A deep learning based trust- and tag-aware recommender system
Recommender systems are popular tools used in many applications, such as e-commerce, e-learning, and social networks to help users select their desired items. Collaborative filtering is a widely used recommendation technique that employs previous ratings of users to predict their future interests. L...
Uloženo v:
| Vydáno v: | Neurocomputing (Amsterdam) Ročník 488; s. 557 - 571 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.06.2022
|
| Témata: | |
| ISSN: | 0925-2312, 1872-8286 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Recommender systems are popular tools used in many applications, such as e-commerce, e-learning, and social networks to help users select their desired items. Collaborative filtering is a widely used recommendation technique that employs previous ratings of users to predict their future interests. Lack of sufficient ratings often reduces the performance of collaborative filtering recommendation methods. Additional side resources, such as trust relationships and tag information can be employed to enhance the recommendation accuracy. However, trust and tag data are often heavily sparse as users mainly provide insufficient information about these side resources. Moreover, such additional resources have generally large dimensions which result in increasing the computational complexity of recommendation models in calculating similarity values. To cope with these problems, a new recommendation model is proposed that utilizes deep neural networks to model the representation of trust relationships and tag information. To this end, a sparse autoencoder is used to extract latent features from user-user trust relationships and user-tag matrices. Then, the extracted latent features are utilized to calculate similarity values between users, which are then used to form the nearest neighbors of the target user and predict unseen items. The proposed method can tackle the data sparsity problem and reduce the computational complexity of recommender systems as the extracted latent features have smaller dimensions in comparison to the original data. Experimental results on two benchmark datasets reveal the effectiveness of the proposed method and show its outperformance over state-of-the-art recommender systems. |
|---|---|
| AbstractList | Recommender systems are popular tools used in many applications, such as e-commerce, e-learning, and social networks to help users select their desired items. Collaborative filtering is a widely used recommendation technique that employs previous ratings of users to predict their future interests. Lack of sufficient ratings often reduces the performance of collaborative filtering recommendation methods. Additional side resources, such as trust relationships and tag information can be employed to enhance the recommendation accuracy. However, trust and tag data are often heavily sparse as users mainly provide insufficient information about these side resources. Moreover, such additional resources have generally large dimensions which result in increasing the computational complexity of recommendation models in calculating similarity values. To cope with these problems, a new recommendation model is proposed that utilizes deep neural networks to model the representation of trust relationships and tag information. To this end, a sparse autoencoder is used to extract latent features from user-user trust relationships and user-tag matrices. Then, the extracted latent features are utilized to calculate similarity values between users, which are then used to form the nearest neighbors of the target user and predict unseen items. The proposed method can tackle the data sparsity problem and reduce the computational complexity of recommender systems as the extracted latent features have smaller dimensions in comparison to the original data. Experimental results on two benchmark datasets reveal the effectiveness of the proposed method and show its outperformance over state-of-the-art recommender systems. |
| Author | Ahmadian, Sajad Jalili, Mahdi Ahmadian, Milad |
| Author_xml | – sequence: 1 givenname: Sajad surname: Ahmadian fullname: Ahmadian, Sajad email: s.ahmadian@kut.ac.ir organization: Faculty of Information Technology, Kermanshah University of Technology, Kermanshah, Iran – sequence: 2 givenname: Milad surname: Ahmadian fullname: Ahmadian, Milad email: m.ahmadian@stu.razi.ac.ir organization: Department of Computer Engineering, Razi University, Kermanshah, Iran – sequence: 3 givenname: Mahdi surname: Jalili fullname: Jalili, Mahdi email: mahdi.jalili@rmit.edu.au organization: School of Engineering, RMIT University, Melbourne, Australia |
| BookMark | eNqFkM1KAzEUhYNUsFXfwMW8wIy5-ZsZQaEU_6DgRtchTe6UlE6mJKnSt3dKXbnQ1T2b7xzuNyOTMAQk5AZoBRTU7aYKuLdDXzHKoAKoqBJnZApNzcqGNWpCprRlsmQc2AWZpbShFGpg7ZTczwuHuCu2aGLwYV2sTEJX5LhPuSxMGKNZl-bLRCwijhs9BoexSIeUsb8i553ZJrz-uZfk4-nxffFSLt-eXxfzZWk5VbmURghJO84F1B2zjisjVxKFEuiwrWUj0FpqhBT1CoSzVPDGtoKjY0yhcvyS3J16bRxSithp67PJfgg5Gr_VQPVRhN7okwh9FKEB9ChihMUveBd9b-LhP-zhhOH42KfHqJP1GCw6P4rI2g3-74JvAYZ7wg |
| CitedBy_id | crossref_primary_10_1016_j_ins_2022_11_085 crossref_primary_10_3390_s23084140 crossref_primary_10_1109_ACCESS_2023_3271678 crossref_primary_10_1002_cpe_7423 crossref_primary_10_1016_j_engappai_2023_107499 crossref_primary_10_1016_j_knosys_2022_109661 crossref_primary_10_1145_3744570 crossref_primary_10_1016_j_segan_2022_100903 crossref_primary_10_1016_j_knosys_2022_109940 crossref_primary_10_1371_journal_pone_0315533 crossref_primary_10_5753_jis_2025_6118 crossref_primary_10_26599_TST_2023_9010118 crossref_primary_10_1007_s00607_024_01385_9 crossref_primary_10_1007_s41060_025_00747_6 crossref_primary_10_26599_TST_2024_9010216 crossref_primary_10_3390_app13020814 crossref_primary_10_1007_s10489_023_04719_w crossref_primary_10_1016_j_neucom_2025_131021 crossref_primary_10_1016_j_neunet_2024_107071 crossref_primary_10_1177_01655515241270623 crossref_primary_10_3390_app122010594 crossref_primary_10_1002_cpe_8262 crossref_primary_10_1109_ACCESS_2023_3306452 crossref_primary_10_1007_s10660_024_09944_0 crossref_primary_10_1111_exsy_13385 crossref_primary_10_1007_s11042_023_15021_9 crossref_primary_10_1016_j_procs_2024_04_041 crossref_primary_10_1109_ACCESS_2025_3549133 crossref_primary_10_1080_01605682_2025_2498652 crossref_primary_10_1007_s10489_023_05244_6 crossref_primary_10_1016_j_asoc_2024_112608 crossref_primary_10_1016_j_procs_2025_01_018 crossref_primary_10_3390_electronics12020402 crossref_primary_10_3390_electronics12112429 crossref_primary_10_1007_s10489_022_04215_7 crossref_primary_10_1007_s11831_023_09968_z crossref_primary_10_4018_JCIT_335524 crossref_primary_10_1007_s42979_024_03296_0 crossref_primary_10_3390_electronics12245034 crossref_primary_10_1080_17508975_2025_2544204 crossref_primary_10_1007_s11042_024_19313_6 crossref_primary_10_1162_tacl_a_00635 crossref_primary_10_1007_s42235_022_00216_x crossref_primary_10_1016_j_eswa_2025_129653 crossref_primary_10_1109_ACCESS_2024_3514306 crossref_primary_10_1002_dac_5684 crossref_primary_10_1016_j_knosys_2023_110289 crossref_primary_10_1016_j_eswa_2023_122981 crossref_primary_10_1109_ACCESS_2023_3262026 crossref_primary_10_1016_j_eswa_2024_124313 crossref_primary_10_1016_j_iswa_2024_200474 crossref_primary_10_1109_ACCESS_2022_3187964 crossref_primary_10_3390_app15179744 crossref_primary_10_1007_s10115_024_02331_z crossref_primary_10_1007_s11063_024_11639_4 crossref_primary_10_3390_electronics11081219 crossref_primary_10_1109_ACCESS_2024_3428630 crossref_primary_10_1016_j_asoc_2024_112396 crossref_primary_10_7717_peerj_cs_1448 crossref_primary_10_1016_j_neucom_2025_129886 crossref_primary_10_1007_s10660_025_09954_6 crossref_primary_10_1016_j_neucom_2023_03_051 crossref_primary_10_1080_0952813X_2024_2401364 crossref_primary_10_1002_cpe_8208 crossref_primary_10_1109_ACCESS_2022_3180051 crossref_primary_10_3390_e26080669 |
| Cites_doi | 10.1016/j.eswa.2016.09.040 10.1016/j.knosys.2021.107251 10.1016/j.ipm.2021.102690 10.1016/j.dss.2019.01.003 10.1109/ACCESS.2018.2883742 10.1007/BF01589116 10.1109/SEST50973.2021.9543462 10.1007/s10489-018-1219-x 10.3233/IDA-140699 10.1109/ACCESS.2019.2928574 10.1016/j.neucom.2020.08.018 10.1109/TSMCA.2012.2208186 10.1007/s10489-018-1289-9 10.1109/TKDE.2016.2528249 10.3390/info9060143 10.1109/TPAMI.2013.50 10.1016/j.knosys.2020.106434 10.1145/1864708.1864736 10.1016/j.ins.2020.07.038 10.1109/TPAMI.2016.2605085 10.1016/j.knosys.2018.01.003 10.1007/s10489-018-1359-z 10.1007/s10115-015-0832-9 10.1016/j.knosys.2020.106681 10.1016/j.asoc.2021.107345 10.1016/j.neucom.2019.01.028 10.1007/s11280-018-0532-y 10.1016/j.eswa.2015.05.027 10.1109/TMM.2020.2992941 10.1016/j.asoc.2020.107005 10.1016/j.neucom.2015.10.134 10.1109/TSMCA.2011.2132708 10.1016/j.ipm.2017.03.002 10.1007/s12652-020-02388-y 10.1145/3158369 10.1109/ACCESS.2018.2890293 10.1016/j.neucom.2020.12.015 10.1109/ACCESS.2019.2905534 10.3390/app8050799 10.1016/j.dss.2019.113073 10.1016/j.future.2017.04.003 10.1016/j.eswa.2021.114757 10.1109/TNSE.2020.3044035 10.1109/TII.2019.2958696 10.1145/3121050.3121057 10.1016/j.eswa.2018.11.003 10.1016/j.ins.2018.08.039 10.1109/TCYB.2018.2795041 10.1016/j.knosys.2017.01.027 10.1016/j.knosys.2019.105371 10.1016/j.eswa.2021.115849 10.1145/3369390 10.1109/TSMC.2016.2633573 10.1016/j.inffus.2021.04.001 10.1145/3038912.3052569 10.1007/s10844-018-0517-4 10.1016/j.eswa.2021.115555 10.1109/ASONAM.2018.8508723 10.1109/TSMC.2015.2460691 10.1016/j.physa.2015.05.008 10.1016/j.elerap.2019.100838 10.1007/s11042-018-7079-x 10.1126/science.1127647 10.1177/0165551518808191 10.1016/j.eswa.2018.04.014 10.1109/TSMC.2013.2263128 10.1016/j.asoc.2021.107675 10.1007/s11042-020-09768-8 10.1002/int.22320 10.1109/TII.2021.3065718 10.1016/j.neucom.2014.07.011 10.1007/s10489-017-0928-x 10.1016/j.neucom.2019.11.095 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. |
| Copyright_xml | – notice: 2021 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2021.11.064 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 571 |
| ExternalDocumentID | 10_1016_j_neucom_2021_11_064 S0925231221017410 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c306t-5a4450f33417f2cd36a5b5e464ede97584ecc0a4547b14dc0438c943ed226e6d3 |
| ISICitedReferencesCount | 76 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000830177900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Sat Nov 29 07:14:02 EST 2025 Tue Nov 18 20:33:51 EST 2025 Fri Feb 23 02:40:46 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep neural networks Sparse autoencoder Tag Collaborative filtering Trust Recommender systems |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-5a4450f33417f2cd36a5b5e464ede97584ecc0a4547b14dc0438c943ed226e6d3 |
| PageCount | 15 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_neucom_2021_11_064 crossref_primary_10_1016_j_neucom_2021_11_064 elsevier_sciencedirect_doi_10_1016_j_neucom_2021_11_064 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-01 2022-06-00 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Wang, Chen, Wang, Chen, Liu, Gong (b0215) 2020; 16 He, Meng, Zhang (b0335) 2019; 7 Vaasa, Finland, 2021, pp. 1-6. Gohari, Aliee, Haghighi (b0170) 2019; 34 Eirinaki, Louta, Varlamis (b0105) 2014; 44 “A new ensemble reinforcement learning strategy for solar irradiance forecasting using deep optimized convolutional neural network models,” in A. Makhzani and B. Frey, “K-sparse Autoencoders,” Liu, Nocedal (b0420) 1989; 45 Zhang, Zhang, Wang, Chen (b0350) 2019; 334 Ahmadian, Afsharchi, Meghdadi (b0175) 2019; 45 Mauro, Ardissono (b0240) 2019 Guan, Wang, Bu, Chen, Yang, Cai (b0275) 2010 Banerjee, Banjare, Pal, Jenamani (b0265) 2021; 12 Da’u, Salim, Idris (b0360) 2021; 213 Ahmadian, Afsharchi, Meghdadi (b0055) 2019; 78 Jalali, Ahmadian, Ahmadian, Khosravi, Alazab, Nahavandi (b0305) 2021; 111 Wu, Zhang, Yue, Zhang, He, Sun (b0375) 2018; 145 Movahedian, Khayyambashi (b0115) 2015; 19 Zhang, Liu, Sang (b0050) 2021; 106 Quintanilla, Rawat, Sakryukin, Shah, Kankanhalli (b0290) 2020; 23 Rafailidis, Daras (b0090) 2013; 43 Guo, Liang, Zhu, Luo, Sun, Zheng (b0180) 2019; 53 Huang, Wang, Han, Yu, Cui (b0295) 2020; 385 Yan, Wang, Cao, Liu (b0340) 2019; 7 Wei, He, Chen, Zhou, Tang (b0385) 2017; 69 Fan, Li, Cheng (b0445) 2018 Tang, Zhao, Bu, Qian (b0035) 2021; 228 Hinton, Salakhutdinov (b0435) 2006; 313 Moradi, Ahmadian, Akhlaghian (b0110) 2015; 436 Ahmed, Saleem, Khalid, Rashid (b0205) 2021; 174 Zhang, Du, Yoshida, Yang (b0365) 2019; 470 Ma, Wang, Zheng, Miao, Liang (b0210) 2021; 431 Rafailidis, Nanopoulos (b0125) 2016; 46 Moradi, Ahmadian (b0145) 2015; 42 Ahmadian, Meghdadi, Afsharchi (b0165) 2018; 54 Jiang, Rong, Peng, Nie, Xiong (b0425) 2015 Zhang, Yao, Sun, Tay (b0300) 2019; 52 N.CC, Mohan (b0450) 2019; 49 Zhang, Sun, Zhao, Chow, Wu (b0040) 2019 Ghavipour, Meybodi (b0155) 2019; 49 Chen, Ding, Xin, Li, Wang, Wang (b0260) 2021; 421 Nanopoulos (b0270) 2011; 41 Guan, Wei, Chen (b0345) 2019; 118 Ma, Zhou, Liu, Lyu, King (b0440) 2011 2017, pp. 173–182. Xu, Lukasiewicz, Chen, Miao, Meng (b0455) 2017 Guo, Zhou, Zhang, Song, Chen (b0200) 2021; 74 Zheng, Kondo, Zilora, Yu (b0085) 2018; 106 Zhao, Wang, Zhang, Sun, Huo, Qu (b0230) 2020; 209 Zhao, Guan, Liu (b0280) 2015; 148 Deng, Huang, Wang, Lai, Yu (b0390) 2019 2013. Hu, Xu, Zheng, Liu, Li, Sheng, Lian, Xian (b0220) 2020; 20 Xie, Xiong, Han, Liu, Li, Bao (b0255) 2018; 21 Fu, Qu, Yi, Lu, Liu (b0370) 2018; 49 Luo, Xie, Rao, Wang (b0250) 2019; 119 Ahmadian, Joorabloo, Jalili, Ahmadian (b0065) 2022; 187 Bengio, Courville, Vincent (b0415) 2013; 35 Wan, Xia, Kong, Hsu, Huang, Ma (b0460) 2021; 8 Barcelona, Spain, 2010, pp. 135-142. Zuo, Zeng, Gong, Jiao (b0120) 2016; 204 Jalali, Ahmadian, Khosravi, Shafie-khah, Nahavandi, Catalão (b0310) 2021; 17 Liu, Wu (b0330) 2017 Rezaeimehr, Moradi, Ahmadian, Qader, Jalili (b0010) 2018; 78 D. Rafailidis and F. Crestani, “Recommendation with social relationships via deep learning,” in Agrawal, Roy, Mitra (b0285) 2021; 58 Xi, Huang, Wang, Zheng, Lai, BPAM (b0395) 2019 Moradi, Rezaimehr, Ahmadian, Jalili (b0140) 2016 X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T. S. Chua, “Neural collaborative filtering,” in Amsterdam, The Netherlands, 2017, pp. 151-158. Liu, Liang, Chiclana, Wu (b0195) 2021; 101 Liang, Zheng, Chen, Sangaiah, Zhao (b0380) 2018; 8 Jalali, Ahmadian, Kavousi-Fard, Khosravi, Nahavandi (b0320) 2021 Ahmadian, Meghdadi, Afsharchi (b0005) 2018; 48 Chen, Wang, Jiang, Li, Yan, Shi (b0225) 2021; 36 S. Ahmadian, N. Joorabloo, M. Jalili, M. Meghdadi, M. Afsharchi, and Y. Ren, “A temporal clustering approach for social recommender systems,” in Jalili, Ahmadian, Izadi, Moradi, Salehi (b0030) 2018; 6 Zhang, Xu, Zhang, Wang (b0015) 2017; 47 Jalali, Ahmadian, Khodayar, Khosravi, Ghasemi, Shafie-khah (b0315) 2021 Rahmani, Aliannejadi, Ahmadian, Baratchi, Afsharchi, Crestani (b0130) 2019 Liu, Han, Gou, Yang (b0150) 2019; 7 M. Jamali and M. Ester, “A matrix factorization technique with trust propagation for recommendation in social networks,” in Ahmadian, Joorabloo, Jalili, Ren, Meghdadi, Afsharchi (b0075) 2020; 192 Yu, Guo, Li, Wang, Fan (b0160) 2019; 123 Guo, Zhang, Zhu, Wang (b0185) 2017; 122 Zhu, Li, Zhou, Xiong, Yuan (b0235) 2016; 46 Yang, Lei, Liu, Li (b0095) 2016; 39 Ni, Huang, Cheng, Gao (b0355) 2021; 542 Guo, Zhang, Yorke-Smith (b0190) 2016; 28 Barcelona, Spain, 2018, pp. 1139-1144. Ficel, Haddad, Zghal (b0020) 2021; 185 Zhao, Wang, Wang, Zhou, Jiang (b0045) 2018; 48 Guo, Zhang, Yorke-Smith (b0100) 2015 Han, Huang, Zhang, Bhatti (b0245) 2018; 9 Xue, Dai, Zhang, Huang, Chen (b0400) 2017 S. M. J. Jalali, M. Khodayar, S. Ahmadian, M. Shafie-khah, A. Khosravi, S. M. S. Islam Lee, Battle, Raina, Ng (b0430) 2006 Ahmadian, Moradi, Akhlaghian (b0135) 2014 Tahmasebi, Meghdadi, Ahmadian, Valiallahi (b0060) 2021; 80 Rafailidis (10.1016/j.neucom.2021.11.064_b0125) 2016; 46 Liu (10.1016/j.neucom.2021.11.064_b0150) 2019; 7 Wang (10.1016/j.neucom.2021.11.064_b0215) 2020; 16 Han (10.1016/j.neucom.2021.11.064_b0245) 2018; 9 Rezaeimehr (10.1016/j.neucom.2021.11.064_b0010) 2018; 78 10.1016/j.neucom.2021.11.064_b0410 Ma (10.1016/j.neucom.2021.11.064_b0440) 2011 Xue (10.1016/j.neucom.2021.11.064_b0400) 2017 Liu (10.1016/j.neucom.2021.11.064_b0195) 2021; 101 Deng (10.1016/j.neucom.2021.11.064_b0390) 2019 Zhang (10.1016/j.neucom.2021.11.064_b0365) 2019; 470 Yu (10.1016/j.neucom.2021.11.064_b0160) 2019; 123 Gohari (10.1016/j.neucom.2021.11.064_b0170) 2019; 34 Huang (10.1016/j.neucom.2021.11.064_b0295) 2020; 385 Ahmadian (10.1016/j.neucom.2021.11.064_b0065) 2022; 187 Xie (10.1016/j.neucom.2021.11.064_b0255) 2018; 21 Zheng (10.1016/j.neucom.2021.11.064_b0085) 2018; 106 Wan (10.1016/j.neucom.2021.11.064_b0460) 2021; 8 Guo (10.1016/j.neucom.2021.11.064_b0200) 2021; 74 Ma (10.1016/j.neucom.2021.11.064_b0210) 2021; 431 Ahmed (10.1016/j.neucom.2021.11.064_b0205) 2021; 174 Yang (10.1016/j.neucom.2021.11.064_b0095) 2016; 39 Fu (10.1016/j.neucom.2021.11.064_b0370) 2018; 49 Moradi (10.1016/j.neucom.2021.11.064_b0145) 2015; 42 Ni (10.1016/j.neucom.2021.11.064_b0355) 2021; 542 10.1016/j.neucom.2021.11.064_b0025 Quintanilla (10.1016/j.neucom.2021.11.064_b0290) 2020; 23 Rafailidis (10.1016/j.neucom.2021.11.064_b0090) 2013; 43 Guo (10.1016/j.neucom.2021.11.064_b0100) 2015 Ficel (10.1016/j.neucom.2021.11.064_b0020) 2021; 185 Xi (10.1016/j.neucom.2021.11.064_b0395) 2019 Liu (10.1016/j.neucom.2021.11.064_b0330) 2017 Xu (10.1016/j.neucom.2021.11.064_b0455) 2017 Luo (10.1016/j.neucom.2021.11.064_b0250) 2019; 119 Ghavipour (10.1016/j.neucom.2021.11.064_b0155) 2019; 49 Zhang (10.1016/j.neucom.2021.11.064_b0350) 2019; 334 Guan (10.1016/j.neucom.2021.11.064_b0345) 2019; 118 Hu (10.1016/j.neucom.2021.11.064_b0220) 2020; 20 Wu (10.1016/j.neucom.2021.11.064_b0375) 2018; 145 Movahedian (10.1016/j.neucom.2021.11.064_b0115) 2015; 19 Moradi (10.1016/j.neucom.2021.11.064_b0140) 2016 Jalali (10.1016/j.neucom.2021.11.064_b0310) 2021; 17 Bengio (10.1016/j.neucom.2021.11.064_b0415) 2013; 35 Fan (10.1016/j.neucom.2021.11.064_b0445) 2018 Ahmadian (10.1016/j.neucom.2021.11.064_b0055) 2019; 78 Tang (10.1016/j.neucom.2021.11.064_b0035) 2021; 228 Yan (10.1016/j.neucom.2021.11.064_b0340) 2019; 7 Zuo (10.1016/j.neucom.2021.11.064_b0120) 2016; 204 Jalili (10.1016/j.neucom.2021.11.064_b0030) 2018; 6 Zhu (10.1016/j.neucom.2021.11.064_b0235) 2016; 46 Liu (10.1016/j.neucom.2021.11.064_b0420) 1989; 45 Ahmadian (10.1016/j.neucom.2021.11.064_b0175) 2019; 45 10.1016/j.neucom.2021.11.064_b0070 Zhao (10.1016/j.neucom.2021.11.064_b0280) 2015; 148 Liang (10.1016/j.neucom.2021.11.064_b0380) 2018; 8 Zhang (10.1016/j.neucom.2021.11.064_b0040) 2019 Guo (10.1016/j.neucom.2021.11.064_b0190) 2016; 28 Chen (10.1016/j.neucom.2021.11.064_b0225) 2021; 36 Zhao (10.1016/j.neucom.2021.11.064_b0230) 2020; 209 Jiang (10.1016/j.neucom.2021.11.064_b0425) 2015 Guo (10.1016/j.neucom.2021.11.064_b0185) 2017; 122 Ahmadian (10.1016/j.neucom.2021.11.064_b0075) 2020; 192 Agrawal (10.1016/j.neucom.2021.11.064_b0285) 2021; 58 Eirinaki (10.1016/j.neucom.2021.11.064_b0105) 2014; 44 He (10.1016/j.neucom.2021.11.064_b0335) 2019; 7 Zhang (10.1016/j.neucom.2021.11.064_b0300) 2019; 52 Chen (10.1016/j.neucom.2021.11.064_b0260) 2021; 421 Jalali (10.1016/j.neucom.2021.11.064_b0315) 2021 Tahmasebi (10.1016/j.neucom.2021.11.064_b0060) 2021; 80 Guan (10.1016/j.neucom.2021.11.064_b0275) 2010 Da’u (10.1016/j.neucom.2021.11.064_b0360) 2021; 213 10.1016/j.neucom.2021.11.064_b0325 N.CC (10.1016/j.neucom.2021.11.064_b0450) 2019; 49 Zhang (10.1016/j.neucom.2021.11.064_b0050) 2021; 106 Hinton (10.1016/j.neucom.2021.11.064_b0435) 2006; 313 10.1016/j.neucom.2021.11.064_b0080 Rahmani (10.1016/j.neucom.2021.11.064_b0130) 2019 Zhang (10.1016/j.neucom.2021.11.064_b0015) 2017; 47 Moradi (10.1016/j.neucom.2021.11.064_b0110) 2015; 436 Banerjee (10.1016/j.neucom.2021.11.064_b0265) 2021; 12 Guo (10.1016/j.neucom.2021.11.064_b0180) 2019; 53 Jalali (10.1016/j.neucom.2021.11.064_b0305) 2021; 111 Jalali (10.1016/j.neucom.2021.11.064_b0320) 2021 10.1016/j.neucom.2021.11.064_b0405 Zhao (10.1016/j.neucom.2021.11.064_b0045) 2018; 48 Ahmadian (10.1016/j.neucom.2021.11.064_b0135) 2014 Ahmadian (10.1016/j.neucom.2021.11.064_b0165) 2018; 54 Lee (10.1016/j.neucom.2021.11.064_b0430) 2006 Ahmadian (10.1016/j.neucom.2021.11.064_b0005) 2018; 48 Mauro (10.1016/j.neucom.2021.11.064_b0240) 2019 Nanopoulos (10.1016/j.neucom.2021.11.064_b0270) 2011; 41 Wei (10.1016/j.neucom.2021.11.064_b0385) 2017; 69 |
| References_xml | – start-page: 1 year: 2019 end-page: 13 ident: b0040 article-title: Bridging user interest to item content for recommender systems: An optimization model publication-title: IEEE Trans. Cybernetics – volume: 16 start-page: 6124 year: 2020 end-page: 6132 ident: b0215 article-title: Trust-enhanced collaborative filtering for personalized point of interests recommendation publication-title: IEEE Trans. Ind. Inf. – volume: 101 year: 2021 ident: b0195 article-title: A knowledge coverage-based trust propagation for recommendation mechanism in social network group decision making publication-title: Appl. Soft Comput. – volume: 21 start-page: 1655 year: 2018 end-page: 1673 ident: b0255 article-title: Interactive resource recommendation algorithm based on tag information publication-title: World Wide Web – volume: 78 start-page: 17763 year: 2019 end-page: 17798 ident: b0055 article-title: A novel approach based on multi-view reliability measures to alleviate data sparsity in recommender systems publication-title: Multimedia Tools Appl. – volume: 39 start-page: 1633 year: 2016 end-page: 1647 ident: b0095 article-title: Social collaborative filtering by trust publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 36 start-page: 778 year: 2021 end-page: 795 ident: b0225 article-title: Trust-aware generative adversarial network with recurrent neural network for recommender systems publication-title: Int. J. Intell. Syst. – volume: 44 start-page: 409 year: 2014 end-page: 421 ident: b0105 article-title: A trust-aware system for personalized user recommendations in social networks publication-title: IEEE Trans. Syst. Man. Cybernet. Syst. – volume: 49 start-page: 1937 year: 2019 end-page: 1953 ident: b0450 article-title: A social recommender system using deep architecture and network embedding publication-title: Appl. Intell. – volume: 52 start-page: 1 year: 2019 end-page: 38 ident: b0300 article-title: Deep learning based recommender system: A survey and new perspectives publication-title: ACM Comput. Surv. – volume: 334 start-page: 206 year: 2019 end-page: 218 ident: b0350 article-title: A deep variational matrix factorization method for recommendation on large scale sparse dataset publication-title: Neurocomputing – volume: 185 year: 2021 ident: b0020 article-title: A graph-based recommendation approach for highly interactive platforms publication-title: Expert Syst. Appl. – reference: X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T. S. Chua, “Neural collaborative filtering,” in – reference: , Barcelona, Spain, 2010, pp. 135-142. – volume: 9 start-page: 1 year: 2018 end-page: 15 ident: b0245 article-title: An extended-tag-induced matrix factorization technique for recommender systems publication-title: Information – reference: S. M. J. Jalali, M. Khodayar, S. Ahmadian, M. Shafie-khah, A. Khosravi, S. M. S. Islam – volume: 43 start-page: 673 year: 2013 end-page: 688 ident: b0090 article-title: The TFC model: tensor factorization and tag clustering for item recommendation in social tagging systems publication-title: IEEE Trans. Syst. Man Cybernet. Syst. – start-page: 451 year: 2017 end-page: 458 ident: b0330 article-title: Deep learning based recommendation: A Survey publication-title: International Conference on Information Science and Applications, Macau, China – start-page: 287 year: 2011 end-page: 296 ident: b0440 article-title: Recommender systems with social regularization publication-title: Proceedings of the fourth ACM international conference on Web search and data mining, Hong Kong, China – volume: 148 start-page: 521 year: 2015 end-page: 534 ident: b0280 article-title: Ranking on heterogeneous manifolds for tag recommendation in social tagging services publication-title: Neurocomputing – volume: 23 start-page: 1083 year: 2020 end-page: 1094 ident: b0290 article-title: Adversarial learning for personalized tag recommendation publication-title: IEEE Trans. Multimedia – volume: 542 start-page: 324 year: 2021 end-page: 342 ident: b0355 article-title: An effective recommendation model based on deep representation learning publication-title: Inf. Sci. – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: b0435 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – start-page: 8075 year: 2018 end-page: 8076 ident: b0445 article-title: Deep modeling of social relations for recommendation publication-title: The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18), New Orleans, Louisiana, USA – start-page: 801 year: 2006 end-page: 808 ident: b0430 article-title: Efficient sparse coding algorithms publication-title: Proceedings of 20th Annual Conference on Neural Information Processing Systems – volume: 12 start-page: 2509 year: 2021 end-page: 2525 ident: b0265 article-title: A multistep priority-based ranking for top-N recommendation using social and tag information publication-title: J. Ambient Intell. Hum. Comput. – volume: 7 start-page: 94195 year: 2019 end-page: 94204 ident: b0150 article-title: Personalized recommendation via trust-based diffusion publication-title: IEEE Access – volume: 8 start-page: 1 year: 2018 end-page: 15 ident: b0380 article-title: TRSDL: tag-aware recommender system based on deep learning–intelligent computing systems publication-title: Applied Sciences – start-page: 3203 year: 2017 end-page: 3209 ident: b0400 article-title: Deep matrix factorization models for recommender systems publication-title: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) – volume: 421 start-page: 105 year: 2021 end-page: 114 ident: b0260 article-title: AIRec: Attentive intersection model for tag-aware recommendation publication-title: Neurocomputing – start-page: 1 year: 2015 end-page: 8 ident: b0425 article-title: An empirical analysis of different sparse penalties for autoencoder in unsupervised feature learning publication-title: International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland – volume: 7 start-page: 5707 year: 2019 end-page: 5713 ident: b0335 article-title: Collaborative additional variational autoencoder for top-N recommender systems publication-title: IEEE Access – start-page: 3905 year: 2019 end-page: 3911 ident: b0395 article-title: Recommendation based on BP neural network with attention mechanism publication-title: Proceedings of the twenty-eighth International Joint Conference on Artificial Intelligence (IJCAI-19) – volume: 20 start-page: 1 year: 2020 end-page: 20 ident: b0220 article-title: SSL-SVD: Semi-supervised learning-based sparse trust recommendation publication-title: ACM Trans. Internet Technol. – reference: 2013. – volume: 122 start-page: 17 year: 2017 end-page: 25 ident: b0185 article-title: Factored similarity models with social trust for top-N item recommendation publication-title: Knowl.-Based Syst. – volume: 80 start-page: 2339 year: 2021 end-page: 2354 ident: b0060 article-title: A hybrid recommendation system based on profile expansion technique to alleviate cold start problem publication-title: Multimedia Tools Appl. – volume: 35 start-page: 1798 year: 2013 end-page: 1828 ident: b0415 article-title: Representation learning: A review and new perspectives publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: , “A new ensemble reinforcement learning strategy for solar irradiance forecasting using deep optimized convolutional neural network models,” in – volume: 8 start-page: 511 year: 2021 end-page: 528 ident: b0460 article-title: Deep matrix factorization for trust-aware recommendation in social networks publication-title: IEEE Trans. Network Sci. Eng. – volume: 174 year: 2021 ident: b0205 article-title: On deep neural network for trust aware cross domain recommendations in E-commerce publication-title: Expert Syst. Appl. – volume: 74 start-page: 87 year: 2021 end-page: 95 ident: b0200 article-title: Trust-aware recommendation based on heterogeneous multi-relational graphs fusion publication-title: Inform. Fusion – reference: , Vaasa, Finland, 2021, pp. 1-6. – volume: 106 start-page: 244 year: 2018 end-page: 251 ident: b0085 article-title: Tag-aware dynamic music recommendation publication-title: Expert Syst. Appl. – reference: , 2017, pp. 173–182. – start-page: 162 year: 2016 end-page: 167 ident: b0140 article-title: A trust-aware recommender algorithm based on users overlapping community structure publication-title: Sixteenth International Conference on Advances in ICT for Emerging Regions (ICTer), 2016 – start-page: 3196 year: 2017 end-page: 3202 ident: b0455 article-title: Tag-aware personalized recommendation using a hybrid deep model publication-title: Proceedings of the 26th International Joint Conference on Artificial Intelligence – volume: 187 year: 2022 ident: b0065 article-title: Alleviating data sparsity problem in time-aware recommender systems using a reliable rating profile enrichment approach publication-title: Expert Syst. Appl. – start-page: 391 year: 2010 end-page: 400 ident: b0275 article-title: Document recommendation in social tagging services publication-title: Proceedings of the 19th international conference on World Wide Web – volume: 209 year: 2020 ident: b0230 article-title: TrustTF: A tensor factorization model using user trust and implicit feedback for context-aware recommender systems publication-title: Knowl.-Based Syst. – start-page: 123 year: 2015 end-page: 129 ident: b0100 article-title: TrustSVD: collaborative filtering with both the explicit and implicit influence of user trust and of item ratings publication-title: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence – volume: 19 start-page: 109 year: 2015 end-page: 126 ident: b0115 article-title: A semantic recommender system based on frequent tag pattern publication-title: Intell. Data Anal. – volume: 48 start-page: 4448 year: 2018 end-page: 4469 ident: b0005 article-title: Incorporating reliable virtual ratings into social recommendation systems publication-title: Appl. Intell. – volume: 17 start-page: 8243 year: 2021 end-page: 8253 ident: b0310 article-title: A novel evolutionary-based deep convolutional neural network model for intelligent load forecasting publication-title: IEEE Trans. Ind. Inf. – volume: 78 start-page: 419 year: 2018 end-page: 429 ident: b0010 article-title: TCARS: Time-and community-aware recommendation system publication-title: Fut. Gener. Comput. Syst. – volume: 54 start-page: 707 year: 2018 end-page: 725 ident: b0165 article-title: A social recommendation method based on an adaptive neighbor selection mechanism publication-title: Inf. Process. Manage. – volume: 123 start-page: 113073 year: 2019 ident: b0160 article-title: Recommendation with diversity: An adaptive trust-aware model publication-title: Decis. Support Syst. – volume: 53 start-page: 113 year: 2019 end-page: 135 ident: b0180 article-title: Collaborative filtering recommendation based on trust and emotion publication-title: J. Intell. Inform. Syst. – volume: 192 start-page: 1 year: 2020 end-page: 17 ident: b0075 article-title: A social recommender system based on reliable implicit relationships publication-title: Knowl.-Based Syst. – volume: 204 start-page: 51 year: 2016 end-page: 60 ident: b0120 article-title: Tag-aware recommender systems based on deep neural networks publication-title: Neurocomputing – volume: 213 year: 2021 ident: b0360 article-title: An adaptive deep learning method for item recommendation system publication-title: Knowl.-Based Syst. – start-page: 98 year: 2014 end-page: 103 ident: b0135 article-title: An improved model of trust-aware recommender systems using reliability measurements publication-title: 6th Conference on Information and Knowledge Technology (IKT) – volume: 7 start-page: 40333 year: 2019 end-page: 40346 ident: b0340 article-title: Deep auto encoder model with convolutional text networks for video recommendation publication-title: IEEE Access – volume: 6 start-page: 74003 year: 2018 end-page: 74024 ident: b0030 article-title: Evaluating collaborative filtering recommender algorithms: A survey publication-title: IEEE Access – reference: , Amsterdam, The Netherlands, 2017, pp. 151-158. – volume: 436 start-page: 462 year: 2015 end-page: 481 ident: b0110 article-title: An effective trust-based recommendation method using a novel graph clustering algorithm publication-title: Physica A – reference: D. Rafailidis and F. Crestani, “Recommendation with social relationships via deep learning,” in – volume: 49 start-page: 435 year: 2019 end-page: 448 ident: b0155 article-title: Stochastic trust network enriched by similarity relations to enhance trust-aware recommendations publication-title: Appl. Intell. – start-page: 181 year: 2019 end-page: 190 ident: b0240 article-title: Extending a tag-based collaborative recommender with co-occurring information interests publication-title: Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization, Larnaca, Cyprus – start-page: 1 year: 2021 end-page: 12 ident: b0320 article-title: Automated deep CNN-LSTM architecture design for solar irradiance forecasting publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – volume: 470 start-page: 121 year: 2019 end-page: 140 ident: b0365 article-title: DeepRec: A deep neural network approach to recommendation with item embedding and weighted loss function publication-title: Inf. Sci. – volume: 118 start-page: 58 year: 2019 end-page: 69 ident: b0345 article-title: Deep learning based personalized recommendation with multi-view information integration publication-title: Decis. Support Syst. – volume: 58 year: 2021 ident: b0285 article-title: Tag embedding based personalized point of interest recommendation system publication-title: Inf. Process. Manage. – volume: 228 year: 2021 ident: b0035 article-title: Dynamic evolution of multi-graph based collaborative filtering for recommendation systems publication-title: Knowl.-Based Syst. – reference: M. Jamali and M. Ester, “A matrix factorization technique with trust propagation for recommendation in social networks,” in – volume: 42 start-page: 7386 year: 2015 end-page: 7398 ident: b0145 article-title: A reliability-based recommendation method to improve trust-aware recommender systems publication-title: Expert Syst. Appl. – volume: 34 start-page: 100838 year: 2019 ident: b0170 article-title: A dynamic local–global trust-aware recommendation approach publication-title: Electron. Commer. Res. Appl. – volume: 69 start-page: 29 year: 2017 end-page: 39 ident: b0385 article-title: Collaborative filtering and deep learning based recommendation system for cold start items publication-title: Expert Syst. Appl. – volume: 47 start-page: 659 year: 2017 end-page: 669 ident: b0015 article-title: Personalized recommendation algorithm for social networks based on comprehensive trust publication-title: Appl. Intell. – start-page: 66 year: 2019 end-page: 78 ident: b0130 article-title: LGLMF: local geographical based logistic matrix factorization model for POI recommendation publication-title: Asia Information Retrieval Symposium – volume: 46 start-page: 782 year: 2016 end-page: 792 ident: b0125 article-title: Modeling users preference dynamics and side information in recommender systems publication-title: IEEE Trans. Syst. Man. Cybernet. Syst. – volume: 119 start-page: 311 year: 2019 end-page: 321 ident: b0250 article-title: Personalized recommendation by matrix co-factorization with tags and time information publication-title: Expert Syst. Appl. – volume: 41 start-page: 760 year: 2011 end-page: 771 ident: b0270 article-title: Item recommendation in collaborative tagging systems publication-title: IEEE Trans. Syst. Man Cybern. Part A: Syst. Humans – volume: 145 start-page: 46 year: 2018 end-page: 58 ident: b0375 article-title: Dual-regularized matrix factorization with deep neural networks for recommender systems publication-title: Knowl.-Based Syst. – volume: 431 start-page: 100 year: 2021 end-page: 110 ident: b0210 article-title: A trust-aware latent space mapping approach for cross-domain recommendation publication-title: Neurocomputing – volume: 46 start-page: 33 year: 2016 end-page: 58 ident: b0235 article-title: Privacy-preserving topic model for tagging recommender systems publication-title: Knowl. Inf. Syst. – reference: A. Makhzani and B. Frey, “K-sparse Autoencoders,” – reference: S. Ahmadian, N. Joorabloo, M. Jalili, M. Meghdadi, M. Afsharchi, and Y. Ren, “A temporal clustering approach for social recommender systems,” in – volume: 48 start-page: 448 year: 2018 end-page: 459 ident: b0045 article-title: A novel method on information recommendation via hybrid similarity publication-title: IEEE Trans. Syst. Man Cybernet. Syst. – volume: 111 year: 2021 ident: b0305 article-title: An oppositional-Cauchy based GSK evolutionary algorithm with a novel deep ensemble reinforcement learning strategy for COVID-19 diagnosis publication-title: Appl. Soft Comput. – start-page: 61 year: 2019 end-page: 68 ident: b0390 article-title: DeepCF: A unified framework of representation learning and matching function learning in recommender system publication-title: The thirty-third AAAI conference on Artificial Intelligence, AAAI 2019, Honolulu, Hawaii, USA – volume: 49 start-page: 1084 year: 2018 end-page: 1096 ident: b0370 article-title: A novel deep learning-based collaborative filtering model for recommendation system publication-title: IEEE Trans. Cybern. – volume: 45 start-page: 503 year: 1989 end-page: 528 ident: b0420 article-title: On the limited memory BFGS method for large scale optimization publication-title: Math. Program. – volume: 385 start-page: 1 year: 2020 end-page: 12 ident: b0295 article-title: TNAM: A tag-aware neural attention model for Top-N recommendation publication-title: Neurocomputing – volume: 45 start-page: 607 year: 2019 end-page: 642 ident: b0175 article-title: An effective social recommendation method based on user reputation model and rating profile enhancement publication-title: J. Inform. Sci. – volume: 106 year: 2021 ident: b0050 article-title: Unifying paragraph embeddings and neural collaborative filtering for hybrid recommendation publication-title: Appl. Soft Comput. – reference: , Barcelona, Spain, 2018, pp. 1139-1144. – volume: 28 start-page: 1607 year: 2016 end-page: 1620 ident: b0190 article-title: A novel recommendation model regularized with user trust and item ratings publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 1 year: 2021 end-page: 25 ident: b0315 article-title: Towards novel deep neuroevolution models: chaotic levy grasshopper optimization for short-term wind speed forecasting publication-title: Eng. Comput. – volume: 69 start-page: 29 year: 2017 ident: 10.1016/j.neucom.2021.11.064_b0385 article-title: Collaborative filtering and deep learning based recommendation system for cold start items publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.09.040 – volume: 228 year: 2021 ident: 10.1016/j.neucom.2021.11.064_b0035 article-title: Dynamic evolution of multi-graph based collaborative filtering for recommendation systems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.107251 – start-page: 287 year: 2011 ident: 10.1016/j.neucom.2021.11.064_b0440 article-title: Recommender systems with social regularization – ident: 10.1016/j.neucom.2021.11.064_b0410 – volume: 58 year: 2021 ident: 10.1016/j.neucom.2021.11.064_b0285 article-title: Tag embedding based personalized point of interest recommendation system publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2021.102690 – volume: 118 start-page: 58 year: 2019 ident: 10.1016/j.neucom.2021.11.064_b0345 article-title: Deep learning based personalized recommendation with multi-view information integration publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2019.01.003 – start-page: 162 year: 2016 ident: 10.1016/j.neucom.2021.11.064_b0140 article-title: A trust-aware recommender algorithm based on users overlapping community structure – volume: 6 start-page: 74003 year: 2018 ident: 10.1016/j.neucom.2021.11.064_b0030 article-title: Evaluating collaborative filtering recommender algorithms: A survey publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2883742 – volume: 45 start-page: 503 issue: 1-3 year: 1989 ident: 10.1016/j.neucom.2021.11.064_b0420 article-title: On the limited memory BFGS method for large scale optimization publication-title: Math. Program. doi: 10.1007/BF01589116 – ident: 10.1016/j.neucom.2021.11.064_b0325 doi: 10.1109/SEST50973.2021.9543462 – volume: 48 start-page: 4448 year: 2018 ident: 10.1016/j.neucom.2021.11.064_b0005 article-title: Incorporating reliable virtual ratings into social recommendation systems publication-title: Appl. Intell. doi: 10.1007/s10489-018-1219-x – volume: 19 start-page: 109 issue: 1 year: 2015 ident: 10.1016/j.neucom.2021.11.064_b0115 article-title: A semantic recommender system based on frequent tag pattern publication-title: Intell. Data Anal. doi: 10.3233/IDA-140699 – volume: 7 start-page: 94195 year: 2019 ident: 10.1016/j.neucom.2021.11.064_b0150 article-title: Personalized recommendation via trust-based diffusion publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2928574 – volume: 421 start-page: 105 year: 2021 ident: 10.1016/j.neucom.2021.11.064_b0260 article-title: AIRec: Attentive intersection model for tag-aware recommendation publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.08.018 – volume: 43 start-page: 673 issue: 3 year: 2013 ident: 10.1016/j.neucom.2021.11.064_b0090 article-title: The TFC model: tensor factorization and tag clustering for item recommendation in social tagging systems publication-title: IEEE Trans. Syst. Man Cybernet. Syst. doi: 10.1109/TSMCA.2012.2208186 – volume: 49 start-page: 435 issue: 2 year: 2019 ident: 10.1016/j.neucom.2021.11.064_b0155 article-title: Stochastic trust network enriched by similarity relations to enhance trust-aware recommendations publication-title: Appl. Intell. doi: 10.1007/s10489-018-1289-9 – start-page: 1 year: 2021 ident: 10.1016/j.neucom.2021.11.064_b0315 article-title: Towards novel deep neuroevolution models: chaotic levy grasshopper optimization for short-term wind speed forecasting publication-title: Eng. Comput. – start-page: 98 year: 2014 ident: 10.1016/j.neucom.2021.11.064_b0135 article-title: An improved model of trust-aware recommender systems using reliability measurements – volume: 28 start-page: 1607 year: 2016 ident: 10.1016/j.neucom.2021.11.064_b0190 article-title: A novel recommendation model regularized with user trust and item ratings publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2016.2528249 – start-page: 1 year: 2019 ident: 10.1016/j.neucom.2021.11.064_b0040 article-title: Bridging user interest to item content for recommender systems: An optimization model publication-title: IEEE Trans. Cybernetics – volume: 9 start-page: 1 year: 2018 ident: 10.1016/j.neucom.2021.11.064_b0245 article-title: An extended-tag-induced matrix factorization technique for recommender systems publication-title: Information doi: 10.3390/info9060143 – volume: 35 start-page: 1798 year: 2013 ident: 10.1016/j.neucom.2021.11.064_b0415 article-title: Representation learning: A review and new perspectives publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.50 – start-page: 123 year: 2015 ident: 10.1016/j.neucom.2021.11.064_b0100 article-title: TrustSVD: collaborative filtering with both the explicit and implicit influence of user trust and of item ratings – volume: 209 year: 2020 ident: 10.1016/j.neucom.2021.11.064_b0230 article-title: TrustTF: A tensor factorization model using user trust and implicit feedback for context-aware recommender systems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106434 – ident: 10.1016/j.neucom.2021.11.064_b0070 doi: 10.1145/1864708.1864736 – volume: 542 start-page: 324 year: 2021 ident: 10.1016/j.neucom.2021.11.064_b0355 article-title: An effective recommendation model based on deep representation learning publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.07.038 – volume: 39 start-page: 1633 year: 2016 ident: 10.1016/j.neucom.2021.11.064_b0095 article-title: Social collaborative filtering by trust publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2605085 – start-page: 3905 year: 2019 ident: 10.1016/j.neucom.2021.11.064_b0395 article-title: Recommendation based on BP neural network with attention mechanism – volume: 145 start-page: 46 year: 2018 ident: 10.1016/j.neucom.2021.11.064_b0375 article-title: Dual-regularized matrix factorization with deep neural networks for recommender systems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.01.003 – volume: 49 start-page: 1937 year: 2019 ident: 10.1016/j.neucom.2021.11.064_b0450 article-title: A social recommender system using deep architecture and network embedding publication-title: Appl. Intell. doi: 10.1007/s10489-018-1359-z – volume: 46 start-page: 33 issue: 1 year: 2016 ident: 10.1016/j.neucom.2021.11.064_b0235 article-title: Privacy-preserving topic model for tagging recommender systems publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-015-0832-9 – start-page: 391 year: 2010 ident: 10.1016/j.neucom.2021.11.064_b0275 article-title: Document recommendation in social tagging services – volume: 213 year: 2021 ident: 10.1016/j.neucom.2021.11.064_b0360 article-title: An adaptive deep learning method for item recommendation system publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106681 – volume: 106 year: 2021 ident: 10.1016/j.neucom.2021.11.064_b0050 article-title: Unifying paragraph embeddings and neural collaborative filtering for hybrid recommendation publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107345 – volume: 334 start-page: 206 year: 2019 ident: 10.1016/j.neucom.2021.11.064_b0350 article-title: A deep variational matrix factorization method for recommendation on large scale sparse dataset publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.01.028 – volume: 21 start-page: 1655 year: 2018 ident: 10.1016/j.neucom.2021.11.064_b0255 article-title: Interactive resource recommendation algorithm based on tag information publication-title: World Wide Web doi: 10.1007/s11280-018-0532-y – volume: 42 start-page: 7386 year: 2015 ident: 10.1016/j.neucom.2021.11.064_b0145 article-title: A reliability-based recommendation method to improve trust-aware recommender systems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.05.027 – volume: 23 start-page: 1083 year: 2020 ident: 10.1016/j.neucom.2021.11.064_b0290 article-title: Adversarial learning for personalized tag recommendation publication-title: IEEE Trans. Multimedia doi: 10.1109/TMM.2020.2992941 – volume: 101 year: 2021 ident: 10.1016/j.neucom.2021.11.064_b0195 article-title: A knowledge coverage-based trust propagation for recommendation mechanism in social network group decision making publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.107005 – volume: 204 start-page: 51 year: 2016 ident: 10.1016/j.neucom.2021.11.064_b0120 article-title: Tag-aware recommender systems based on deep neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.10.134 – start-page: 801 year: 2006 ident: 10.1016/j.neucom.2021.11.064_b0430 article-title: Efficient sparse coding algorithms – volume: 41 start-page: 760 issue: 4 year: 2011 ident: 10.1016/j.neucom.2021.11.064_b0270 article-title: Item recommendation in collaborative tagging systems publication-title: IEEE Trans. Syst. Man Cybern. Part A: Syst. Humans doi: 10.1109/TSMCA.2011.2132708 – volume: 54 start-page: 707 issue: 4 year: 2018 ident: 10.1016/j.neucom.2021.11.064_b0165 article-title: A social recommendation method based on an adaptive neighbor selection mechanism publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2017.03.002 – volume: 12 start-page: 2509 year: 2021 ident: 10.1016/j.neucom.2021.11.064_b0265 article-title: A multistep priority-based ranking for top-N recommendation using social and tag information publication-title: J. Ambient Intell. Hum. Comput. doi: 10.1007/s12652-020-02388-y – volume: 52 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.neucom.2021.11.064_b0300 article-title: Deep learning based recommender system: A survey and new perspectives publication-title: ACM Comput. Surv. doi: 10.1145/3158369 – volume: 7 start-page: 5707 year: 2019 ident: 10.1016/j.neucom.2021.11.064_b0335 article-title: Collaborative additional variational autoencoder for top-N recommender systems publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2890293 – start-page: 1 year: 2021 ident: 10.1016/j.neucom.2021.11.064_b0320 article-title: Automated deep CNN-LSTM architecture design for solar irradiance forecasting – volume: 431 start-page: 100 year: 2021 ident: 10.1016/j.neucom.2021.11.064_b0210 article-title: A trust-aware latent space mapping approach for cross-domain recommendation publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.12.015 – volume: 7 start-page: 40333 year: 2019 ident: 10.1016/j.neucom.2021.11.064_b0340 article-title: Deep auto encoder model with convolutional text networks for video recommendation publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2905534 – start-page: 3196 year: 2017 ident: 10.1016/j.neucom.2021.11.064_b0455 article-title: Tag-aware personalized recommendation using a hybrid deep model – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.neucom.2021.11.064_b0380 article-title: TRSDL: tag-aware recommender system based on deep learning–intelligent computing systems publication-title: Applied Sciences doi: 10.3390/app8050799 – start-page: 3203 year: 2017 ident: 10.1016/j.neucom.2021.11.064_b0400 article-title: Deep matrix factorization models for recommender systems – volume: 123 start-page: 113073 year: 2019 ident: 10.1016/j.neucom.2021.11.064_b0160 article-title: Recommendation with diversity: An adaptive trust-aware model publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2019.113073 – volume: 78 start-page: 419 year: 2018 ident: 10.1016/j.neucom.2021.11.064_b0010 article-title: TCARS: Time-and community-aware recommendation system publication-title: Fut. Gener. Comput. Syst. doi: 10.1016/j.future.2017.04.003 – volume: 174 year: 2021 ident: 10.1016/j.neucom.2021.11.064_b0205 article-title: On deep neural network for trust aware cross domain recommendations in E-commerce publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114757 – volume: 8 start-page: 511 issue: 1 year: 2021 ident: 10.1016/j.neucom.2021.11.064_b0460 article-title: Deep matrix factorization for trust-aware recommendation in social networks publication-title: IEEE Trans. Network Sci. Eng. doi: 10.1109/TNSE.2020.3044035 – volume: 16 start-page: 6124 year: 2020 ident: 10.1016/j.neucom.2021.11.064_b0215 article-title: Trust-enhanced collaborative filtering for personalized point of interests recommendation publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2019.2958696 – ident: 10.1016/j.neucom.2021.11.064_b0080 doi: 10.1145/3121050.3121057 – volume: 119 start-page: 311 year: 2019 ident: 10.1016/j.neucom.2021.11.064_b0250 article-title: Personalized recommendation by matrix co-factorization with tags and time information publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.11.003 – volume: 470 start-page: 121 year: 2019 ident: 10.1016/j.neucom.2021.11.064_b0365 article-title: DeepRec: A deep neural network approach to recommendation with item embedding and weighted loss function publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.08.039 – volume: 49 start-page: 1084 year: 2018 ident: 10.1016/j.neucom.2021.11.064_b0370 article-title: A novel deep learning-based collaborative filtering model for recommendation system publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2795041 – volume: 122 start-page: 17 year: 2017 ident: 10.1016/j.neucom.2021.11.064_b0185 article-title: Factored similarity models with social trust for top-N item recommendation publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.01.027 – volume: 192 start-page: 1 year: 2020 ident: 10.1016/j.neucom.2021.11.064_b0075 article-title: A social recommender system based on reliable implicit relationships publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.105371 – start-page: 61 year: 2019 ident: 10.1016/j.neucom.2021.11.064_b0390 article-title: DeepCF: A unified framework of representation learning and matching function learning in recommender system – volume: 187 year: 2022 ident: 10.1016/j.neucom.2021.11.064_b0065 article-title: Alleviating data sparsity problem in time-aware recommender systems using a reliable rating profile enrichment approach publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115849 – volume: 20 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.neucom.2021.11.064_b0220 article-title: SSL-SVD: Semi-supervised learning-based sparse trust recommendation publication-title: ACM Trans. Internet Technol. doi: 10.1145/3369390 – volume: 48 start-page: 448 issue: 3 year: 2018 ident: 10.1016/j.neucom.2021.11.064_b0045 article-title: A novel method on information recommendation via hybrid similarity publication-title: IEEE Trans. Syst. Man Cybernet. Syst. doi: 10.1109/TSMC.2016.2633573 – volume: 74 start-page: 87 year: 2021 ident: 10.1016/j.neucom.2021.11.064_b0200 article-title: Trust-aware recommendation based on heterogeneous multi-relational graphs fusion publication-title: Inform. Fusion doi: 10.1016/j.inffus.2021.04.001 – ident: 10.1016/j.neucom.2021.11.064_b0405 doi: 10.1145/3038912.3052569 – volume: 53 start-page: 113 issue: 1 year: 2019 ident: 10.1016/j.neucom.2021.11.064_b0180 article-title: Collaborative filtering recommendation based on trust and emotion publication-title: J. Intell. Inform. Syst. doi: 10.1007/s10844-018-0517-4 – volume: 185 year: 2021 ident: 10.1016/j.neucom.2021.11.064_b0020 article-title: A graph-based recommendation approach for highly interactive platforms publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115555 – ident: 10.1016/j.neucom.2021.11.064_b0025 doi: 10.1109/ASONAM.2018.8508723 – volume: 46 start-page: 782 issue: 6 year: 2016 ident: 10.1016/j.neucom.2021.11.064_b0125 article-title: Modeling users preference dynamics and side information in recommender systems publication-title: IEEE Trans. Syst. Man. Cybernet. Syst. doi: 10.1109/TSMC.2015.2460691 – volume: 436 start-page: 462 year: 2015 ident: 10.1016/j.neucom.2021.11.064_b0110 article-title: An effective trust-based recommendation method using a novel graph clustering algorithm publication-title: Physica A doi: 10.1016/j.physa.2015.05.008 – volume: 34 start-page: 100838 year: 2019 ident: 10.1016/j.neucom.2021.11.064_b0170 article-title: A dynamic local–global trust-aware recommendation approach publication-title: Electron. Commer. Res. Appl. doi: 10.1016/j.elerap.2019.100838 – volume: 78 start-page: 17763 year: 2019 ident: 10.1016/j.neucom.2021.11.064_b0055 article-title: A novel approach based on multi-view reliability measures to alleviate data sparsity in recommender systems publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-018-7079-x – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 10.1016/j.neucom.2021.11.064_b0435 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 45 start-page: 607 issue: 5 year: 2019 ident: 10.1016/j.neucom.2021.11.064_b0175 article-title: An effective social recommendation method based on user reputation model and rating profile enhancement publication-title: J. Inform. Sci. doi: 10.1177/0165551518808191 – start-page: 451 year: 2017 ident: 10.1016/j.neucom.2021.11.064_b0330 article-title: Deep learning based recommendation: A Survey – volume: 106 start-page: 244 year: 2018 ident: 10.1016/j.neucom.2021.11.064_b0085 article-title: Tag-aware dynamic music recommendation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.04.014 – start-page: 1 year: 2015 ident: 10.1016/j.neucom.2021.11.064_b0425 article-title: An empirical analysis of different sparse penalties for autoencoder in unsupervised feature learning – start-page: 8075 year: 2018 ident: 10.1016/j.neucom.2021.11.064_b0445 article-title: Deep modeling of social relations for recommendation – volume: 44 start-page: 409 issue: 4 year: 2014 ident: 10.1016/j.neucom.2021.11.064_b0105 article-title: A trust-aware system for personalized user recommendations in social networks publication-title: IEEE Trans. Syst. Man. Cybernet. Syst. doi: 10.1109/TSMC.2013.2263128 – start-page: 181 year: 2019 ident: 10.1016/j.neucom.2021.11.064_b0240 article-title: Extending a tag-based collaborative recommender with co-occurring information interests – volume: 111 year: 2021 ident: 10.1016/j.neucom.2021.11.064_b0305 article-title: An oppositional-Cauchy based GSK evolutionary algorithm with a novel deep ensemble reinforcement learning strategy for COVID-19 diagnosis publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107675 – volume: 80 start-page: 2339 year: 2021 ident: 10.1016/j.neucom.2021.11.064_b0060 article-title: A hybrid recommendation system based on profile expansion technique to alleviate cold start problem publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-020-09768-8 – start-page: 66 year: 2019 ident: 10.1016/j.neucom.2021.11.064_b0130 article-title: LGLMF: local geographical based logistic matrix factorization model for POI recommendation – volume: 36 start-page: 778 issue: 2 year: 2021 ident: 10.1016/j.neucom.2021.11.064_b0225 article-title: Trust-aware generative adversarial network with recurrent neural network for recommender systems publication-title: Int. J. Intell. Syst. doi: 10.1002/int.22320 – volume: 17 start-page: 8243 year: 2021 ident: 10.1016/j.neucom.2021.11.064_b0310 article-title: A novel evolutionary-based deep convolutional neural network model for intelligent load forecasting publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2021.3065718 – volume: 148 start-page: 521 year: 2015 ident: 10.1016/j.neucom.2021.11.064_b0280 article-title: Ranking on heterogeneous manifolds for tag recommendation in social tagging services publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.07.011 – volume: 47 start-page: 659 issue: 3 year: 2017 ident: 10.1016/j.neucom.2021.11.064_b0015 article-title: Personalized recommendation algorithm for social networks based on comprehensive trust publication-title: Appl. Intell. doi: 10.1007/s10489-017-0928-x – volume: 385 start-page: 1 year: 2020 ident: 10.1016/j.neucom.2021.11.064_b0295 article-title: TNAM: A tag-aware neural attention model for Top-N recommendation publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.11.095 |
| SSID | ssj0017129 |
| Score | 2.613279 |
| Snippet | Recommender systems are popular tools used in many applications, such as e-commerce, e-learning, and social networks to help users select their desired items.... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 557 |
| SubjectTerms | Collaborative filtering Deep neural networks Recommender systems Sparse autoencoder Tag Trust |
| Title | A deep learning based trust- and tag-aware recommender system |
| URI | https://dx.doi.org/10.1016/j.neucom.2021.11.064 |
| Volume | 488 |
| WOSCitedRecordID | wos000830177900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELWgcODCjiibfOBWGdHETuIDhwiBAAHiAKi3yLEdaEVDBWX5fMZL0rKI5cAlirI4y7zYbybjNwht5yFXnOYJySMtCS2UJKIwSePguHEm2gW1RfuuT-Pz86TT4Rc-f_7RlhOIyzJ5feWDfzU1bANjm6mzfzB33ShsgHUwOizB7LD8leHTltJ6UJWDuGmZcUq17NwK4vIlxQ0RLybjy3jD_b4tJuclnce5qtXtkLbqg48npH0jq6AMhkbxg9u-lTdw4eWeUF_tOOvejXacAPV3k7LPxK3qjscdwHx1flQVQAwYAXb4ri-lrkaf7w2Z0572AytztVY-9dkufNDbKfWTSeCBa7V3jLCqUzd_L5H9YeiqEwqrXLVe5lrJTCvg3WTQyiSaCmLGkwaaSo8POif1T6a4HTgpRv8g1cxKm_73-W6-Zi5jbORyHs16NwKnzvwLaEKXi2iuKtGBfY-9hPZSbNCAKzRgiwbs0IABDbhGAx5DA3ZoWEZXhweX-0fEV8wgEly_IWGCUrZbhEBN4iKQKowEy5mmEdVKc3ANKXyxu8KIuOVtqqT5DSw5DbUCFq4jFa6gRnlf6lWEgXonEtxxJXNNdR4IoMZRweDAhAaSx00UVm8jk15O3lQ1ucu-s0UTkfqsgZNT-eH4uHrRmaeEjuplgJ5vz1z745XW0cwI5RuoAYbQm2haPg-7jw9bHjpvvfiC6g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+based+trust-+and+tag-aware+recommender+system&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Ahmadian%2C+Sajad&rft.au=Ahmadian%2C+Milad&rft.au=Jalili%2C+Mahdi&rft.date=2022-06-01&rft.issn=0925-2312&rft.volume=488&rft.spage=557&rft.epage=571&rft_id=info:doi/10.1016%2Fj.neucom.2021.11.064&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2021_11_064 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |