&rft.spage=331&rft.epage=343&rft_id=info:doi/10.1016%2Fj.neucom.2021.07.074&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2021_07_074
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon