An Efficient Density-based clustering algorithm for face groping
This paper focuses on the following problem: Given a large number of unlabeled face images, group them into individual clusters, and the number of clusters cannot be known in advance. To this end, an Efficient Density-based clustering incorporated with the model of Graph partitioning (EDG) is propos...
Gespeichert in:
| Veröffentlicht in: | Neurocomputing (Amsterdam) Jg. 462; S. 331 - 343 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
28.10.2021
|
| Schlagworte: | |
| ISSN: | 0925-2312 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper focuses on the following problem: Given a large number of unlabeled face images, group them into individual clusters, and the number of clusters cannot be known in advance. To this end, an Efficient Density-based clustering incorporated with the model of Graph partitioning (EDG) is proposed. 1. Inspired by the progress of graph partitioning clustering, a novel criterion that can be seen as a variant of the Normalized-cut model is employed to measure the similarity between two samples. 2. We only consider the similarities and connections on a subset of all possible pairs, i.e. the top-K nearest neighbors for each sample. Therefore, the computing and storage costs are linear w.r.t. the number of samples. In order to assess the performance of EDG on face images, extensive experiments based on a two-stage framework have been conducted on 19 benchmark datasets (14 middle-scale and 5 large-scale) from the literature. The experimental results have shown the effectiveness and robustness of our model, compared with the state-of-the-art methods.[code] |
|---|---|
| AbstractList | This paper focuses on the following problem: Given a large number of unlabeled face images, group them into individual clusters, and the number of clusters cannot be known in advance. To this end, an Efficient Density-based clustering incorporated with the model of Graph partitioning (EDG) is proposed. 1. Inspired by the progress of graph partitioning clustering, a novel criterion that can be seen as a variant of the Normalized-cut model is employed to measure the similarity between two samples. 2. We only consider the similarities and connections on a subset of all possible pairs, i.e. the top-K nearest neighbors for each sample. Therefore, the computing and storage costs are linear w.r.t. the number of samples. In order to assess the performance of EDG on face images, extensive experiments based on a two-stage framework have been conducted on 19 benchmark datasets (14 middle-scale and 5 large-scale) from the literature. The experimental results have shown the effectiveness and robustness of our model, compared with the state-of-the-art methods.[code] |
| Author | Wang, Rong Li, Xuelong Pei, Shenfei Nie, Feiping |
| Author_xml | – sequence: 1 givenname: Shenfei surname: Pei fullname: Pei, Shenfei email: shenfeipei@gmail.com organization: School of Computer Science and School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xian, Shaanxi 710072, PR China – sequence: 2 givenname: Feiping surname: Nie fullname: Nie, Feiping email: feipingnie@gmail.com organization: School of Computer Science and School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xian, Shaanxi 710072, PR China – sequence: 3 givenname: Rong surname: Wang fullname: Wang, Rong email: wangrong07@tsinghua.org.cn organization: School of Cybersecurity and School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xian, Shaanxi 710072, PR China – sequence: 4 givenname: Xuelong surname: Li fullname: Li, Xuelong email: xuelong_li@nwpu.edu.cn organization: School of Computer Science and School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xian, Shaanxi 710072, PR China |
| BookMark | eNqFkM1KAzEUhbOoYFt9Axd5gRmTTGbauBBLrT9QcKPrkEluaso0KUkq9O1NqSsXCod7uRzOge9O0MgHDwjdUFJTQrvbbe3hoMOuZoTRmsyK-AiNiWBtxRrKLtEkpS0hdEaZGKOHhccra5124DN-BJ9cPla9SmCwHg4pQ3R-g9WwCdHlzx22IWKrNOBNDPtiXaELq4YE1z97ij6eVu_Ll2r99vy6XKwr3ZAuV61mmjeCKDE3XLC-F7bhpJwNh9a0xSOalQEtzI2ec8EN76wgfWt6ZQw0U8TPvTqGlCJYuY9up-JRUiJP5HIrz-TyRC7JrIiX2N2vmHZZZRd8jsoN_4Xvz2EoYF8OokynP2kwLoLO0gT3d8E3K7572A |
| CitedBy_id | crossref_primary_10_1016_j_neunet_2022_07_025 crossref_primary_10_3389_fnbot_2022_981390 crossref_primary_10_3390_rs17152647 crossref_primary_10_1016_j_neucom_2025_131576 crossref_primary_10_1007_s44336_024_00008_3 crossref_primary_10_1016_j_eswa_2025_128197 crossref_primary_10_1016_j_ins_2024_121249 crossref_primary_10_1016_j_neucom_2024_127329 crossref_primary_10_1016_j_dsp_2022_103695 |
| Cites_doi | 10.1109/TGRS.2019.2913004 10.1109/TPAMI.2017.2679100 10.1609/aaai.v31i1.10814 10.1109/ACCESS.2019.2931334 10.1007/978-3-319-93040-4_34 10.1016/j.eswa.2019.05.030 10.1109/TKDE.2017.2787640 10.1007/s11222-007-9033-z 10.1007/s11042-016-4324-z 10.1016/j.jocs.2018.08.005 10.1016/j.neucom.2019.01.074 10.1007/s11263-016-0940-3 10.1073/pnas.0437847100 10.1016/j.knosys.2017.07.010 10.1007/978-3-030-29349-9_5 10.1016/S0262-8856(97)00070-X 10.1103/PhysRevE.99.062301 10.1126/science.1242072 10.1109/TPAMI.2004.1262185 10.1109/TGRS.2018.2867444 10.1016/j.knosys.2019.06.032 10.1016/j.ins.2018.03.031 10.1016/j.patcog.2017.06.023 10.3390/rs11040399 10.1016/j.ins.2016.08.086 10.1073/pnas.1700770114 10.1109/34.868688 10.1109/TIFS.2018.2833032 10.1007/978-981-13-0761-4_48 10.1109/ACCESS.2020.2972034 10.1109/TMM.2015.2420374 10.1007/978-981-10-8476-8_9 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. |
| Copyright_xml | – notice: 2021 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2021.07.074 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EndPage | 343 |
| ExternalDocumentID | 10_1016_j_neucom_2021_07_074 S0925231221011565 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYFN AAYWO ABBOA ABCQJ ABFNM ABJNI ABMAC ACDAQ ACGFS ACLOT ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AFPUW AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- ~HD 29N 9DU AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AFJKZ AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP |
| ID | FETCH-LOGICAL-c306t-5c2c4390a98d492bb9f3400a934e5d5c430c2430e5e8dc8494d46f90b5dbadde3 |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000698041400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Sat Nov 29 07:39:36 EST 2025 Tue Nov 18 22:41:13 EST 2025 Sat Sep 27 17:13:51 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Fast clustering Graph partitioning 99-00 Linkage-based Density-based 00-01 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-5c2c4390a98d492bb9f3400a934e5d5c430c2430e5e8dc8494d46f90b5dbadde3 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1016_j_neucom_2021_07_074 crossref_citationtrail_10_1016_j_neucom_2021_07_074 elsevier_sciencedirect_doi_10_1016_j_neucom_2021_07_074 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-10-28 |
| PublicationDateYYYYMMDD | 2021-10-28 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | C. Fu, D. Cai, Efanna: An extremely fast approximate nearest neighbor search algorithm based on knn graph, arXiv preprint arXiv:1609.07228. Phillips, Wechsler, Huang, Rauss (b0205) 1998; 16 Sharma, Sharma (b0130) 2017 Liu, Luo, Wang, Tang (b0235) 2015 Xu, Wang, Deng (b0160) 2016; 373 Khan, Hussain, Usman (b0020) 2018; 77 F. Nie, W. Zhu, X. Li, Unsupervised large graph embedding, in: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI’17, AAAI Press, 2017, pp. 2422–2428. Lin, Chen, Castillo, Chellappa (b0275) 2018 Li (b0115) 2020; 8 Janani, Vijayarani (b0005) 2019; 134 Wang, Li, Feng, Wang (b0100) 2015; 41 Wang, Nie, Wang, He, Li (b0080) 2019; 57 Hassner, Harel, Paz, Enbar (b0200) 2015 Zhao, Yuan, Wang (b0090) 2019; 11 Donoho, Elad (b0095) 2003; 100 Campello, Moulavi, Sander (b0125) 2013 Khan, Ishtiaq, Nazir, Shaheen (b0015) 2018; 28 Shah, Koltun (b0255) 2017; 114 Rothe, Timofte, Gool (b0240) 2018; 126 Ankerst, Breunig, Kriegel, Sander (b0260) 1999 Lai, Zhou, Hu, Bian, Song (b0135) 2019; 7 D. Yi, Z. Lei, S. Liao, S.Z. Li, Learning face representation from scratch, arXiv preprint arXiv:1411.7923. Tu, Zhang, Kang, Zhang, Li (b0175) 2019; 57 Learned-Miller, Huang, RoyChowdhury, Li, Hua (b0210) 2016 Sarfraz, Sharma, Stiefelhagen (b0035) 2019 Lin, Chen, Chellappa (b0040) 2017 M. Li, J.T.-Y. Kwok, B. Lü, Making large-scale nyström approximation possible, in: ICML 2010-Proceedings, 27th International Conference on Machine Learning, 2010, p. 631. Z. Guo, T. Huang, Z. Cai, W. Zhu, A new local density for density peak clustering, in: Advances in Knowledge Discovery and Data Mining, Springer International Publishing, 2018, pp. 426–438. Bai, Cheng, Liang, Shen, Guo (b0155) 2017; 71 Chen, Hu, Fan, Shen, Zhang, Liu, Du, Li, Chen, Li (b0150) 2020; 187 G. Zhong, C.-M. Pun, Revisiting nyström extension for hypergraph clustering, Neurocomputing. A. David, Vassilvitskii s.: K-means++: The advantages of careful seeding, in: 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), New Orleans, Louisiana, 2007, pp. 1027–1035. R. Jain, R.S. Sharma, Image segmentation through fuzzy clustering: A survey, in: Harmony Search and Nature Inspired Optimization Algorithms, Springer, 2019, pp. 497–508. V. Vitelli, A novel framework for joint sparse clustering and alignment of functional data, arXiv preprint arXiv:1912.00687. Lee, Malik, Shi, Mucha (b0025) 2019; 99 Hahsler, Piekenbrock, Doran (b0140) 2019; 25 Otto, Wang, Jain (b0270) 2018; 40 A.Y. Ng, M.I. Jordan, Y. Weiss, On spectral clustering: Analysis and an algorithm, in: Advances in Neural Information Processing Systems, 2002, pp. 849–856. Kazemi, Sullivan (b0280) 2014 Shi, Malik (b0060) 2000; 22 Wu, He, Sun, Tan (b0285) 2018; 13 Yaohui, Zhengming, Fang (b0165) 2017; 133 Wolf, Hassner, Maoz (b0245) 2011 N. Tremblay, A. Loukas, Approximating spectral clustering via sampling: a review, in: Sampling Techniques for Supervised or Unsupervised Tasks, Springer, 2020, pp. 129–183. D. Han, A. Agrawal, W.-K. Liao, A. Choudhary, A fast dbscan algorithm with spark implementation, in: Big Data in Engineering Applications, Springer, 2018, pp. 173–192. Bryant, Cios (b0045) 2018; 30 Fowlkes, Belongie, Chung, Malik (b0065) 2004; 26 Reddy, Vinzamuri (b0180) 2018 Luxburg (b0190) 2007; 17 Rodriguez, Laio (b0145) 2014; 344 Ester, Kriegel, Sander, Xu (b0110) 1996 Xu, Li, Li, Zou, Gu (b0030) 2019; 337 T. Zheng, W. Deng, Cross-pose lfw: A database for studying cross-pose face recognition in unconstrained environments, Tech. Rep. 18-01, Beijing University of Posts and Telecommunications (February 2018). Gupta, Chandra (b0185) 2019 T. Zheng, W. Deng, J. Hu, Cross-age LFW: A database for studying cross-age face recognition in unconstrained environments, CoRR abs/1708.08197. arXiv:1708.08197. Liu, Wang, Yu (b0050) 2018; 450 Chen, Chen, Hsu (b0230) 2015; 17 10.1016/j.neucom.2021.07.074_b0215 Otto (10.1016/j.neucom.2021.07.074_b0270) 2018; 40 Sarfraz (10.1016/j.neucom.2021.07.074_b0035) 2019 Zhao (10.1016/j.neucom.2021.07.074_b0090) 2019; 11 10.1016/j.neucom.2021.07.074_b0010 10.1016/j.neucom.2021.07.074_b0055 10.1016/j.neucom.2021.07.074_b0250 10.1016/j.neucom.2021.07.074_b0170 Reddy (10.1016/j.neucom.2021.07.074_b0180) 2018 Janani (10.1016/j.neucom.2021.07.074_b0005) 2019; 134 Learned-Miller (10.1016/j.neucom.2021.07.074_b0210) 2016 10.1016/j.neucom.2021.07.074_b0225 10.1016/j.neucom.2021.07.074_b0105 Kazemi (10.1016/j.neucom.2021.07.074_b0280) 2014 Khan (10.1016/j.neucom.2021.07.074_b0020) 2018; 77 Donoho (10.1016/j.neucom.2021.07.074_b0095) 2003; 100 Lin (10.1016/j.neucom.2021.07.074_b0040) 2017 Khan (10.1016/j.neucom.2021.07.074_b0015) 2018; 28 10.1016/j.neucom.2021.07.074_b0265 Chen (10.1016/j.neucom.2021.07.074_b0230) 2015; 17 Shah (10.1016/j.neucom.2021.07.074_b0255) 2017; 114 Shi (10.1016/j.neucom.2021.07.074_b0060) 2000; 22 Yaohui (10.1016/j.neucom.2021.07.074_b0165) 2017; 133 Rothe (10.1016/j.neucom.2021.07.074_b0240) 2018; 126 Rodriguez (10.1016/j.neucom.2021.07.074_b0145) 2014; 344 10.1016/j.neucom.2021.07.074_b0220 Wolf (10.1016/j.neucom.2021.07.074_b0245) 2011 Li (10.1016/j.neucom.2021.07.074_b0115) 2020; 8 Phillips (10.1016/j.neucom.2021.07.074_b0205) 1998; 16 Lai (10.1016/j.neucom.2021.07.074_b0135) 2019; 7 Lee (10.1016/j.neucom.2021.07.074_b0025) 2019; 99 Hahsler (10.1016/j.neucom.2021.07.074_b0140) 2019; 25 Tu (10.1016/j.neucom.2021.07.074_b0175) 2019; 57 Wu (10.1016/j.neucom.2021.07.074_b0285) 2018; 13 Hassner (10.1016/j.neucom.2021.07.074_b0200) 2015 Chen (10.1016/j.neucom.2021.07.074_b0150) 2020; 187 Fowlkes (10.1016/j.neucom.2021.07.074_b0065) 2004; 26 10.1016/j.neucom.2021.07.074_b0195 10.1016/j.neucom.2021.07.074_b0075 10.1016/j.neucom.2021.07.074_b0070 Lin (10.1016/j.neucom.2021.07.074_b0275) 2018 Liu (10.1016/j.neucom.2021.07.074_b0050) 2018; 450 Liu (10.1016/j.neucom.2021.07.074_b0235) 2015 Ester (10.1016/j.neucom.2021.07.074_b0110) 1996 Wang (10.1016/j.neucom.2021.07.074_b0100) 2015; 41 Sharma (10.1016/j.neucom.2021.07.074_b0130) 2017 Xu (10.1016/j.neucom.2021.07.074_b0030) 2019; 337 Wang (10.1016/j.neucom.2021.07.074_b0080) 2019; 57 Luxburg (10.1016/j.neucom.2021.07.074_b0190) 2007; 17 10.1016/j.neucom.2021.07.074_b0120 Gupta (10.1016/j.neucom.2021.07.074_b0185) 2019 10.1016/j.neucom.2021.07.074_b0085 Campello (10.1016/j.neucom.2021.07.074_b0125) 2013 Xu (10.1016/j.neucom.2021.07.074_b0160) 2016; 373 Bryant (10.1016/j.neucom.2021.07.074_b0045) 2018; 30 Bai (10.1016/j.neucom.2021.07.074_b0155) 2017; 71 Ankerst (10.1016/j.neucom.2021.07.074_b0260) 1999 |
| References_xml | – volume: 8 start-page: 47468 year: 2020 end-page: 47476 ident: b0115 article-title: An improved dbscan algorithm based on the neighbor similarity and fast nearest neighbor query publication-title: IEEE Access – start-page: 3730 year: 2015 end-page: 3738 ident: b0235 article-title: Deep learning face attributes in the wild publication-title: Proceedings of International Conference on Computer Vision (ICCV) – start-page: 8128 year: 2018 end-page: 8137 ident: b0275 article-title: Deep density clustering of unconstrained faces publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 337 start-page: 287 year: 2019 end-page: 302 ident: b0030 article-title: Eadp: An extended adaptive density peaks clustering for overlapping community detection in social networks publication-title: Neurocomputing – volume: 7 start-page: 104085 year: 2019 end-page: 104095 ident: b0135 article-title: A new dbscan parameters determination method based on improved mvo publication-title: IEEE Access – volume: 450 start-page: 200 year: 2018 end-page: 226 ident: b0050 article-title: Shared-nearest-neighbor-based clustering by fast search and find of density peaks publication-title: Information Sciences – volume: 30 start-page: 1109 year: 2018 end-page: 1121 ident: b0045 article-title: Rnn-dbscan: A density-based clustering algorithm using reverse nearest neighbor density estimates publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 13 start-page: 2884 year: 2018 end-page: 2896 ident: b0285 article-title: A light cnn for deep face representation with noisy labels publication-title: IEEE Transactions on Information Forensics and Security – start-page: 189 year: 2016 end-page: 248 ident: b0210 article-title: Labeled faces in the wild: A survey publication-title: Advances in Face Detection and Facial Image Analysis – reference: D. Yi, Z. Lei, S. Liao, S.Z. Li, Learning face representation from scratch, arXiv preprint arXiv:1411.7923. – reference: A. David, Vassilvitskii s.: K-means++: The advantages of careful seeding, in: 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), New Orleans, Louisiana, 2007, pp. 1027–1035. – reference: F. Nie, W. Zhu, X. Li, Unsupervised large graph embedding, in: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI’17, AAAI Press, 2017, pp. 2422–2428. – volume: 57 start-page: 7352 year: 2019 end-page: 7364 ident: b0080 article-title: Scalable graph-based clustering with nonnegative relaxation for large hyperspectral image publication-title: IEEE Transactions on Geoscience and Remote Sensing – start-page: 8934 year: 2019 end-page: 8943 ident: b0035 article-title: Efficient parameter-free clustering using first neighbor relations publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 4295 year: 2015 end-page: 4304 ident: b0200 article-title: Effective face frontalization in unconstrained images publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 11 start-page: 399 year: 2019 ident: b0090 article-title: Fast spectral clustering for unsupervised hyperspectral image classification publication-title: Remote Sensing – reference: T. Zheng, W. Deng, J. Hu, Cross-age LFW: A database for studying cross-age face recognition in unconstrained environments, CoRR abs/1708.08197. arXiv:1708.08197. – start-page: 294 year: 2017 end-page: 301 ident: b0040 article-title: A proximity-aware hierarchical clustering of faces publication-title: 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017) – start-page: 49 year: 1999 end-page: 60 ident: b0260 article-title: Optics: Ordering points to identify the clustering structure publication-title: Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, SIGMOD ’99 – volume: 41 start-page: 1373 year: 2015 end-page: 1384 ident: b0100 article-title: A survey on sparse subspace clustering publication-title: Acta Automatica Sinica – volume: 26 start-page: 214 year: 2004 end-page: 225 ident: b0065 article-title: Spectral grouping using the nystrom method publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 100 start-page: 2197 year: 2003 end-page: 2202 ident: b0095 article-title: Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization publication-title: Proceedings of the National Academy of Sciences – volume: 373 start-page: 200 year: 2016 end-page: 218 ident: b0160 article-title: Denpehc: Density peak based efficient hierarchical clustering publication-title: Information Sciences – volume: 57 start-page: 1573 year: 2019 end-page: 1584 ident: b0175 article-title: Density peak-based noisy label detection for hyperspectral image classification publication-title: IEEE Transactions on Geoscience and Remote Sensing – reference: G. Zhong, C.-M. Pun, Revisiting nyström extension for hypergraph clustering, Neurocomputing. – reference: N. Tremblay, A. Loukas, Approximating spectral clustering via sampling: a review, in: Sampling Techniques for Supervised or Unsupervised Tasks, Springer, 2020, pp. 129–183. – start-page: 226 year: 1996 end-page: 231 ident: b0110 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining – start-page: 787 year: 2017 end-page: 792 ident: b0130 article-title: Knn-dbscan: Using k-nearest neighbor information for parameter-free density based clustering publication-title: 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT) – start-page: 801 year: 2019 end-page: 805 ident: b0185 article-title: A comparative study of clustering algorithms publication-title: 2019 6th International Conference on Computing for Sustainable Global Development (INDIACom) – volume: 71 start-page: 375 year: 2017 end-page: 386 ident: b0155 article-title: Fast density clustering strategies based on the k-means algorithm publication-title: Pattern Recognition – reference: T. Zheng, W. Deng, Cross-pose lfw: A database for studying cross-pose face recognition in unconstrained environments, Tech. Rep. 18-01, Beijing University of Posts and Telecommunications (February 2018). – volume: 17 start-page: 395 year: 2007 end-page: 416 ident: b0190 article-title: A tutorial on spectral clustering publication-title: Statistics and Computing – start-page: 160 year: 2013 end-page: 172 ident: b0125 article-title: Density-based clustering based on hierarchical density estimates publication-title: Advances in Knowledge Discovery and Data Mining – volume: 22 start-page: 888 year: 2000 end-page: 905 ident: b0060 article-title: Normalized cuts and image segmentation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 134 start-page: 192 year: 2019 end-page: 200 ident: b0005 article-title: Text document clustering using spectral clustering algorithm with particle swarm optimization publication-title: Expert Systems with Applications – reference: R. Jain, R.S. Sharma, Image segmentation through fuzzy clustering: A survey, in: Harmony Search and Nature Inspired Optimization Algorithms, Springer, 2019, pp. 497–508. – volume: 187 year: 2020 ident: b0150 article-title: Fast density peak clustering for large scale data based on knn publication-title: Knowledge-Based Systems – volume: 99 year: 2019 ident: b0025 article-title: Social clustering in epidemic spread on coevolving networks publication-title: Physical Review E – volume: 77 start-page: 1133 year: 2018 end-page: 1165 ident: b0020 article-title: Reliable facial expression recognition for multi-scale images using weber local binary image based cosine transform features publication-title: Multimedia Tools and Applications – reference: M. Li, J.T.-Y. Kwok, B. Lü, Making large-scale nyström approximation possible, in: ICML 2010-Proceedings, 27th International Conference on Machine Learning, 2010, p. 631. – volume: 114 start-page: 9814 year: 2017 end-page: 9819 ident: b0255 article-title: Robust continuous clustering publication-title: Proceedings of the National Academy of Sciences – volume: 40 start-page: 289 year: 2018 end-page: 303 ident: b0270 article-title: Clustering millions of faces by identity publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – reference: C. Fu, D. Cai, Efanna: An extremely fast approximate nearest neighbor search algorithm based on knn graph, arXiv preprint arXiv:1609.07228. – volume: 17 start-page: 804 year: 2015 end-page: 815 ident: b0230 article-title: Face recognition and retrieval using cross-age reference coding with cross-age celebrity dataset publication-title: IEEE Transactions on Multimedia – volume: 25 start-page: 409 year: 2019 end-page: 416 ident: b0140 article-title: dbscan: Fast density-based clustering with r publication-title: Journal of Statistical Software – start-page: 87 year: 2018 end-page: 110 ident: b0180 article-title: A survey of partitional and hierarchical clustering algorithms publication-title: Data Clustering – volume: 16 start-page: 295 year: 1998 end-page: 306 ident: b0205 article-title: The feret database and evaluation procedure for face-recognition algorithms publication-title: Image and Vision Computing – reference: D. Han, A. Agrawal, W.-K. Liao, A. Choudhary, A fast dbscan algorithm with spark implementation, in: Big Data in Engineering Applications, Springer, 2018, pp. 173–192. – reference: Z. Guo, T. Huang, Z. Cai, W. Zhu, A new local density for density peak clustering, in: Advances in Knowledge Discovery and Data Mining, Springer International Publishing, 2018, pp. 426–438. – volume: 344 start-page: 1492 year: 2014 end-page: 1496 ident: b0145 article-title: Clustering by fast search and find of density peaks publication-title: Science – reference: A.Y. Ng, M.I. Jordan, Y. Weiss, On spectral clustering: Analysis and an algorithm, in: Advances in Neural Information Processing Systems, 2002, pp. 849–856. – start-page: 1867 year: 2014 end-page: 1874 ident: b0280 article-title: One millisecond face alignment with an ensemble of regression trees publication-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition – start-page: 529 year: 2011 end-page: 534 ident: b0245 article-title: Face recognition in unconstrained videos with matched background similarity publication-title: CVPR 2011 – volume: 28 start-page: 94 year: 2018 end-page: 100 ident: b0015 article-title: Face recognition under varying expressions and illumination using particle swarm optimization publication-title: Journal of Computational Science – volume: 133 start-page: 208 year: 2017 end-page: 220 ident: b0165 article-title: Adaptive density peak clustering based on k-nearest neighbors with aggregating strategy publication-title: Knowledge-Based Systems – volume: 126 start-page: 144 year: 2018 end-page: 157 ident: b0240 article-title: Deep expectation of real and apparent age from a single image without facial landmarks publication-title: International Journal of Computer Vision – reference: V. Vitelli, A novel framework for joint sparse clustering and alignment of functional data, arXiv preprint arXiv:1912.00687. – start-page: 4295 year: 2015 ident: 10.1016/j.neucom.2021.07.074_b0200 article-title: Effective face frontalization in unconstrained images – start-page: 3730 year: 2015 ident: 10.1016/j.neucom.2021.07.074_b0235 article-title: Deep learning face attributes in the wild – start-page: 49 year: 1999 ident: 10.1016/j.neucom.2021.07.074_b0260 article-title: Optics: Ordering points to identify the clustering structure – ident: 10.1016/j.neucom.2021.07.074_b0250 – ident: 10.1016/j.neucom.2021.07.074_b0215 – volume: 57 start-page: 7352 issue: 10 year: 2019 ident: 10.1016/j.neucom.2021.07.074_b0080 article-title: Scalable graph-based clustering with nonnegative relaxation for large hyperspectral image publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2019.2913004 – start-page: 801 year: 2019 ident: 10.1016/j.neucom.2021.07.074_b0185 article-title: A comparative study of clustering algorithms – volume: 40 start-page: 289 issue: 2 year: 2018 ident: 10.1016/j.neucom.2021.07.074_b0270 article-title: Clustering millions of faces by identity publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2017.2679100 – ident: 10.1016/j.neucom.2021.07.074_b0265 doi: 10.1609/aaai.v31i1.10814 – volume: 7 start-page: 104085 year: 2019 ident: 10.1016/j.neucom.2021.07.074_b0135 article-title: A new dbscan parameters determination method based on improved mvo publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2931334 – volume: 41 start-page: 1373 issue: 8 year: 2015 ident: 10.1016/j.neucom.2021.07.074_b0100 article-title: A survey on sparse subspace clustering publication-title: Acta Automatica Sinica – ident: 10.1016/j.neucom.2021.07.074_b0170 doi: 10.1007/978-3-319-93040-4_34 – volume: 134 start-page: 192 year: 2019 ident: 10.1016/j.neucom.2021.07.074_b0005 article-title: Text document clustering using spectral clustering algorithm with particle swarm optimization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.05.030 – volume: 30 start-page: 1109 issue: 6 year: 2018 ident: 10.1016/j.neucom.2021.07.074_b0045 article-title: Rnn-dbscan: A density-based clustering algorithm using reverse nearest neighbor density estimates publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2017.2787640 – ident: 10.1016/j.neucom.2021.07.074_b0220 – volume: 17 start-page: 395 issue: 4 year: 2007 ident: 10.1016/j.neucom.2021.07.074_b0190 article-title: A tutorial on spectral clustering publication-title: Statistics and Computing doi: 10.1007/s11222-007-9033-z – volume: 77 start-page: 1133 issue: 1 year: 2018 ident: 10.1016/j.neucom.2021.07.074_b0020 article-title: Reliable facial expression recognition for multi-scale images using weber local binary image based cosine transform features publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-016-4324-z – ident: 10.1016/j.neucom.2021.07.074_b0075 – volume: 28 start-page: 94 year: 2018 ident: 10.1016/j.neucom.2021.07.074_b0015 article-title: Face recognition under varying expressions and illumination using particle swarm optimization publication-title: Journal of Computational Science doi: 10.1016/j.jocs.2018.08.005 – volume: 337 start-page: 287 year: 2019 ident: 10.1016/j.neucom.2021.07.074_b0030 article-title: Eadp: An extended adaptive density peaks clustering for overlapping community detection in social networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.01.074 – volume: 25 start-page: 409 year: 2019 ident: 10.1016/j.neucom.2021.07.074_b0140 article-title: dbscan: Fast density-based clustering with r publication-title: Journal of Statistical Software – volume: 126 start-page: 144 issue: 2–4 year: 2018 ident: 10.1016/j.neucom.2021.07.074_b0240 article-title: Deep expectation of real and apparent age from a single image without facial landmarks publication-title: International Journal of Computer Vision doi: 10.1007/s11263-016-0940-3 – volume: 100 start-page: 2197 issue: 5 year: 2003 ident: 10.1016/j.neucom.2021.07.074_b0095 article-title: Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0437847100 – volume: 133 start-page: 208 year: 2017 ident: 10.1016/j.neucom.2021.07.074_b0165 article-title: Adaptive density peak clustering based on k-nearest neighbors with aggregating strategy publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2017.07.010 – ident: 10.1016/j.neucom.2021.07.074_b0085 doi: 10.1007/978-3-030-29349-9_5 – volume: 16 start-page: 295 issue: 5 year: 1998 ident: 10.1016/j.neucom.2021.07.074_b0205 article-title: The feret database and evaluation procedure for face-recognition algorithms publication-title: Image and Vision Computing doi: 10.1016/S0262-8856(97)00070-X – volume: 99 issue: 6 year: 2019 ident: 10.1016/j.neucom.2021.07.074_b0025 article-title: Social clustering in epidemic spread on coevolving networks publication-title: Physical Review E doi: 10.1103/PhysRevE.99.062301 – volume: 344 start-page: 1492 issue: 6191 year: 2014 ident: 10.1016/j.neucom.2021.07.074_b0145 article-title: Clustering by fast search and find of density peaks publication-title: Science doi: 10.1126/science.1242072 – ident: 10.1016/j.neucom.2021.07.074_b0070 – start-page: 226 year: 1996 ident: 10.1016/j.neucom.2021.07.074_b0110 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise – start-page: 787 year: 2017 ident: 10.1016/j.neucom.2021.07.074_b0130 article-title: Knn-dbscan: Using k-nearest neighbor information for parameter-free density based clustering – volume: 26 start-page: 214 issue: 2 year: 2004 ident: 10.1016/j.neucom.2021.07.074_b0065 article-title: Spectral grouping using the nystrom method publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2004.1262185 – volume: 57 start-page: 1573 issue: 3 year: 2019 ident: 10.1016/j.neucom.2021.07.074_b0175 article-title: Density peak-based noisy label detection for hyperspectral image classification publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2018.2867444 – volume: 187 year: 2020 ident: 10.1016/j.neucom.2021.07.074_b0150 article-title: Fast density peak clustering for large scale data based on knn publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2019.06.032 – volume: 450 start-page: 200 year: 2018 ident: 10.1016/j.neucom.2021.07.074_b0050 article-title: Shared-nearest-neighbor-based clustering by fast search and find of density peaks publication-title: Information Sciences doi: 10.1016/j.ins.2018.03.031 – volume: 71 start-page: 375 year: 2017 ident: 10.1016/j.neucom.2021.07.074_b0155 article-title: Fast density clustering strategies based on the k-means algorithm publication-title: Pattern Recognition doi: 10.1016/j.patcog.2017.06.023 – start-page: 87 year: 2018 ident: 10.1016/j.neucom.2021.07.074_b0180 article-title: A survey of partitional and hierarchical clustering algorithms – start-page: 8934 year: 2019 ident: 10.1016/j.neucom.2021.07.074_b0035 article-title: Efficient parameter-free clustering using first neighbor relations – start-page: 160 year: 2013 ident: 10.1016/j.neucom.2021.07.074_b0125 article-title: Density-based clustering based on hierarchical density estimates – volume: 11 start-page: 399 issue: 4 year: 2019 ident: 10.1016/j.neucom.2021.07.074_b0090 article-title: Fast spectral clustering for unsupervised hyperspectral image classification publication-title: Remote Sensing doi: 10.3390/rs11040399 – volume: 373 start-page: 200 year: 2016 ident: 10.1016/j.neucom.2021.07.074_b0160 article-title: Denpehc: Density peak based efficient hierarchical clustering publication-title: Information Sciences doi: 10.1016/j.ins.2016.08.086 – ident: 10.1016/j.neucom.2021.07.074_b0195 – start-page: 189 year: 2016 ident: 10.1016/j.neucom.2021.07.074_b0210 article-title: Labeled faces in the wild: A survey – volume: 114 start-page: 9814 issue: 37 year: 2017 ident: 10.1016/j.neucom.2021.07.074_b0255 article-title: Robust continuous clustering publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1700770114 – volume: 22 start-page: 888 issue: 8 year: 2000 ident: 10.1016/j.neucom.2021.07.074_b0060 article-title: Normalized cuts and image segmentation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.868688 – volume: 13 start-page: 2884 issue: 11 year: 2018 ident: 10.1016/j.neucom.2021.07.074_b0285 article-title: A light cnn for deep face representation with noisy labels publication-title: IEEE Transactions on Information Forensics and Security doi: 10.1109/TIFS.2018.2833032 – start-page: 294 year: 2017 ident: 10.1016/j.neucom.2021.07.074_b0040 article-title: A proximity-aware hierarchical clustering of faces – ident: 10.1016/j.neucom.2021.07.074_b0105 – start-page: 529 year: 2011 ident: 10.1016/j.neucom.2021.07.074_b0245 article-title: Face recognition in unconstrained videos with matched background similarity – start-page: 1867 year: 2014 ident: 10.1016/j.neucom.2021.07.074_b0280 article-title: One millisecond face alignment with an ensemble of regression trees – ident: 10.1016/j.neucom.2021.07.074_b0010 doi: 10.1007/978-981-13-0761-4_48 – volume: 8 start-page: 47468 year: 2020 ident: 10.1016/j.neucom.2021.07.074_b0115 article-title: An improved dbscan algorithm based on the neighbor similarity and fast nearest neighbor query publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2972034 – volume: 17 start-page: 804 issue: 6 year: 2015 ident: 10.1016/j.neucom.2021.07.074_b0230 article-title: Face recognition and retrieval using cross-age reference coding with cross-age celebrity dataset publication-title: IEEE Transactions on Multimedia doi: 10.1109/TMM.2015.2420374 – start-page: 8128 year: 2018 ident: 10.1016/j.neucom.2021.07.074_b0275 article-title: Deep density clustering of unconstrained faces – ident: 10.1016/j.neucom.2021.07.074_b0055 – ident: 10.1016/j.neucom.2021.07.074_b0120 doi: 10.1007/978-981-10-8476-8_9 – ident: 10.1016/j.neucom.2021.07.074_b0225 |
| SSID | ssj0017129 |
| Score | 2.384044 |
| Snippet | This paper focuses on the following problem: Given a large number of unlabeled face images, group them into individual clusters, and the number of clusters... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 331 |
| SubjectTerms | Density-based Fast clustering Graph partitioning Linkage-based |
| Title | An Efficient Density-based clustering algorithm for face groping |
| URI | https://dx.doi.org/10.1016/j.neucom.2021.07.074 |
| Volume | 462 |
| WOSCitedRecordID | wos000698041400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017129 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLag44EX7oiNgfzAGzLKYjuJ34imIUDThGBIfYvi25apc6eunfbzOb4kaRka7AGpsiq3PmlzvnznxDkXhN7lVILfawVptbSEFTYjrbGUlFUhwD7RPRUThQ_Lo6NqOhXfUkjQZWgnUDpXXV-Li_-qapgDZfvU2TuoexAKE_AelA4jqB3Gf1J87Xy75C4kOgKdOB90Qbyx0u_VbOXrIoS8xNnJfNEtT89DnKFt4fI-WYTkqXV3NZTuUKHxQ9pSqM-9BO1hJEZaDSEBP06Ns6Ybn3TEyGHTDVLDxn0kl-_zce4wLJ-uzKyfTNsQeYiDy9eYMxM5J-AsblArS0wbybHPzYp2lsbyTDcoPO4mnH1wZuXjefyxQnnV2Mxns2L2b5ZsiC_sQ9fOmiil8VKarIQXu4-28pKLaoK26i8H06_DM6dyL4-VGdMf6RMtQzTgzV_zZ0dmzTk5foIepbsKXEc0PEX3jHuGHvcdO3Ai8OfoY-3wAA68AQ48ggMP4MAADuzBgRM4XqCfnw6O9z-T1EODKLgZXBKucgU-Z9aKSjORSyksBdpuBWWGaw6fZSqHwXBTaVUxwTRcsCKTXEtv-uhLNHFzZ14hLHVlaGFpKVvGrCqEMLLILGeKs9Yys41of0IalQrM-z4ns-Y2dWwjMqy6iAVW_vL9sj_XTXISo_PXAIBuXblzxyO9Rg9HoO-iyXKxMm_QA3W17C4XbxN6fgG6qopl |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Density-based+clustering+algorithm+for+face+groping&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Pei%2C+Shenfei&rft.au=Nie%2C+Feiping&rft.au=Wang%2C+Rong&rft.au=Li%2C+Xuelong&rft.date=2021-10-28&rft.issn=0925-2312&rft.volume=462&rft.spage=331&rft.epage=343&rft_id=info:doi/10.1016%2Fj.neucom.2021.07.074&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2021_07_074 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |