A deep learning based trust- and tag-aware recommender system

Recommender systems are popular tools used in many applications, such as e-commerce, e-learning, and social networks to help users select their desired items. Collaborative filtering is a widely used recommendation technique that employs previous ratings of users to predict their future interests. L...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 488; s. 557 - 571
Hlavní autoři: Ahmadian, Sajad, Ahmadian, Milad, Jalili, Mahdi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.06.2022
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recommender systems are popular tools used in many applications, such as e-commerce, e-learning, and social networks to help users select their desired items. Collaborative filtering is a widely used recommendation technique that employs previous ratings of users to predict their future interests. Lack of sufficient ratings often reduces the performance of collaborative filtering recommendation methods. Additional side resources, such as trust relationships and tag information can be employed to enhance the recommendation accuracy. However, trust and tag data are often heavily sparse as users mainly provide insufficient information about these side resources. Moreover, such additional resources have generally large dimensions which result in increasing the computational complexity of recommendation models in calculating similarity values. To cope with these problems, a new recommendation model is proposed that utilizes deep neural networks to model the representation of trust relationships and tag information. To this end, a sparse autoencoder is used to extract latent features from user-user trust relationships and user-tag matrices. Then, the extracted latent features are utilized to calculate similarity values between users, which are then used to form the nearest neighbors of the target user and predict unseen items. The proposed method can tackle the data sparsity problem and reduce the computational complexity of recommender systems as the extracted latent features have smaller dimensions in comparison to the original data. Experimental results on two benchmark datasets reveal the effectiveness of the proposed method and show its outperformance over state-of-the-art recommender systems.
AbstractList Recommender systems are popular tools used in many applications, such as e-commerce, e-learning, and social networks to help users select their desired items. Collaborative filtering is a widely used recommendation technique that employs previous ratings of users to predict their future interests. Lack of sufficient ratings often reduces the performance of collaborative filtering recommendation methods. Additional side resources, such as trust relationships and tag information can be employed to enhance the recommendation accuracy. However, trust and tag data are often heavily sparse as users mainly provide insufficient information about these side resources. Moreover, such additional resources have generally large dimensions which result in increasing the computational complexity of recommendation models in calculating similarity values. To cope with these problems, a new recommendation model is proposed that utilizes deep neural networks to model the representation of trust relationships and tag information. To this end, a sparse autoencoder is used to extract latent features from user-user trust relationships and user-tag matrices. Then, the extracted latent features are utilized to calculate similarity values between users, which are then used to form the nearest neighbors of the target user and predict unseen items. The proposed method can tackle the data sparsity problem and reduce the computational complexity of recommender systems as the extracted latent features have smaller dimensions in comparison to the original data. Experimental results on two benchmark datasets reveal the effectiveness of the proposed method and show its outperformance over state-of-the-art recommender systems.
Author Ahmadian, Sajad
Jalili, Mahdi
Ahmadian, Milad
Author_xml – sequence: 1
  givenname: Sajad
  surname: Ahmadian
  fullname: Ahmadian, Sajad
  email: s.ahmadian@kut.ac.ir
  organization: Faculty of Information Technology, Kermanshah University of Technology, Kermanshah, Iran
– sequence: 2
  givenname: Milad
  surname: Ahmadian
  fullname: Ahmadian, Milad
  email: m.ahmadian@stu.razi.ac.ir
  organization: Department of Computer Engineering, Razi University, Kermanshah, Iran
– sequence: 3
  givenname: Mahdi
  surname: Jalili
  fullname: Jalili, Mahdi
  email: mahdi.jalili@rmit.edu.au
  organization: School of Engineering, RMIT University, Melbourne, Australia
BookMark eNqFkM1KAzEUhYNUsFXfwMW8wIy5-ZsZQaEU_6DgRtchTe6UlE6mJKnSt3dKXbnQ1T2b7xzuNyOTMAQk5AZoBRTU7aYKuLdDXzHKoAKoqBJnZApNzcqGNWpCprRlsmQc2AWZpbShFGpg7ZTczwuHuCu2aGLwYV2sTEJX5LhPuSxMGKNZl-bLRCwijhs9BoexSIeUsb8i553ZJrz-uZfk4-nxffFSLt-eXxfzZWk5VbmURghJO84F1B2zjisjVxKFEuiwrWUj0FpqhBT1CoSzVPDGtoKjY0yhcvyS3J16bRxSithp67PJfgg5Gr_VQPVRhN7okwh9FKEB9ChihMUveBd9b-LhP-zhhOH42KfHqJP1GCw6P4rI2g3-74JvAYZ7wg
CitedBy_id crossref_primary_10_1016_j_ins_2022_11_085
crossref_primary_10_3390_s23084140
crossref_primary_10_1109_ACCESS_2023_3271678
crossref_primary_10_1002_cpe_7423
crossref_primary_10_1016_j_engappai_2023_107499
crossref_primary_10_1016_j_knosys_2022_109661
crossref_primary_10_1145_3744570
crossref_primary_10_1016_j_segan_2022_100903
crossref_primary_10_1016_j_knosys_2022_109940
crossref_primary_10_1371_journal_pone_0315533
crossref_primary_10_5753_jis_2025_6118
crossref_primary_10_26599_TST_2023_9010118
crossref_primary_10_1007_s00607_024_01385_9
crossref_primary_10_1007_s41060_025_00747_6
crossref_primary_10_26599_TST_2024_9010216
crossref_primary_10_3390_app13020814
crossref_primary_10_1007_s10489_023_04719_w
crossref_primary_10_1016_j_neucom_2025_131021
crossref_primary_10_1016_j_neunet_2024_107071
crossref_primary_10_1177_01655515241270623
crossref_primary_10_3390_app122010594
crossref_primary_10_1002_cpe_8262
crossref_primary_10_1109_ACCESS_2023_3306452
crossref_primary_10_1007_s10660_024_09944_0
crossref_primary_10_1111_exsy_13385
crossref_primary_10_1007_s11042_023_15021_9
crossref_primary_10_1016_j_procs_2024_04_041
crossref_primary_10_1109_ACCESS_2025_3549133
crossref_primary_10_1080_01605682_2025_2498652
crossref_primary_10_1007_s10489_023_05244_6
crossref_primary_10_1016_j_asoc_2024_112608
crossref_primary_10_1016_j_procs_2025_01_018
crossref_primary_10_3390_electronics12020402
crossref_primary_10_3390_electronics12112429
crossref_primary_10_1007_s10489_022_04215_7
crossref_primary_10_1007_s11831_023_09968_z
crossref_primary_10_4018_JCIT_335524
crossref_primary_10_1007_s42979_024_03296_0
crossref_primary_10_3390_electronics12245034
crossref_primary_10_1080_17508975_2025_2544204
crossref_primary_10_1007_s11042_024_19313_6
crossref_primary_10_1162_tacl_a_00635
crossref_primary_10_1007_s42235_022_00216_x
crossref_primary_10_1016_j_eswa_2025_129653
crossref_primary_10_1109_ACCESS_2024_3514306
crossref_primary_10_1002_dac_5684
crossref_primary_10_1016_j_knosys_2023_110289
crossref_primary_10_1016_j_eswa_2023_122981
crossref_primary_10_1109_ACCESS_2023_3262026
crossref_primary_10_1016_j_eswa_2024_124313
crossref_primary_10_1016_j_iswa_2024_200474
crossref_primary_10_1109_ACCESS_2022_3187964
crossref_primary_10_3390_app15179744
crossref_primary_10_1007_s10115_024_02331_z
crossref_primary_10_1007_s11063_024_11639_4
crossref_primary_10_3390_electronics11081219
crossref_primary_10_1109_ACCESS_2024_3428630
crossref_primary_10_1016_j_asoc_2024_112396
crossref_primary_10_7717_peerj_cs_1448
crossref_primary_10_1016_j_neucom_2025_129886
crossref_primary_10_1007_s10660_025_09954_6
crossref_primary_10_1016_j_neucom_2023_03_051
crossref_primary_10_1080_0952813X_2024_2401364
crossref_primary_10_1002_cpe_8208
crossref_primary_10_1109_ACCESS_2022_3180051
crossref_primary_10_3390_e26080669
Cites_doi 10.1016/j.eswa.2016.09.040
10.1016/j.knosys.2021.107251
10.1016/j.ipm.2021.102690
10.1016/j.dss.2019.01.003
10.1109/ACCESS.2018.2883742
10.1007/BF01589116
10.1109/SEST50973.2021.9543462
10.1007/s10489-018-1219-x
10.3233/IDA-140699
10.1109/ACCESS.2019.2928574
10.1016/j.neucom.2020.08.018
10.1109/TSMCA.2012.2208186
10.1007/s10489-018-1289-9
10.1109/TKDE.2016.2528249
10.3390/info9060143
10.1109/TPAMI.2013.50
10.1016/j.knosys.2020.106434
10.1145/1864708.1864736
10.1016/j.ins.2020.07.038
10.1109/TPAMI.2016.2605085
10.1016/j.knosys.2018.01.003
10.1007/s10489-018-1359-z
10.1007/s10115-015-0832-9
10.1016/j.knosys.2020.106681
10.1016/j.asoc.2021.107345
10.1016/j.neucom.2019.01.028
10.1007/s11280-018-0532-y
10.1016/j.eswa.2015.05.027
10.1109/TMM.2020.2992941
10.1016/j.asoc.2020.107005
10.1016/j.neucom.2015.10.134
10.1109/TSMCA.2011.2132708
10.1016/j.ipm.2017.03.002
10.1007/s12652-020-02388-y
10.1145/3158369
10.1109/ACCESS.2018.2890293
10.1016/j.neucom.2020.12.015
10.1109/ACCESS.2019.2905534
10.3390/app8050799
10.1016/j.dss.2019.113073
10.1016/j.future.2017.04.003
10.1016/j.eswa.2021.114757
10.1109/TNSE.2020.3044035
10.1109/TII.2019.2958696
10.1145/3121050.3121057
10.1016/j.eswa.2018.11.003
10.1016/j.ins.2018.08.039
10.1109/TCYB.2018.2795041
10.1016/j.knosys.2017.01.027
10.1016/j.knosys.2019.105371
10.1016/j.eswa.2021.115849
10.1145/3369390
10.1109/TSMC.2016.2633573
10.1016/j.inffus.2021.04.001
10.1145/3038912.3052569
10.1007/s10844-018-0517-4
10.1016/j.eswa.2021.115555
10.1109/ASONAM.2018.8508723
10.1109/TSMC.2015.2460691
10.1016/j.physa.2015.05.008
10.1016/j.elerap.2019.100838
10.1007/s11042-018-7079-x
10.1126/science.1127647
10.1177/0165551518808191
10.1016/j.eswa.2018.04.014
10.1109/TSMC.2013.2263128
10.1016/j.asoc.2021.107675
10.1007/s11042-020-09768-8
10.1002/int.22320
10.1109/TII.2021.3065718
10.1016/j.neucom.2014.07.011
10.1007/s10489-017-0928-x
10.1016/j.neucom.2019.11.095
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2021.11.064
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 571
ExternalDocumentID 10_1016_j_neucom_2021_11_064
S0925231221017410
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-5a4450f33417f2cd36a5b5e464ede97584ecc0a4547b14dc0438c943ed226e6d3
ISICitedReferencesCount 76
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000830177900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 07:14:02 EST 2025
Tue Nov 18 20:33:51 EST 2025
Fri Feb 23 02:40:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep neural networks
Sparse autoencoder
Tag
Collaborative filtering
Trust
Recommender systems
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-5a4450f33417f2cd36a5b5e464ede97584ecc0a4547b14dc0438c943ed226e6d3
PageCount 15
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2021_11_064
crossref_primary_10_1016_j_neucom_2021_11_064
elsevier_sciencedirect_doi_10_1016_j_neucom_2021_11_064
PublicationCentury 2000
PublicationDate 2022-06-01
2022-06-00
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Chen, Wang, Chen, Liu, Gong (b0215) 2020; 16
He, Meng, Zhang (b0335) 2019; 7
Vaasa, Finland, 2021, pp. 1-6.
Gohari, Aliee, Haghighi (b0170) 2019; 34
Eirinaki, Louta, Varlamis (b0105) 2014; 44
“A new ensemble reinforcement learning strategy for solar irradiance forecasting using deep optimized convolutional neural network models,” in
A. Makhzani and B. Frey, “K-sparse Autoencoders,”
Liu, Nocedal (b0420) 1989; 45
Zhang, Zhang, Wang, Chen (b0350) 2019; 334
Ahmadian, Afsharchi, Meghdadi (b0175) 2019; 45
Mauro, Ardissono (b0240) 2019
Guan, Wang, Bu, Chen, Yang, Cai (b0275) 2010
Banerjee, Banjare, Pal, Jenamani (b0265) 2021; 12
Da’u, Salim, Idris (b0360) 2021; 213
Ahmadian, Afsharchi, Meghdadi (b0055) 2019; 78
Jalali, Ahmadian, Ahmadian, Khosravi, Alazab, Nahavandi (b0305) 2021; 111
Wu, Zhang, Yue, Zhang, He, Sun (b0375) 2018; 145
Movahedian, Khayyambashi (b0115) 2015; 19
Zhang, Liu, Sang (b0050) 2021; 106
Quintanilla, Rawat, Sakryukin, Shah, Kankanhalli (b0290) 2020; 23
Rafailidis, Daras (b0090) 2013; 43
Guo, Liang, Zhu, Luo, Sun, Zheng (b0180) 2019; 53
Huang, Wang, Han, Yu, Cui (b0295) 2020; 385
Yan, Wang, Cao, Liu (b0340) 2019; 7
Wei, He, Chen, Zhou, Tang (b0385) 2017; 69
Fan, Li, Cheng (b0445) 2018
Tang, Zhao, Bu, Qian (b0035) 2021; 228
Hinton, Salakhutdinov (b0435) 2006; 313
Moradi, Ahmadian, Akhlaghian (b0110) 2015; 436
Ahmed, Saleem, Khalid, Rashid (b0205) 2021; 174
Zhang, Du, Yoshida, Yang (b0365) 2019; 470
Ma, Wang, Zheng, Miao, Liang (b0210) 2021; 431
Rafailidis, Nanopoulos (b0125) 2016; 46
Moradi, Ahmadian (b0145) 2015; 42
Ahmadian, Meghdadi, Afsharchi (b0165) 2018; 54
Jiang, Rong, Peng, Nie, Xiong (b0425) 2015
Zhang, Yao, Sun, Tay (b0300) 2019; 52
N.CC, Mohan (b0450) 2019; 49
Zhang, Sun, Zhao, Chow, Wu (b0040) 2019
Ghavipour, Meybodi (b0155) 2019; 49
Chen, Ding, Xin, Li, Wang, Wang (b0260) 2021; 421
Nanopoulos (b0270) 2011; 41
Guan, Wei, Chen (b0345) 2019; 118
Ma, Zhou, Liu, Lyu, King (b0440) 2011
2017, pp. 173–182.
Xu, Lukasiewicz, Chen, Miao, Meng (b0455) 2017
Guo, Zhou, Zhang, Song, Chen (b0200) 2021; 74
Zheng, Kondo, Zilora, Yu (b0085) 2018; 106
Zhao, Wang, Zhang, Sun, Huo, Qu (b0230) 2020; 209
Zhao, Guan, Liu (b0280) 2015; 148
Deng, Huang, Wang, Lai, Yu (b0390) 2019
2013.
Hu, Xu, Zheng, Liu, Li, Sheng, Lian, Xian (b0220) 2020; 20
Xie, Xiong, Han, Liu, Li, Bao (b0255) 2018; 21
Fu, Qu, Yi, Lu, Liu (b0370) 2018; 49
Luo, Xie, Rao, Wang (b0250) 2019; 119
Ahmadian, Joorabloo, Jalili, Ahmadian (b0065) 2022; 187
Bengio, Courville, Vincent (b0415) 2013; 35
Wan, Xia, Kong, Hsu, Huang, Ma (b0460) 2021; 8
Barcelona, Spain, 2010, pp. 135-142.
Zuo, Zeng, Gong, Jiao (b0120) 2016; 204
Jalali, Ahmadian, Khosravi, Shafie-khah, Nahavandi, Catalão (b0310) 2021; 17
Liu, Wu (b0330) 2017
Rezaeimehr, Moradi, Ahmadian, Qader, Jalili (b0010) 2018; 78
D. Rafailidis and F. Crestani, “Recommendation with social relationships via deep learning,” in
Agrawal, Roy, Mitra (b0285) 2021; 58
Xi, Huang, Wang, Zheng, Lai, BPAM (b0395) 2019
Moradi, Rezaimehr, Ahmadian, Jalili (b0140) 2016
X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T. S. Chua, “Neural collaborative filtering,” in
Amsterdam, The Netherlands, 2017, pp. 151-158.
Liu, Liang, Chiclana, Wu (b0195) 2021; 101
Liang, Zheng, Chen, Sangaiah, Zhao (b0380) 2018; 8
Jalali, Ahmadian, Kavousi-Fard, Khosravi, Nahavandi (b0320) 2021
Ahmadian, Meghdadi, Afsharchi (b0005) 2018; 48
Chen, Wang, Jiang, Li, Yan, Shi (b0225) 2021; 36
S. Ahmadian, N. Joorabloo, M. Jalili, M. Meghdadi, M. Afsharchi, and Y. Ren, “A temporal clustering approach for social recommender systems,” in
Jalili, Ahmadian, Izadi, Moradi, Salehi (b0030) 2018; 6
Zhang, Xu, Zhang, Wang (b0015) 2017; 47
Jalali, Ahmadian, Khodayar, Khosravi, Ghasemi, Shafie-khah (b0315) 2021
Rahmani, Aliannejadi, Ahmadian, Baratchi, Afsharchi, Crestani (b0130) 2019
Liu, Han, Gou, Yang (b0150) 2019; 7
M. Jamali and M. Ester, “A matrix factorization technique with trust propagation for recommendation in social networks,” in
Ahmadian, Joorabloo, Jalili, Ren, Meghdadi, Afsharchi (b0075) 2020; 192
Yu, Guo, Li, Wang, Fan (b0160) 2019; 123
Guo, Zhang, Zhu, Wang (b0185) 2017; 122
Zhu, Li, Zhou, Xiong, Yuan (b0235) 2016; 46
Yang, Lei, Liu, Li (b0095) 2016; 39
Ni, Huang, Cheng, Gao (b0355) 2021; 542
Guo, Zhang, Yorke-Smith (b0190) 2016; 28
Barcelona, Spain, 2018, pp. 1139-1144.
Ficel, Haddad, Zghal (b0020) 2021; 185
Zhao, Wang, Wang, Zhou, Jiang (b0045) 2018; 48
Guo, Zhang, Yorke-Smith (b0100) 2015
Han, Huang, Zhang, Bhatti (b0245) 2018; 9
Xue, Dai, Zhang, Huang, Chen (b0400) 2017
S. M. J. Jalali, M. Khodayar, S. Ahmadian, M. Shafie-khah, A. Khosravi, S. M. S. Islam
Lee, Battle, Raina, Ng (b0430) 2006
Ahmadian, Moradi, Akhlaghian (b0135) 2014
Tahmasebi, Meghdadi, Ahmadian, Valiallahi (b0060) 2021; 80
Rafailidis (10.1016/j.neucom.2021.11.064_b0125) 2016; 46
Liu (10.1016/j.neucom.2021.11.064_b0150) 2019; 7
Wang (10.1016/j.neucom.2021.11.064_b0215) 2020; 16
Han (10.1016/j.neucom.2021.11.064_b0245) 2018; 9
Rezaeimehr (10.1016/j.neucom.2021.11.064_b0010) 2018; 78
10.1016/j.neucom.2021.11.064_b0410
Ma (10.1016/j.neucom.2021.11.064_b0440) 2011
Xue (10.1016/j.neucom.2021.11.064_b0400) 2017
Liu (10.1016/j.neucom.2021.11.064_b0195) 2021; 101
Deng (10.1016/j.neucom.2021.11.064_b0390) 2019
Zhang (10.1016/j.neucom.2021.11.064_b0365) 2019; 470
Yu (10.1016/j.neucom.2021.11.064_b0160) 2019; 123
Gohari (10.1016/j.neucom.2021.11.064_b0170) 2019; 34
Huang (10.1016/j.neucom.2021.11.064_b0295) 2020; 385
Ahmadian (10.1016/j.neucom.2021.11.064_b0065) 2022; 187
Xie (10.1016/j.neucom.2021.11.064_b0255) 2018; 21
Zheng (10.1016/j.neucom.2021.11.064_b0085) 2018; 106
Wan (10.1016/j.neucom.2021.11.064_b0460) 2021; 8
Guo (10.1016/j.neucom.2021.11.064_b0200) 2021; 74
Ma (10.1016/j.neucom.2021.11.064_b0210) 2021; 431
Ahmed (10.1016/j.neucom.2021.11.064_b0205) 2021; 174
Yang (10.1016/j.neucom.2021.11.064_b0095) 2016; 39
Fu (10.1016/j.neucom.2021.11.064_b0370) 2018; 49
Moradi (10.1016/j.neucom.2021.11.064_b0145) 2015; 42
Ni (10.1016/j.neucom.2021.11.064_b0355) 2021; 542
10.1016/j.neucom.2021.11.064_b0025
Quintanilla (10.1016/j.neucom.2021.11.064_b0290) 2020; 23
Rafailidis (10.1016/j.neucom.2021.11.064_b0090) 2013; 43
Guo (10.1016/j.neucom.2021.11.064_b0100) 2015
Ficel (10.1016/j.neucom.2021.11.064_b0020) 2021; 185
Xi (10.1016/j.neucom.2021.11.064_b0395) 2019
Liu (10.1016/j.neucom.2021.11.064_b0330) 2017
Xu (10.1016/j.neucom.2021.11.064_b0455) 2017
Luo (10.1016/j.neucom.2021.11.064_b0250) 2019; 119
Ghavipour (10.1016/j.neucom.2021.11.064_b0155) 2019; 49
Zhang (10.1016/j.neucom.2021.11.064_b0350) 2019; 334
Guan (10.1016/j.neucom.2021.11.064_b0345) 2019; 118
Hu (10.1016/j.neucom.2021.11.064_b0220) 2020; 20
Wu (10.1016/j.neucom.2021.11.064_b0375) 2018; 145
Movahedian (10.1016/j.neucom.2021.11.064_b0115) 2015; 19
Moradi (10.1016/j.neucom.2021.11.064_b0140) 2016
Jalali (10.1016/j.neucom.2021.11.064_b0310) 2021; 17
Bengio (10.1016/j.neucom.2021.11.064_b0415) 2013; 35
Fan (10.1016/j.neucom.2021.11.064_b0445) 2018
Ahmadian (10.1016/j.neucom.2021.11.064_b0055) 2019; 78
Tang (10.1016/j.neucom.2021.11.064_b0035) 2021; 228
Yan (10.1016/j.neucom.2021.11.064_b0340) 2019; 7
Zuo (10.1016/j.neucom.2021.11.064_b0120) 2016; 204
Jalili (10.1016/j.neucom.2021.11.064_b0030) 2018; 6
Zhu (10.1016/j.neucom.2021.11.064_b0235) 2016; 46
Liu (10.1016/j.neucom.2021.11.064_b0420) 1989; 45
Ahmadian (10.1016/j.neucom.2021.11.064_b0175) 2019; 45
10.1016/j.neucom.2021.11.064_b0070
Zhao (10.1016/j.neucom.2021.11.064_b0280) 2015; 148
Liang (10.1016/j.neucom.2021.11.064_b0380) 2018; 8
Zhang (10.1016/j.neucom.2021.11.064_b0040) 2019
Guo (10.1016/j.neucom.2021.11.064_b0190) 2016; 28
Chen (10.1016/j.neucom.2021.11.064_b0225) 2021; 36
Zhao (10.1016/j.neucom.2021.11.064_b0230) 2020; 209
Jiang (10.1016/j.neucom.2021.11.064_b0425) 2015
Guo (10.1016/j.neucom.2021.11.064_b0185) 2017; 122
Ahmadian (10.1016/j.neucom.2021.11.064_b0075) 2020; 192
Agrawal (10.1016/j.neucom.2021.11.064_b0285) 2021; 58
Eirinaki (10.1016/j.neucom.2021.11.064_b0105) 2014; 44
He (10.1016/j.neucom.2021.11.064_b0335) 2019; 7
Zhang (10.1016/j.neucom.2021.11.064_b0300) 2019; 52
Chen (10.1016/j.neucom.2021.11.064_b0260) 2021; 421
Jalali (10.1016/j.neucom.2021.11.064_b0315) 2021
Tahmasebi (10.1016/j.neucom.2021.11.064_b0060) 2021; 80
Guan (10.1016/j.neucom.2021.11.064_b0275) 2010
Da’u (10.1016/j.neucom.2021.11.064_b0360) 2021; 213
10.1016/j.neucom.2021.11.064_b0325
N.CC (10.1016/j.neucom.2021.11.064_b0450) 2019; 49
Zhang (10.1016/j.neucom.2021.11.064_b0050) 2021; 106
Hinton (10.1016/j.neucom.2021.11.064_b0435) 2006; 313
10.1016/j.neucom.2021.11.064_b0080
Rahmani (10.1016/j.neucom.2021.11.064_b0130) 2019
Zhang (10.1016/j.neucom.2021.11.064_b0015) 2017; 47
Moradi (10.1016/j.neucom.2021.11.064_b0110) 2015; 436
Banerjee (10.1016/j.neucom.2021.11.064_b0265) 2021; 12
Guo (10.1016/j.neucom.2021.11.064_b0180) 2019; 53
Jalali (10.1016/j.neucom.2021.11.064_b0305) 2021; 111
Jalali (10.1016/j.neucom.2021.11.064_b0320) 2021
10.1016/j.neucom.2021.11.064_b0405
Zhao (10.1016/j.neucom.2021.11.064_b0045) 2018; 48
Ahmadian (10.1016/j.neucom.2021.11.064_b0135) 2014
Ahmadian (10.1016/j.neucom.2021.11.064_b0165) 2018; 54
Lee (10.1016/j.neucom.2021.11.064_b0430) 2006
Ahmadian (10.1016/j.neucom.2021.11.064_b0005) 2018; 48
Mauro (10.1016/j.neucom.2021.11.064_b0240) 2019
Nanopoulos (10.1016/j.neucom.2021.11.064_b0270) 2011; 41
Wei (10.1016/j.neucom.2021.11.064_b0385) 2017; 69
References_xml – start-page: 1
  year: 2019
  end-page: 13
  ident: b0040
  article-title: Bridging user interest to item content for recommender systems: An optimization model
  publication-title: IEEE Trans. Cybernetics
– volume: 16
  start-page: 6124
  year: 2020
  end-page: 6132
  ident: b0215
  article-title: Trust-enhanced collaborative filtering for personalized point of interests recommendation
  publication-title: IEEE Trans. Ind. Inf.
– volume: 101
  year: 2021
  ident: b0195
  article-title: A knowledge coverage-based trust propagation for recommendation mechanism in social network group decision making
  publication-title: Appl. Soft Comput.
– volume: 21
  start-page: 1655
  year: 2018
  end-page: 1673
  ident: b0255
  article-title: Interactive resource recommendation algorithm based on tag information
  publication-title: World Wide Web
– volume: 78
  start-page: 17763
  year: 2019
  end-page: 17798
  ident: b0055
  article-title: A novel approach based on multi-view reliability measures to alleviate data sparsity in recommender systems
  publication-title: Multimedia Tools Appl.
– volume: 39
  start-page: 1633
  year: 2016
  end-page: 1647
  ident: b0095
  article-title: Social collaborative filtering by trust
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 36
  start-page: 778
  year: 2021
  end-page: 795
  ident: b0225
  article-title: Trust-aware generative adversarial network with recurrent neural network for recommender systems
  publication-title: Int. J. Intell. Syst.
– volume: 44
  start-page: 409
  year: 2014
  end-page: 421
  ident: b0105
  article-title: A trust-aware system for personalized user recommendations in social networks
  publication-title: IEEE Trans. Syst. Man. Cybernet. Syst.
– volume: 49
  start-page: 1937
  year: 2019
  end-page: 1953
  ident: b0450
  article-title: A social recommender system using deep architecture and network embedding
  publication-title: Appl. Intell.
– volume: 52
  start-page: 1
  year: 2019
  end-page: 38
  ident: b0300
  article-title: Deep learning based recommender system: A survey and new perspectives
  publication-title: ACM Comput. Surv.
– volume: 334
  start-page: 206
  year: 2019
  end-page: 218
  ident: b0350
  article-title: A deep variational matrix factorization method for recommendation on large scale sparse dataset
  publication-title: Neurocomputing
– volume: 185
  year: 2021
  ident: b0020
  article-title: A graph-based recommendation approach for highly interactive platforms
  publication-title: Expert Syst. Appl.
– reference: X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T. S. Chua, “Neural collaborative filtering,” in
– reference: , Barcelona, Spain, 2010, pp. 135-142.
– volume: 9
  start-page: 1
  year: 2018
  end-page: 15
  ident: b0245
  article-title: An extended-tag-induced matrix factorization technique for recommender systems
  publication-title: Information
– reference: S. M. J. Jalali, M. Khodayar, S. Ahmadian, M. Shafie-khah, A. Khosravi, S. M. S. Islam
– volume: 43
  start-page: 673
  year: 2013
  end-page: 688
  ident: b0090
  article-title: The TFC model: tensor factorization and tag clustering for item recommendation in social tagging systems
  publication-title: IEEE Trans. Syst. Man Cybernet. Syst.
– start-page: 451
  year: 2017
  end-page: 458
  ident: b0330
  article-title: Deep learning based recommendation: A Survey
  publication-title: International Conference on Information Science and Applications, Macau, China
– start-page: 287
  year: 2011
  end-page: 296
  ident: b0440
  article-title: Recommender systems with social regularization
  publication-title: Proceedings of the fourth ACM international conference on Web search and data mining, Hong Kong, China
– volume: 148
  start-page: 521
  year: 2015
  end-page: 534
  ident: b0280
  article-title: Ranking on heterogeneous manifolds for tag recommendation in social tagging services
  publication-title: Neurocomputing
– volume: 23
  start-page: 1083
  year: 2020
  end-page: 1094
  ident: b0290
  article-title: Adversarial learning for personalized tag recommendation
  publication-title: IEEE Trans. Multimedia
– volume: 542
  start-page: 324
  year: 2021
  end-page: 342
  ident: b0355
  article-title: An effective recommendation model based on deep representation learning
  publication-title: Inf. Sci.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: b0435
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– start-page: 8075
  year: 2018
  end-page: 8076
  ident: b0445
  article-title: Deep modeling of social relations for recommendation
  publication-title: The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18), New Orleans, Louisiana, USA
– start-page: 801
  year: 2006
  end-page: 808
  ident: b0430
  article-title: Efficient sparse coding algorithms
  publication-title: Proceedings of 20th Annual Conference on Neural Information Processing Systems
– volume: 12
  start-page: 2509
  year: 2021
  end-page: 2525
  ident: b0265
  article-title: A multistep priority-based ranking for top-N recommendation using social and tag information
  publication-title: J. Ambient Intell. Hum. Comput.
– volume: 7
  start-page: 94195
  year: 2019
  end-page: 94204
  ident: b0150
  article-title: Personalized recommendation via trust-based diffusion
  publication-title: IEEE Access
– volume: 8
  start-page: 1
  year: 2018
  end-page: 15
  ident: b0380
  article-title: TRSDL: tag-aware recommender system based on deep learning–intelligent computing systems
  publication-title: Applied Sciences
– start-page: 3203
  year: 2017
  end-page: 3209
  ident: b0400
  article-title: Deep matrix factorization models for recommender systems
  publication-title: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
– volume: 421
  start-page: 105
  year: 2021
  end-page: 114
  ident: b0260
  article-title: AIRec: Attentive intersection model for tag-aware recommendation
  publication-title: Neurocomputing
– start-page: 1
  year: 2015
  end-page: 8
  ident: b0425
  article-title: An empirical analysis of different sparse penalties for autoencoder in unsupervised feature learning
  publication-title: International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland
– volume: 7
  start-page: 5707
  year: 2019
  end-page: 5713
  ident: b0335
  article-title: Collaborative additional variational autoencoder for top-N recommender systems
  publication-title: IEEE Access
– start-page: 3905
  year: 2019
  end-page: 3911
  ident: b0395
  article-title: Recommendation based on BP neural network with attention mechanism
  publication-title: Proceedings of the twenty-eighth International Joint Conference on Artificial Intelligence (IJCAI-19)
– volume: 20
  start-page: 1
  year: 2020
  end-page: 20
  ident: b0220
  article-title: SSL-SVD: Semi-supervised learning-based sparse trust recommendation
  publication-title: ACM Trans. Internet Technol.
– reference: 2013.
– volume: 122
  start-page: 17
  year: 2017
  end-page: 25
  ident: b0185
  article-title: Factored similarity models with social trust for top-N item recommendation
  publication-title: Knowl.-Based Syst.
– volume: 80
  start-page: 2339
  year: 2021
  end-page: 2354
  ident: b0060
  article-title: A hybrid recommendation system based on profile expansion technique to alleviate cold start problem
  publication-title: Multimedia Tools Appl.
– volume: 35
  start-page: 1798
  year: 2013
  end-page: 1828
  ident: b0415
  article-title: Representation learning: A review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: , “A new ensemble reinforcement learning strategy for solar irradiance forecasting using deep optimized convolutional neural network models,” in
– volume: 8
  start-page: 511
  year: 2021
  end-page: 528
  ident: b0460
  article-title: Deep matrix factorization for trust-aware recommendation in social networks
  publication-title: IEEE Trans. Network Sci. Eng.
– volume: 174
  year: 2021
  ident: b0205
  article-title: On deep neural network for trust aware cross domain recommendations in E-commerce
  publication-title: Expert Syst. Appl.
– volume: 74
  start-page: 87
  year: 2021
  end-page: 95
  ident: b0200
  article-title: Trust-aware recommendation based on heterogeneous multi-relational graphs fusion
  publication-title: Inform. Fusion
– reference: , Vaasa, Finland, 2021, pp. 1-6.
– volume: 106
  start-page: 244
  year: 2018
  end-page: 251
  ident: b0085
  article-title: Tag-aware dynamic music recommendation
  publication-title: Expert Syst. Appl.
– reference: , 2017, pp. 173–182.
– start-page: 162
  year: 2016
  end-page: 167
  ident: b0140
  article-title: A trust-aware recommender algorithm based on users overlapping community structure
  publication-title: Sixteenth International Conference on Advances in ICT for Emerging Regions (ICTer), 2016
– start-page: 3196
  year: 2017
  end-page: 3202
  ident: b0455
  article-title: Tag-aware personalized recommendation using a hybrid deep model
  publication-title: Proceedings of the 26th International Joint Conference on Artificial Intelligence
– volume: 187
  year: 2022
  ident: b0065
  article-title: Alleviating data sparsity problem in time-aware recommender systems using a reliable rating profile enrichment approach
  publication-title: Expert Syst. Appl.
– start-page: 391
  year: 2010
  end-page: 400
  ident: b0275
  article-title: Document recommendation in social tagging services
  publication-title: Proceedings of the 19th international conference on World Wide Web
– volume: 209
  year: 2020
  ident: b0230
  article-title: TrustTF: A tensor factorization model using user trust and implicit feedback for context-aware recommender systems
  publication-title: Knowl.-Based Syst.
– start-page: 123
  year: 2015
  end-page: 129
  ident: b0100
  article-title: TrustSVD: collaborative filtering with both the explicit and implicit influence of user trust and of item ratings
  publication-title: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence
– volume: 19
  start-page: 109
  year: 2015
  end-page: 126
  ident: b0115
  article-title: A semantic recommender system based on frequent tag pattern
  publication-title: Intell. Data Anal.
– volume: 48
  start-page: 4448
  year: 2018
  end-page: 4469
  ident: b0005
  article-title: Incorporating reliable virtual ratings into social recommendation systems
  publication-title: Appl. Intell.
– volume: 17
  start-page: 8243
  year: 2021
  end-page: 8253
  ident: b0310
  article-title: A novel evolutionary-based deep convolutional neural network model for intelligent load forecasting
  publication-title: IEEE Trans. Ind. Inf.
– volume: 78
  start-page: 419
  year: 2018
  end-page: 429
  ident: b0010
  article-title: TCARS: Time-and community-aware recommendation system
  publication-title: Fut. Gener. Comput. Syst.
– volume: 54
  start-page: 707
  year: 2018
  end-page: 725
  ident: b0165
  article-title: A social recommendation method based on an adaptive neighbor selection mechanism
  publication-title: Inf. Process. Manage.
– volume: 123
  start-page: 113073
  year: 2019
  ident: b0160
  article-title: Recommendation with diversity: An adaptive trust-aware model
  publication-title: Decis. Support Syst.
– volume: 53
  start-page: 113
  year: 2019
  end-page: 135
  ident: b0180
  article-title: Collaborative filtering recommendation based on trust and emotion
  publication-title: J. Intell. Inform. Syst.
– volume: 192
  start-page: 1
  year: 2020
  end-page: 17
  ident: b0075
  article-title: A social recommender system based on reliable implicit relationships
  publication-title: Knowl.-Based Syst.
– volume: 204
  start-page: 51
  year: 2016
  end-page: 60
  ident: b0120
  article-title: Tag-aware recommender systems based on deep neural networks
  publication-title: Neurocomputing
– volume: 213
  year: 2021
  ident: b0360
  article-title: An adaptive deep learning method for item recommendation system
  publication-title: Knowl.-Based Syst.
– start-page: 98
  year: 2014
  end-page: 103
  ident: b0135
  article-title: An improved model of trust-aware recommender systems using reliability measurements
  publication-title: 6th Conference on Information and Knowledge Technology (IKT)
– volume: 7
  start-page: 40333
  year: 2019
  end-page: 40346
  ident: b0340
  article-title: Deep auto encoder model with convolutional text networks for video recommendation
  publication-title: IEEE Access
– volume: 6
  start-page: 74003
  year: 2018
  end-page: 74024
  ident: b0030
  article-title: Evaluating collaborative filtering recommender algorithms: A survey
  publication-title: IEEE Access
– reference: , Amsterdam, The Netherlands, 2017, pp. 151-158.
– volume: 436
  start-page: 462
  year: 2015
  end-page: 481
  ident: b0110
  article-title: An effective trust-based recommendation method using a novel graph clustering algorithm
  publication-title: Physica A
– reference: D. Rafailidis and F. Crestani, “Recommendation with social relationships via deep learning,” in
– volume: 49
  start-page: 435
  year: 2019
  end-page: 448
  ident: b0155
  article-title: Stochastic trust network enriched by similarity relations to enhance trust-aware recommendations
  publication-title: Appl. Intell.
– start-page: 181
  year: 2019
  end-page: 190
  ident: b0240
  article-title: Extending a tag-based collaborative recommender with co-occurring information interests
  publication-title: Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization, Larnaca, Cyprus
– start-page: 1
  year: 2021
  end-page: 12
  ident: b0320
  article-title: Automated deep CNN-LSTM architecture design for solar irradiance forecasting
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 470
  start-page: 121
  year: 2019
  end-page: 140
  ident: b0365
  article-title: DeepRec: A deep neural network approach to recommendation with item embedding and weighted loss function
  publication-title: Inf. Sci.
– volume: 118
  start-page: 58
  year: 2019
  end-page: 69
  ident: b0345
  article-title: Deep learning based personalized recommendation with multi-view information integration
  publication-title: Decis. Support Syst.
– volume: 58
  year: 2021
  ident: b0285
  article-title: Tag embedding based personalized point of interest recommendation system
  publication-title: Inf. Process. Manage.
– volume: 228
  year: 2021
  ident: b0035
  article-title: Dynamic evolution of multi-graph based collaborative filtering for recommendation systems
  publication-title: Knowl.-Based Syst.
– reference: M. Jamali and M. Ester, “A matrix factorization technique with trust propagation for recommendation in social networks,” in
– volume: 42
  start-page: 7386
  year: 2015
  end-page: 7398
  ident: b0145
  article-title: A reliability-based recommendation method to improve trust-aware recommender systems
  publication-title: Expert Syst. Appl.
– volume: 34
  start-page: 100838
  year: 2019
  ident: b0170
  article-title: A dynamic local–global trust-aware recommendation approach
  publication-title: Electron. Commer. Res. Appl.
– volume: 69
  start-page: 29
  year: 2017
  end-page: 39
  ident: b0385
  article-title: Collaborative filtering and deep learning based recommendation system for cold start items
  publication-title: Expert Syst. Appl.
– volume: 47
  start-page: 659
  year: 2017
  end-page: 669
  ident: b0015
  article-title: Personalized recommendation algorithm for social networks based on comprehensive trust
  publication-title: Appl. Intell.
– start-page: 66
  year: 2019
  end-page: 78
  ident: b0130
  article-title: LGLMF: local geographical based logistic matrix factorization model for POI recommendation
  publication-title: Asia Information Retrieval Symposium
– volume: 46
  start-page: 782
  year: 2016
  end-page: 792
  ident: b0125
  article-title: Modeling users preference dynamics and side information in recommender systems
  publication-title: IEEE Trans. Syst. Man. Cybernet. Syst.
– volume: 119
  start-page: 311
  year: 2019
  end-page: 321
  ident: b0250
  article-title: Personalized recommendation by matrix co-factorization with tags and time information
  publication-title: Expert Syst. Appl.
– volume: 41
  start-page: 760
  year: 2011
  end-page: 771
  ident: b0270
  article-title: Item recommendation in collaborative tagging systems
  publication-title: IEEE Trans. Syst. Man Cybern. Part A: Syst. Humans
– volume: 145
  start-page: 46
  year: 2018
  end-page: 58
  ident: b0375
  article-title: Dual-regularized matrix factorization with deep neural networks for recommender systems
  publication-title: Knowl.-Based Syst.
– volume: 431
  start-page: 100
  year: 2021
  end-page: 110
  ident: b0210
  article-title: A trust-aware latent space mapping approach for cross-domain recommendation
  publication-title: Neurocomputing
– volume: 46
  start-page: 33
  year: 2016
  end-page: 58
  ident: b0235
  article-title: Privacy-preserving topic model for tagging recommender systems
  publication-title: Knowl. Inf. Syst.
– reference: A. Makhzani and B. Frey, “K-sparse Autoencoders,”
– reference: S. Ahmadian, N. Joorabloo, M. Jalili, M. Meghdadi, M. Afsharchi, and Y. Ren, “A temporal clustering approach for social recommender systems,” in
– volume: 48
  start-page: 448
  year: 2018
  end-page: 459
  ident: b0045
  article-title: A novel method on information recommendation via hybrid similarity
  publication-title: IEEE Trans. Syst. Man Cybernet. Syst.
– volume: 111
  year: 2021
  ident: b0305
  article-title: An oppositional-Cauchy based GSK evolutionary algorithm with a novel deep ensemble reinforcement learning strategy for COVID-19 diagnosis
  publication-title: Appl. Soft Comput.
– start-page: 61
  year: 2019
  end-page: 68
  ident: b0390
  article-title: DeepCF: A unified framework of representation learning and matching function learning in recommender system
  publication-title: The thirty-third AAAI conference on Artificial Intelligence, AAAI 2019, Honolulu, Hawaii, USA
– volume: 49
  start-page: 1084
  year: 2018
  end-page: 1096
  ident: b0370
  article-title: A novel deep learning-based collaborative filtering model for recommendation system
  publication-title: IEEE Trans. Cybern.
– volume: 45
  start-page: 503
  year: 1989
  end-page: 528
  ident: b0420
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math. Program.
– volume: 385
  start-page: 1
  year: 2020
  end-page: 12
  ident: b0295
  article-title: TNAM: A tag-aware neural attention model for Top-N recommendation
  publication-title: Neurocomputing
– volume: 45
  start-page: 607
  year: 2019
  end-page: 642
  ident: b0175
  article-title: An effective social recommendation method based on user reputation model and rating profile enhancement
  publication-title: J. Inform. Sci.
– volume: 106
  year: 2021
  ident: b0050
  article-title: Unifying paragraph embeddings and neural collaborative filtering for hybrid recommendation
  publication-title: Appl. Soft Comput.
– reference: , Barcelona, Spain, 2018, pp. 1139-1144.
– volume: 28
  start-page: 1607
  year: 2016
  end-page: 1620
  ident: b0190
  article-title: A novel recommendation model regularized with user trust and item ratings
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 1
  year: 2021
  end-page: 25
  ident: b0315
  article-title: Towards novel deep neuroevolution models: chaotic levy grasshopper optimization for short-term wind speed forecasting
  publication-title: Eng. Comput.
– volume: 69
  start-page: 29
  year: 2017
  ident: 10.1016/j.neucom.2021.11.064_b0385
  article-title: Collaborative filtering and deep learning based recommendation system for cold start items
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.09.040
– volume: 228
  year: 2021
  ident: 10.1016/j.neucom.2021.11.064_b0035
  article-title: Dynamic evolution of multi-graph based collaborative filtering for recommendation systems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107251
– start-page: 287
  year: 2011
  ident: 10.1016/j.neucom.2021.11.064_b0440
  article-title: Recommender systems with social regularization
– ident: 10.1016/j.neucom.2021.11.064_b0410
– volume: 58
  year: 2021
  ident: 10.1016/j.neucom.2021.11.064_b0285
  article-title: Tag embedding based personalized point of interest recommendation system
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2021.102690
– volume: 118
  start-page: 58
  year: 2019
  ident: 10.1016/j.neucom.2021.11.064_b0345
  article-title: Deep learning based personalized recommendation with multi-view information integration
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2019.01.003
– start-page: 162
  year: 2016
  ident: 10.1016/j.neucom.2021.11.064_b0140
  article-title: A trust-aware recommender algorithm based on users overlapping community structure
– volume: 6
  start-page: 74003
  year: 2018
  ident: 10.1016/j.neucom.2021.11.064_b0030
  article-title: Evaluating collaborative filtering recommender algorithms: A survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2883742
– volume: 45
  start-page: 503
  issue: 1-3
  year: 1989
  ident: 10.1016/j.neucom.2021.11.064_b0420
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math. Program.
  doi: 10.1007/BF01589116
– ident: 10.1016/j.neucom.2021.11.064_b0325
  doi: 10.1109/SEST50973.2021.9543462
– volume: 48
  start-page: 4448
  year: 2018
  ident: 10.1016/j.neucom.2021.11.064_b0005
  article-title: Incorporating reliable virtual ratings into social recommendation systems
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-018-1219-x
– volume: 19
  start-page: 109
  issue: 1
  year: 2015
  ident: 10.1016/j.neucom.2021.11.064_b0115
  article-title: A semantic recommender system based on frequent tag pattern
  publication-title: Intell. Data Anal.
  doi: 10.3233/IDA-140699
– volume: 7
  start-page: 94195
  year: 2019
  ident: 10.1016/j.neucom.2021.11.064_b0150
  article-title: Personalized recommendation via trust-based diffusion
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2928574
– volume: 421
  start-page: 105
  year: 2021
  ident: 10.1016/j.neucom.2021.11.064_b0260
  article-title: AIRec: Attentive intersection model for tag-aware recommendation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.08.018
– volume: 43
  start-page: 673
  issue: 3
  year: 2013
  ident: 10.1016/j.neucom.2021.11.064_b0090
  article-title: The TFC model: tensor factorization and tag clustering for item recommendation in social tagging systems
  publication-title: IEEE Trans. Syst. Man Cybernet. Syst.
  doi: 10.1109/TSMCA.2012.2208186
– volume: 49
  start-page: 435
  issue: 2
  year: 2019
  ident: 10.1016/j.neucom.2021.11.064_b0155
  article-title: Stochastic trust network enriched by similarity relations to enhance trust-aware recommendations
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-018-1289-9
– start-page: 1
  year: 2021
  ident: 10.1016/j.neucom.2021.11.064_b0315
  article-title: Towards novel deep neuroevolution models: chaotic levy grasshopper optimization for short-term wind speed forecasting
  publication-title: Eng. Comput.
– start-page: 98
  year: 2014
  ident: 10.1016/j.neucom.2021.11.064_b0135
  article-title: An improved model of trust-aware recommender systems using reliability measurements
– volume: 28
  start-page: 1607
  year: 2016
  ident: 10.1016/j.neucom.2021.11.064_b0190
  article-title: A novel recommendation model regularized with user trust and item ratings
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2016.2528249
– start-page: 1
  year: 2019
  ident: 10.1016/j.neucom.2021.11.064_b0040
  article-title: Bridging user interest to item content for recommender systems: An optimization model
  publication-title: IEEE Trans. Cybernetics
– volume: 9
  start-page: 1
  year: 2018
  ident: 10.1016/j.neucom.2021.11.064_b0245
  article-title: An extended-tag-induced matrix factorization technique for recommender systems
  publication-title: Information
  doi: 10.3390/info9060143
– volume: 35
  start-page: 1798
  year: 2013
  ident: 10.1016/j.neucom.2021.11.064_b0415
  article-title: Representation learning: A review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
– start-page: 123
  year: 2015
  ident: 10.1016/j.neucom.2021.11.064_b0100
  article-title: TrustSVD: collaborative filtering with both the explicit and implicit influence of user trust and of item ratings
– volume: 209
  year: 2020
  ident: 10.1016/j.neucom.2021.11.064_b0230
  article-title: TrustTF: A tensor factorization model using user trust and implicit feedback for context-aware recommender systems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106434
– ident: 10.1016/j.neucom.2021.11.064_b0070
  doi: 10.1145/1864708.1864736
– volume: 542
  start-page: 324
  year: 2021
  ident: 10.1016/j.neucom.2021.11.064_b0355
  article-title: An effective recommendation model based on deep representation learning
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.07.038
– volume: 39
  start-page: 1633
  year: 2016
  ident: 10.1016/j.neucom.2021.11.064_b0095
  article-title: Social collaborative filtering by trust
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2605085
– start-page: 3905
  year: 2019
  ident: 10.1016/j.neucom.2021.11.064_b0395
  article-title: Recommendation based on BP neural network with attention mechanism
– volume: 145
  start-page: 46
  year: 2018
  ident: 10.1016/j.neucom.2021.11.064_b0375
  article-title: Dual-regularized matrix factorization with deep neural networks for recommender systems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.01.003
– volume: 49
  start-page: 1937
  year: 2019
  ident: 10.1016/j.neucom.2021.11.064_b0450
  article-title: A social recommender system using deep architecture and network embedding
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-018-1359-z
– volume: 46
  start-page: 33
  issue: 1
  year: 2016
  ident: 10.1016/j.neucom.2021.11.064_b0235
  article-title: Privacy-preserving topic model for tagging recommender systems
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-015-0832-9
– start-page: 391
  year: 2010
  ident: 10.1016/j.neucom.2021.11.064_b0275
  article-title: Document recommendation in social tagging services
– volume: 213
  year: 2021
  ident: 10.1016/j.neucom.2021.11.064_b0360
  article-title: An adaptive deep learning method for item recommendation system
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106681
– volume: 106
  year: 2021
  ident: 10.1016/j.neucom.2021.11.064_b0050
  article-title: Unifying paragraph embeddings and neural collaborative filtering for hybrid recommendation
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107345
– volume: 334
  start-page: 206
  year: 2019
  ident: 10.1016/j.neucom.2021.11.064_b0350
  article-title: A deep variational matrix factorization method for recommendation on large scale sparse dataset
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.028
– volume: 21
  start-page: 1655
  year: 2018
  ident: 10.1016/j.neucom.2021.11.064_b0255
  article-title: Interactive resource recommendation algorithm based on tag information
  publication-title: World Wide Web
  doi: 10.1007/s11280-018-0532-y
– volume: 42
  start-page: 7386
  year: 2015
  ident: 10.1016/j.neucom.2021.11.064_b0145
  article-title: A reliability-based recommendation method to improve trust-aware recommender systems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.05.027
– volume: 23
  start-page: 1083
  year: 2020
  ident: 10.1016/j.neucom.2021.11.064_b0290
  article-title: Adversarial learning for personalized tag recommendation
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2020.2992941
– volume: 101
  year: 2021
  ident: 10.1016/j.neucom.2021.11.064_b0195
  article-title: A knowledge coverage-based trust propagation for recommendation mechanism in social network group decision making
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.107005
– volume: 204
  start-page: 51
  year: 2016
  ident: 10.1016/j.neucom.2021.11.064_b0120
  article-title: Tag-aware recommender systems based on deep neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.10.134
– start-page: 801
  year: 2006
  ident: 10.1016/j.neucom.2021.11.064_b0430
  article-title: Efficient sparse coding algorithms
– volume: 41
  start-page: 760
  issue: 4
  year: 2011
  ident: 10.1016/j.neucom.2021.11.064_b0270
  article-title: Item recommendation in collaborative tagging systems
  publication-title: IEEE Trans. Syst. Man Cybern. Part A: Syst. Humans
  doi: 10.1109/TSMCA.2011.2132708
– volume: 54
  start-page: 707
  issue: 4
  year: 2018
  ident: 10.1016/j.neucom.2021.11.064_b0165
  article-title: A social recommendation method based on an adaptive neighbor selection mechanism
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2017.03.002
– volume: 12
  start-page: 2509
  year: 2021
  ident: 10.1016/j.neucom.2021.11.064_b0265
  article-title: A multistep priority-based ranking for top-N recommendation using social and tag information
  publication-title: J. Ambient Intell. Hum. Comput.
  doi: 10.1007/s12652-020-02388-y
– volume: 52
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.neucom.2021.11.064_b0300
  article-title: Deep learning based recommender system: A survey and new perspectives
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3158369
– volume: 7
  start-page: 5707
  year: 2019
  ident: 10.1016/j.neucom.2021.11.064_b0335
  article-title: Collaborative additional variational autoencoder for top-N recommender systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2890293
– start-page: 1
  year: 2021
  ident: 10.1016/j.neucom.2021.11.064_b0320
  article-title: Automated deep CNN-LSTM architecture design for solar irradiance forecasting
– volume: 431
  start-page: 100
  year: 2021
  ident: 10.1016/j.neucom.2021.11.064_b0210
  article-title: A trust-aware latent space mapping approach for cross-domain recommendation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.12.015
– volume: 7
  start-page: 40333
  year: 2019
  ident: 10.1016/j.neucom.2021.11.064_b0340
  article-title: Deep auto encoder model with convolutional text networks for video recommendation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2905534
– start-page: 3196
  year: 2017
  ident: 10.1016/j.neucom.2021.11.064_b0455
  article-title: Tag-aware personalized recommendation using a hybrid deep model
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.neucom.2021.11.064_b0380
  article-title: TRSDL: tag-aware recommender system based on deep learning–intelligent computing systems
  publication-title: Applied Sciences
  doi: 10.3390/app8050799
– start-page: 3203
  year: 2017
  ident: 10.1016/j.neucom.2021.11.064_b0400
  article-title: Deep matrix factorization models for recommender systems
– volume: 123
  start-page: 113073
  year: 2019
  ident: 10.1016/j.neucom.2021.11.064_b0160
  article-title: Recommendation with diversity: An adaptive trust-aware model
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2019.113073
– volume: 78
  start-page: 419
  year: 2018
  ident: 10.1016/j.neucom.2021.11.064_b0010
  article-title: TCARS: Time-and community-aware recommendation system
  publication-title: Fut. Gener. Comput. Syst.
  doi: 10.1016/j.future.2017.04.003
– volume: 174
  year: 2021
  ident: 10.1016/j.neucom.2021.11.064_b0205
  article-title: On deep neural network for trust aware cross domain recommendations in E-commerce
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114757
– volume: 8
  start-page: 511
  issue: 1
  year: 2021
  ident: 10.1016/j.neucom.2021.11.064_b0460
  article-title: Deep matrix factorization for trust-aware recommendation in social networks
  publication-title: IEEE Trans. Network Sci. Eng.
  doi: 10.1109/TNSE.2020.3044035
– volume: 16
  start-page: 6124
  year: 2020
  ident: 10.1016/j.neucom.2021.11.064_b0215
  article-title: Trust-enhanced collaborative filtering for personalized point of interests recommendation
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2019.2958696
– ident: 10.1016/j.neucom.2021.11.064_b0080
  doi: 10.1145/3121050.3121057
– volume: 119
  start-page: 311
  year: 2019
  ident: 10.1016/j.neucom.2021.11.064_b0250
  article-title: Personalized recommendation by matrix co-factorization with tags and time information
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.11.003
– volume: 470
  start-page: 121
  year: 2019
  ident: 10.1016/j.neucom.2021.11.064_b0365
  article-title: DeepRec: A deep neural network approach to recommendation with item embedding and weighted loss function
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.08.039
– volume: 49
  start-page: 1084
  year: 2018
  ident: 10.1016/j.neucom.2021.11.064_b0370
  article-title: A novel deep learning-based collaborative filtering model for recommendation system
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2795041
– volume: 122
  start-page: 17
  year: 2017
  ident: 10.1016/j.neucom.2021.11.064_b0185
  article-title: Factored similarity models with social trust for top-N item recommendation
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.01.027
– volume: 192
  start-page: 1
  year: 2020
  ident: 10.1016/j.neucom.2021.11.064_b0075
  article-title: A social recommender system based on reliable implicit relationships
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.105371
– start-page: 61
  year: 2019
  ident: 10.1016/j.neucom.2021.11.064_b0390
  article-title: DeepCF: A unified framework of representation learning and matching function learning in recommender system
– volume: 187
  year: 2022
  ident: 10.1016/j.neucom.2021.11.064_b0065
  article-title: Alleviating data sparsity problem in time-aware recommender systems using a reliable rating profile enrichment approach
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115849
– volume: 20
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.neucom.2021.11.064_b0220
  article-title: SSL-SVD: Semi-supervised learning-based sparse trust recommendation
  publication-title: ACM Trans. Internet Technol.
  doi: 10.1145/3369390
– volume: 48
  start-page: 448
  issue: 3
  year: 2018
  ident: 10.1016/j.neucom.2021.11.064_b0045
  article-title: A novel method on information recommendation via hybrid similarity
  publication-title: IEEE Trans. Syst. Man Cybernet. Syst.
  doi: 10.1109/TSMC.2016.2633573
– volume: 74
  start-page: 87
  year: 2021
  ident: 10.1016/j.neucom.2021.11.064_b0200
  article-title: Trust-aware recommendation based on heterogeneous multi-relational graphs fusion
  publication-title: Inform. Fusion
  doi: 10.1016/j.inffus.2021.04.001
– ident: 10.1016/j.neucom.2021.11.064_b0405
  doi: 10.1145/3038912.3052569
– volume: 53
  start-page: 113
  issue: 1
  year: 2019
  ident: 10.1016/j.neucom.2021.11.064_b0180
  article-title: Collaborative filtering recommendation based on trust and emotion
  publication-title: J. Intell. Inform. Syst.
  doi: 10.1007/s10844-018-0517-4
– volume: 185
  year: 2021
  ident: 10.1016/j.neucom.2021.11.064_b0020
  article-title: A graph-based recommendation approach for highly interactive platforms
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115555
– ident: 10.1016/j.neucom.2021.11.064_b0025
  doi: 10.1109/ASONAM.2018.8508723
– volume: 46
  start-page: 782
  issue: 6
  year: 2016
  ident: 10.1016/j.neucom.2021.11.064_b0125
  article-title: Modeling users preference dynamics and side information in recommender systems
  publication-title: IEEE Trans. Syst. Man. Cybernet. Syst.
  doi: 10.1109/TSMC.2015.2460691
– volume: 436
  start-page: 462
  year: 2015
  ident: 10.1016/j.neucom.2021.11.064_b0110
  article-title: An effective trust-based recommendation method using a novel graph clustering algorithm
  publication-title: Physica A
  doi: 10.1016/j.physa.2015.05.008
– volume: 34
  start-page: 100838
  year: 2019
  ident: 10.1016/j.neucom.2021.11.064_b0170
  article-title: A dynamic local–global trust-aware recommendation approach
  publication-title: Electron. Commer. Res. Appl.
  doi: 10.1016/j.elerap.2019.100838
– volume: 78
  start-page: 17763
  year: 2019
  ident: 10.1016/j.neucom.2021.11.064_b0055
  article-title: A novel approach based on multi-view reliability measures to alleviate data sparsity in recommender systems
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-018-7079-x
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.neucom.2021.11.064_b0435
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 45
  start-page: 607
  issue: 5
  year: 2019
  ident: 10.1016/j.neucom.2021.11.064_b0175
  article-title: An effective social recommendation method based on user reputation model and rating profile enhancement
  publication-title: J. Inform. Sci.
  doi: 10.1177/0165551518808191
– start-page: 451
  year: 2017
  ident: 10.1016/j.neucom.2021.11.064_b0330
  article-title: Deep learning based recommendation: A Survey
– volume: 106
  start-page: 244
  year: 2018
  ident: 10.1016/j.neucom.2021.11.064_b0085
  article-title: Tag-aware dynamic music recommendation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.04.014
– start-page: 1
  year: 2015
  ident: 10.1016/j.neucom.2021.11.064_b0425
  article-title: An empirical analysis of different sparse penalties for autoencoder in unsupervised feature learning
– start-page: 8075
  year: 2018
  ident: 10.1016/j.neucom.2021.11.064_b0445
  article-title: Deep modeling of social relations for recommendation
– volume: 44
  start-page: 409
  issue: 4
  year: 2014
  ident: 10.1016/j.neucom.2021.11.064_b0105
  article-title: A trust-aware system for personalized user recommendations in social networks
  publication-title: IEEE Trans. Syst. Man. Cybernet. Syst.
  doi: 10.1109/TSMC.2013.2263128
– start-page: 181
  year: 2019
  ident: 10.1016/j.neucom.2021.11.064_b0240
  article-title: Extending a tag-based collaborative recommender with co-occurring information interests
– volume: 111
  year: 2021
  ident: 10.1016/j.neucom.2021.11.064_b0305
  article-title: An oppositional-Cauchy based GSK evolutionary algorithm with a novel deep ensemble reinforcement learning strategy for COVID-19 diagnosis
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107675
– volume: 80
  start-page: 2339
  year: 2021
  ident: 10.1016/j.neucom.2021.11.064_b0060
  article-title: A hybrid recommendation system based on profile expansion technique to alleviate cold start problem
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-020-09768-8
– start-page: 66
  year: 2019
  ident: 10.1016/j.neucom.2021.11.064_b0130
  article-title: LGLMF: local geographical based logistic matrix factorization model for POI recommendation
– volume: 36
  start-page: 778
  issue: 2
  year: 2021
  ident: 10.1016/j.neucom.2021.11.064_b0225
  article-title: Trust-aware generative adversarial network with recurrent neural network for recommender systems
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.22320
– volume: 17
  start-page: 8243
  year: 2021
  ident: 10.1016/j.neucom.2021.11.064_b0310
  article-title: A novel evolutionary-based deep convolutional neural network model for intelligent load forecasting
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2021.3065718
– volume: 148
  start-page: 521
  year: 2015
  ident: 10.1016/j.neucom.2021.11.064_b0280
  article-title: Ranking on heterogeneous manifolds for tag recommendation in social tagging services
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.07.011
– volume: 47
  start-page: 659
  issue: 3
  year: 2017
  ident: 10.1016/j.neucom.2021.11.064_b0015
  article-title: Personalized recommendation algorithm for social networks based on comprehensive trust
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-017-0928-x
– volume: 385
  start-page: 1
  year: 2020
  ident: 10.1016/j.neucom.2021.11.064_b0295
  article-title: TNAM: A tag-aware neural attention model for Top-N recommendation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.11.095
SSID ssj0017129
Score 2.613279
Snippet Recommender systems are popular tools used in many applications, such as e-commerce, e-learning, and social networks to help users select their desired items....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 557
SubjectTerms Collaborative filtering
Deep neural networks
Recommender systems
Sparse autoencoder
Tag
Trust
Title A deep learning based trust- and tag-aware recommender system
URI https://dx.doi.org/10.1016/j.neucom.2021.11.064
Volume 488
WOSCitedRecordID wos000830177900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELWgcODCjiibfOBWGdHETuIDhwiBAAHiAKi3yLEdaEVDBWX5fMZL0rKI5cAlirI4y7zYbybjNwht5yFXnOYJySMtCS2UJKIwSePguHEm2gW1RfuuT-Pz86TT4Rc-f_7RlhOIyzJ5feWDfzU1bANjm6mzfzB33ShsgHUwOizB7LD8leHTltJ6UJWDuGmZcUq17NwK4vIlxQ0RLybjy3jD_b4tJuclnce5qtXtkLbqg48npH0jq6AMhkbxg9u-lTdw4eWeUF_tOOvejXacAPV3k7LPxK3qjscdwHx1flQVQAwYAXb4ri-lrkaf7w2Z0572AytztVY-9dkufNDbKfWTSeCBa7V3jLCqUzd_L5H9YeiqEwqrXLVe5lrJTCvg3WTQyiSaCmLGkwaaSo8POif1T6a4HTgpRv8g1cxKm_73-W6-Zi5jbORyHs16NwKnzvwLaEKXi2iuKtGBfY-9hPZSbNCAKzRgiwbs0IABDbhGAx5DA3ZoWEZXhweX-0fEV8wgEly_IWGCUrZbhEBN4iKQKowEy5mmEdVKc3ANKXyxu8KIuOVtqqT5DSw5DbUCFq4jFa6gRnlf6lWEgXonEtxxJXNNdR4IoMZRweDAhAaSx00UVm8jk15O3lQ1ucu-s0UTkfqsgZNT-eH4uHrRmaeEjuplgJ5vz1z745XW0cwI5RuoAYbQm2haPg-7jw9bHjpvvfiC6g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+based+trust-+and+tag-aware+recommender+system&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Ahmadian%2C+Sajad&rft.au=Ahmadian%2C+Milad&rft.au=Jalili%2C+Mahdi&rft.date=2022-06-01&rft.issn=0925-2312&rft.volume=488&rft.spage=557&rft.epage=571&rft_id=info:doi/10.1016%2Fj.neucom.2021.11.064&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2021_11_064
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon