Trustworthy machine learning-enhanced 3D concrete printing: Predicting bond strength and designing reinforcement embedment length

Three-dimensional concrete printing (3DCP) faces challenges in determining and ensuring adequate bond strength between reinforcement and printed concrete. Traditional methods for predicting bond performance are merely deterministic without considering potential uncertainty, which would lead to risks...

Full description

Saved in:
Bibliographic Details
Published in:Automation in construction Vol. 168; p. 105754
Main Authors: Ma, Xin-Rui, Wang, Xian-Lin, Chen, Shi-Zhi
Format: Journal Article
Language:English
Published: Elsevier B.V 01.12.2024
Subjects:
ISSN:0926-5805
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Three-dimensional concrete printing (3DCP) faces challenges in determining and ensuring adequate bond strength between reinforcement and printed concrete. Traditional methods for predicting bond performance are merely deterministic without considering potential uncertainty, which would lead to risks for structural safety. To address this issue, this paper develops a trustworthy machine learning based prediction model for bond strength in reinforced printed concrete (RPC) structures using Natural Gradient Boosting algorithm. This developed model provides both scalar bond strength predictions and corresponding standard deviations, and in the test, it achieved a 94.5% safety rate and outperformed empirical formulas and deterministic approaches. Instructive guidance can be offered for structural engineers and designers in determining reinforcement embedment lengths for 3D-printed concrete during constructions. This probabilistic prediction approach can further enhance the safety and efficiency of digitally fabricated concrete structures, potentially extending its application to other critical parameters in printed concrete. •A probabilistic machine learning (ML) based prediction model for bond strength between reinforcement and printed concrete.•Higher safety rate by proposed model in comparison with previous ones.•A trustworthy approach for optimal embedment length design in printed concrete.•Ensuring safety rather than statistical indexes is more critical for applying ML.
AbstractList Three-dimensional concrete printing (3DCP) faces challenges in determining and ensuring adequate bond strength between reinforcement and printed concrete. Traditional methods for predicting bond performance are merely deterministic without considering potential uncertainty, which would lead to risks for structural safety. To address this issue, this paper develops a trustworthy machine learning based prediction model for bond strength in reinforced printed concrete (RPC) structures using Natural Gradient Boosting algorithm. This developed model provides both scalar bond strength predictions and corresponding standard deviations, and in the test, it achieved a 94.5% safety rate and outperformed empirical formulas and deterministic approaches. Instructive guidance can be offered for structural engineers and designers in determining reinforcement embedment lengths for 3D-printed concrete during constructions. This probabilistic prediction approach can further enhance the safety and efficiency of digitally fabricated concrete structures, potentially extending its application to other critical parameters in printed concrete. •A probabilistic machine learning (ML) based prediction model for bond strength between reinforcement and printed concrete.•Higher safety rate by proposed model in comparison with previous ones.•A trustworthy approach for optimal embedment length design in printed concrete.•Ensuring safety rather than statistical indexes is more critical for applying ML.
ArticleNumber 105754
Author Ma, Xin-Rui
Chen, Shi-Zhi
Wang, Xian-Lin
Author_xml – sequence: 1
  givenname: Xin-Rui
  orcidid: 0009-0003-5292-6016
  surname: Ma
  fullname: Ma, Xin-Rui
  organization: School of Highway, Chang’an University, Xi’an, 710064, China
– sequence: 2
  givenname: Xian-Lin
  surname: Wang
  fullname: Wang, Xian-Lin
  organization: School of Civil Engineering, Tongji University, Shanghai, 200092, China
– sequence: 3
  givenname: Shi-Zhi
  surname: Chen
  fullname: Chen, Shi-Zhi
  email: szchen@chd.edu.cn
  organization: School of Highway, Chang’an University, Xi’an, 710064, China
BookMark eNqFkLtOwzAUhj0UibbwBgx-gZbjuEmTDkioXKVKMJTZcu3jxlXjINsFdeTNcRomBpjO9f91zjciA9c6JOSKwZQBK653U3mIqnXTDLJZauXzfDYgQ6iyYpKXkJ-TUQg7AJhDUQ3J19ofQvxsfayPtJGqtg7pHqV31m0n6GrpFGrK72jyVB4j0ndvXUzTBX31qK3qcrppnaYhenTbWFOZCo3BbjsX6tE603qFDbpIsdmgPmX70_IFOTNyH_DyJ47J28P9evk0Wb08Pi9vVxPFoYjpds65MaoCzYAXheJKVUZXUM0xy5RkWcmK1NMcNYDMGYBBs2HGlIwZKPmYzHpf5dsQPBqRHmmkPwoGokMndqJHJzp0okeXZItfMmWjjLZ10Uu7_09804sxPfZh0YugLHZErUcVhW7t3wbfeyCUxA
CitedBy_id crossref_primary_10_1016_j_engstruct_2025_119652
crossref_primary_10_1016_j_cscm_2025_e05259
crossref_primary_10_1617_s11527_025_02785_9
crossref_primary_10_1016_j_conbuildmat_2025_141467
crossref_primary_10_1016_j_autcon_2025_106241
crossref_primary_10_1016_j_eswa_2025_127302
crossref_primary_10_1016_j_mtcomm_2024_110999
crossref_primary_10_3390_mca30040083
crossref_primary_10_1016_j_engappai_2025_110954
crossref_primary_10_1016_j_engappai_2025_112117
crossref_primary_10_1016_j_istruc_2025_108988
Cites_doi 10.1016/j.conbuildmat.2022.129228
10.1016/j.cemconres.2022.106800
10.1016/j.conbuildmat.2024.134905
10.1016/j.conbuildmat.2020.119457
10.1016/j.cemconcomp.2021.103964
10.1016/j.conbuildmat.2021.122784
10.1080/17452759.2020.1713580
10.1016/j.conbuildmat.2012.04.074
10.1016/j.autcon.2023.105141
10.1016/j.cemconcomp.2021.104115
10.1016/j.conbuildmat.2022.127270
10.1016/j.autcon.2021.103821
10.1016/j.cemconres.2018.05.011
10.1016/j.conbuildmat.2020.121745
10.1061/JENMDT.EMENG-7062
10.1109/TPAMI.2009.187
10.1016/j.conbuildmat.2019.116855
10.1016/j.conbuildmat.2022.129239
10.1016/j.cemconres.2020.106037
10.1002/cend.202000022
10.1016/j.cemconres.2020.106068
10.1016/j.autcon.2022.104671
10.1016/j.autcon.2021.103963
10.1023/A:1010933404324
10.1016/0950-0618(95)00077-1
10.1016/j.autcon.2023.104932
10.1016/j.firesaf.2015.06.001
10.1007/s44150-021-00015-8
10.1016/j.conbuildmat.2018.05.202
10.1016/j.engfracmech.2022.108624
10.1016/j.cemconres.2021.106559
10.1016/j.autcon.2022.104485
10.1016/j.apenergy.2016.11.111
10.1016/j.conbuildmat.2024.137417
10.1016/j.conbuildmat.2021.124470
10.1016/j.conbuildmat.2023.130898
10.1002/cem.873
10.1016/j.autcon.2022.104730
10.1016/j.ins.2021.05.055
10.1111/mice.12817
10.1016/j.conbuildmat.2022.128708
10.1061/(ASCE)ST.1943-541X.0003401
10.1016/j.cemconcomp.2022.104660
10.1016/j.istruc.2023.07.040
10.1016/j.autcon.2023.105164
10.1016/j.engstruct.2021.112380
10.1111/mice.12700
10.1111/mice.13175
10.1016/j.cemconres.2022.106837
10.1016/j.cemconcomp.2021.104313
10.1016/j.conbuildmat.2019.117002
10.1016/j.autcon.2022.104392
10.1016/j.autcon.2022.104438
10.1016/j.cemconres.2018.05.020
10.1016/j.compositesb.2020.108018
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.autcon.2024.105754
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
ExternalDocumentID 10_1016_j_autcon_2024_105754
S0926580524004904
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXKI
AAXUO
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
MO0
N9A
NEJ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
~G-
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
LY7
M41
R2-
SET
WUQ
ZMT
~HD
ID FETCH-LOGICAL-c306t-58333ffc90d10366c3cc9fd9097e22ca128163ccd3ed00a5100fefb1ff811f083
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001333686600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0926-5805
IngestDate Tue Nov 18 21:55:06 EST 2025
Sat Nov 29 05:17:09 EST 2025
Sat Nov 09 15:59:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Bond strength
3D concrete printing
Probabilistic prediction
Embedment length
Trustworthy machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-58333ffc90d10366c3cc9fd9097e22ca128163ccd3ed00a5100fefb1ff811f083
ORCID 0009-0003-5292-6016
ParticipantIDs crossref_primary_10_1016_j_autcon_2024_105754
crossref_citationtrail_10_1016_j_autcon_2024_105754
elsevier_sciencedirect_doi_10_1016_j_autcon_2024_105754
PublicationCentury 2000
PublicationDate 2024-12-01
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Automation in construction
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chen, Guestrin (b76) 2016
Louppe (b74) 2014
Xiao, Chen, Ding, Zou (b22) 2022; 125
Gebhard, Esposito, Menna, Mata-Falcón (b20) 2022; 133
Snoek, Larochelle, Adams (b40) 2012
Gebhard, Mata-Falcón, Anton, Dillenburger, Kaufmann (b58) 2021; 240
Chang, Wan, Xu, Schlangen, Šavija (b27) 2022; 271
Dezaire (b51) 2018
Lin, Putranto, Wang (b21) 2021; 284
Mechtcherine, van Tittelboom, Kazemian, Kreiger, Nematollahi, Nerella, Santhanam, de Schutter, Van Zijl, Lowke, Ivaniuk, Taubert, Bos (b12) 2022; 157
Chen, Feng, Taciroglu (b67) 2024; 39
Lao, Li, Wong, Tan, Tjahjowidodo (b24) 2020; 15
Kloft, Empelmann, Hack, Herrmann, Lowke (b11) 2020
Breiman (b73) 2001; 45
Lundberg, Lee (b68) 2017
Ke, Meng, Finley, Wang, Chen, Ma, Ye, Liu (b78) 2017; 30
Wang, Liu, Yang, Lu, Li (b52) 2019; 229
Jacobsen, Teizer, ren Wandahl (b71) 2023; 152
Hass, Bos, Salet (b46) 2022; 355
(b72) 2013
Buswell, da Silva, Bos, Schipper, Lowke, Hack, Kloft, Mechtcherine, Wangler, Roussel (b2) 2020; 134
Liu, Li, Weng, Qian, Wong, Tan (b23) 2020; 193
Uddin, Ye, Deng, zhi Li, Yu (b29) 2023; 72
Wang, Banthia, Yoo (b30) 2024; 158
Almusallam, Al-Gahtani, Aziz, Rasheeduzzafar (b62) 1996; 10
Naser (b69) 2021; 129
Saleh, Tarawneh, Naser, Abedi, Almasabha (b34) 2022; 330
Ramani, Zhang, Kuang (b35) 2021; 132
Mechtcherine, Grafe, Nerella, Spaniol, Hertel, Fuessel (b57) 2018; 179
Yao, Lyu, Sun, Wang, Wang, Yang, Wei, Elchalakani, Li, Wang (b26) 2023; 375
Wang, Jin, Schmitt, Olhofer (b39) 2023; 55
Rodriguez, Perez, Lozano (b42) 2010; 32
Zhu, Egbe, Salehi, Shi, Jiao (b28) 2024; 413
Myles, Feudale, Liu, Woody, Brown (b83) 2004; 18
Şahan Arel, Şemsi Yazıcı (b63) 2012; 36
Mechtcherine, Buswell, Kloft, Bos, Hack, Wolfs, Sanjayan, Nematollahi, Ivaniuk, Neef (b7) 2021; 119
Flatt, Wangler (b3) 2022; 158
zhi Wang, qiang Li, bin Wang, chun Peng, Jiang, tao Liu (b37) 2017; 188
Chen, Feng, Wang, Taciroglu (b32) 2022; 148
Stephen Bates, Tibshirani (b43) 2023
Marchment, Sanjayan, Nematollahi, Xia (b53) 2019
Sagi, Rokach (b77) 2021; 572
Ma, Liang, Wang, Chen (b66) 2024; 20
Wang, Liu, Chen, Ruan (b81) 2022; 52
RILEM (b44) 1994
Duan, Avati, Ding, Thai, Basu, Ng, Schuler (b38) 2019
Mechtcherine, Bos, Perrot, da Silva, Nerella, Fataei, Wolfs, Sonebi, Roussel (b1) 2020; 132
Chen, Feng, Han, Wu (b75) 2021; 303
Loparo, Vakalis, Kurfess (b84) 2005
Xiao, Ji, Zhang, Ma, Mechtcherine, Pan, Wang, Ding, Duan, Du (b5) 2021; 122
Zhang, Lin, Zhang, Wang, Luo (b55) 2024; 440
Wang, Chen, Liu (b80) 2022; 356
Hou, Duan, Xiao, Ye (b14) 2021; 273
Baz, Aouad, Remond (b48) 2020; 230
Borisov, Leemann, Seß ler, Haug, Pawelczyk, Kasneci (b79) 2022
Chen, Zhang, Feng, Taciroglu (b65) 2023; 149
Wang, Jia, Deng, Zhang, Zhang, Chen, Pan, Zhang (b8) 2022; 349
Cao, Yu, Zheng, Cui (b9) 2022; 141
Sedgwick (b61) 2012; 345
Wang, Jia, Jia, Zhang, Chen, Ma, Wang, Deng, Banthia, Zhang (b54) 2022; 56
Hojati, Memari, Zahabi, Wu, Li, Park, Nazarian, Duarte (b59) 2022; 141
Ding, Qin, Xiao, Chen, Zuo (b45) 2022; 49
Goris (b50) 2018
Reiter, Wangler, Roussel, Flatt (b4) 2018; 112
Ghasemi, Naser (b25) 2023; 56
Chang, Zhang, Liang, Schlangen, Šavija (b17) 2022; 142
Lim, Buswell, Le, Wackrow, Austin, Gibb, Thorpe (b15) 2011
Chang, Xu, Chen, Gan, Schlangen, Šavija (b18) 2021; 36
Wu, Yang, Kong, Zhi, Xiao (b19) 2021; 226–227
Naser, Alavi (b82) 2023; 3
Kochenderfer (b31) 2015
Asprone, Menna, Bos, Salet, Mata-Falcón, Kaufmann (b6) 2018; 112
Chen, Feng (b64) 2022; 37
Naser, Kodur (b33) 2015; 76
Wang, Zhang, Fu (b70) 2023; 147
Mechtcherine, Grafe, Nerella, Spaniol, Hertel, Füssel (b49) 2018; 179
Zhang (b60) 2016; 4
Akiba, Sano, Yanase, Ohta, Koyama (b41) 2019
Yang, Sepasgozar, Shirowzhan, Kashani, Edwards (b16) 2023; 146
Moelich, Kruger, Combrinck (b56) 2021; 150
Wang, Jia, Jia, Zhang, Chen, Ma, Wang, Deng, Banthia, Zhang (b13) 2022; 56
Geneidy, Kumarji, Dubor, Sollazzo (b10) 2020
Zhang, Ni, Jia, Wang (b36) 2023; 156
Baz, Aouad, Leblond, Al-Mansouri, D’hondt, Remond (b47) 2020; 256
Liu (10.1016/j.autcon.2024.105754_b23) 2020; 193
Myles (10.1016/j.autcon.2024.105754_b83) 2004; 18
Wu (10.1016/j.autcon.2024.105754_b19) 2021; 226–227
zhi Wang (10.1016/j.autcon.2024.105754_b37) 2017; 188
Xiao (10.1016/j.autcon.2024.105754_b22) 2022; 125
Mechtcherine (10.1016/j.autcon.2024.105754_b49) 2018; 179
Dezaire (10.1016/j.autcon.2024.105754_b51) 2018
Chen (10.1016/j.autcon.2024.105754_b64) 2022; 37
Chang (10.1016/j.autcon.2024.105754_b17) 2022; 142
Saleh (10.1016/j.autcon.2024.105754_b34) 2022; 330
Ghasemi (10.1016/j.autcon.2024.105754_b25) 2023; 56
Asprone (10.1016/j.autcon.2024.105754_b6) 2018; 112
Chen (10.1016/j.autcon.2024.105754_b75) 2021; 303
Wang (10.1016/j.autcon.2024.105754_b70) 2023; 147
Jacobsen (10.1016/j.autcon.2024.105754_b71) 2023; 152
Lundberg (10.1016/j.autcon.2024.105754_b68) 2017
Gebhard (10.1016/j.autcon.2024.105754_b20) 2022; 133
Chen (10.1016/j.autcon.2024.105754_b76) 2016
Ke (10.1016/j.autcon.2024.105754_b78) 2017; 30
Mechtcherine (10.1016/j.autcon.2024.105754_b7) 2021; 119
Wang (10.1016/j.autcon.2024.105754_b54) 2022; 56
Wang (10.1016/j.autcon.2024.105754_b81) 2022; 52
Stephen Bates (10.1016/j.autcon.2024.105754_b43) 2023
Mechtcherine (10.1016/j.autcon.2024.105754_b12) 2022; 157
Wang (10.1016/j.autcon.2024.105754_b30) 2024; 158
Lin (10.1016/j.autcon.2024.105754_b21) 2021; 284
RILEM (10.1016/j.autcon.2024.105754_b44) 1994
Mechtcherine (10.1016/j.autcon.2024.105754_b57) 2018; 179
Buswell (10.1016/j.autcon.2024.105754_b2) 2020; 134
Hojati (10.1016/j.autcon.2024.105754_b59) 2022; 141
Yang (10.1016/j.autcon.2024.105754_b16) 2023; 146
Chang (10.1016/j.autcon.2024.105754_b27) 2022; 271
Reiter (10.1016/j.autcon.2024.105754_b4) 2018; 112
Geneidy (10.1016/j.autcon.2024.105754_b10) 2020
Yao (10.1016/j.autcon.2024.105754_b26) 2023; 375
Hou (10.1016/j.autcon.2024.105754_b14) 2021; 273
Ramani (10.1016/j.autcon.2024.105754_b35) 2021; 132
Chen (10.1016/j.autcon.2024.105754_b67) 2024; 39
Xiao (10.1016/j.autcon.2024.105754_b5) 2021; 122
Moelich (10.1016/j.autcon.2024.105754_b56) 2021; 150
Wang (10.1016/j.autcon.2024.105754_b52) 2019; 229
Ma (10.1016/j.autcon.2024.105754_b66) 2024; 20
Snoek (10.1016/j.autcon.2024.105754_b40) 2012
Wang (10.1016/j.autcon.2024.105754_b80) 2022; 356
Uddin (10.1016/j.autcon.2024.105754_b29) 2023; 72
Baz (10.1016/j.autcon.2024.105754_b47) 2020; 256
Wang (10.1016/j.autcon.2024.105754_b8) 2022; 349
Borisov (10.1016/j.autcon.2024.105754_b79) 2022
(10.1016/j.autcon.2024.105754_b72) 2013
Zhang (10.1016/j.autcon.2024.105754_b55) 2024; 440
Louppe (10.1016/j.autcon.2024.105754_b74) 2014
Sedgwick (10.1016/j.autcon.2024.105754_b61) 2012; 345
Naser (10.1016/j.autcon.2024.105754_b33) 2015; 76
Mechtcherine (10.1016/j.autcon.2024.105754_b1) 2020; 132
Zhu (10.1016/j.autcon.2024.105754_b28) 2024; 413
Marchment (10.1016/j.autcon.2024.105754_b53) 2019
Lim (10.1016/j.autcon.2024.105754_b15) 2011
Zhang (10.1016/j.autcon.2024.105754_b60) 2016; 4
Breiman (10.1016/j.autcon.2024.105754_b73) 2001; 45
Ding (10.1016/j.autcon.2024.105754_b45) 2022; 49
Naser (10.1016/j.autcon.2024.105754_b69) 2021; 129
Sagi (10.1016/j.autcon.2024.105754_b77) 2021; 572
Flatt (10.1016/j.autcon.2024.105754_b3) 2022; 158
Almusallam (10.1016/j.autcon.2024.105754_b62) 1996; 10
Rodriguez (10.1016/j.autcon.2024.105754_b42) 2010; 32
Kochenderfer (10.1016/j.autcon.2024.105754_b31) 2015
Wang (10.1016/j.autcon.2024.105754_b13) 2022; 56
Loparo (10.1016/j.autcon.2024.105754_b84) 2005
Chang (10.1016/j.autcon.2024.105754_b18) 2021; 36
Wang (10.1016/j.autcon.2024.105754_b39) 2023; 55
Chen (10.1016/j.autcon.2024.105754_b32) 2022; 148
Hass (10.1016/j.autcon.2024.105754_b46) 2022; 355
Baz (10.1016/j.autcon.2024.105754_b48) 2020; 230
Goris (10.1016/j.autcon.2024.105754_b50) 2018
Cao (10.1016/j.autcon.2024.105754_b9) 2022; 141
Lao (10.1016/j.autcon.2024.105754_b24) 2020; 15
Naser (10.1016/j.autcon.2024.105754_b82) 2023; 3
Akiba (10.1016/j.autcon.2024.105754_b41) 2019
Duan (10.1016/j.autcon.2024.105754_b38) 2019
Chen (10.1016/j.autcon.2024.105754_b65) 2023; 149
Zhang (10.1016/j.autcon.2024.105754_b36) 2023; 156
Gebhard (10.1016/j.autcon.2024.105754_b58) 2021; 240
Şahan Arel (10.1016/j.autcon.2024.105754_b63) 2012; 36
Kloft (10.1016/j.autcon.2024.105754_b11) 2020
References_xml – volume: 132
  year: 2020
  ident: b1
  article-title: Extrusion-based additive manufacturing with cement-based materials – production steps, processes, and their underlying physics: A review
  publication-title: Cem. Concr. Res.
– volume: 240
  year: 2021
  ident: b58
  article-title: Structural behaviour of 3D printed concrete beams with various reinforcement strategies
  publication-title: Eng. Struct.
– volume: 345
  year: 2012
  ident: b61
  article-title: Pearson’s correlation coefficient
  publication-title: BMJ
– volume: 188
  start-page: 56
  year: 2017
  end-page: 70
  ident: b37
  article-title: Deep learning based ensemble approach for probabilistic wind power forecasting
  publication-title: Appl. Energy
– volume: 4
  year: 2016
  ident: b60
  article-title: Missing data imputation: focusing on single imputation
  publication-title: Annal. Transl. Med.
– year: 1994
  ident: b44
  article-title: RILEM Technical Recommendations for the Testing and Use of Construction Materials
– volume: 193
  year: 2020
  ident: b23
  article-title: Modelling and parameter optimization for filament deformation in 3D cementitious material printing using support vector machine
  publication-title: Composites B
– volume: 330
  year: 2022
  ident: b34
  article-title: You only design once (YODO): Gaussian process-batch Bayesian optimization framework for mixture design of ultra high performance concrete
  publication-title: Constr. Build. Mater.
– volume: 56
  year: 2023
  ident: b25
  article-title: Tailoring 3D printed concrete through explainable artificial intelligence
  publication-title: Structures
– year: 2005
  ident: b84
  article-title: Robotics And Automation Handbook, vol. 414
– volume: 303
  year: 2021
  ident: b75
  article-title: Development of data-driven prediction model for CFRP-steel bond strength by implementing ensemble learning algorithms
  publication-title: Constr. Build. Mater.
– volume: 49
  year: 2022
  ident: b45
  article-title: Experimental study on the bond behaviour between steel bars and 3D printed concrete
  publication-title: J. Build. Eng.
– volume: 20
  year: 2024
  ident: b66
  article-title: Language model enhanced surface chloride concentration determination for concrete within splash environment based on limited field records
  publication-title: Case Stud. Construct. Mater.
– volume: 156
  year: 2023
  ident: b36
  article-title: Identification of concrete surface damage based on probabilistic deep learning of images
  publication-title: Autom. Constr.
– volume: 56
  year: 2022
  ident: b54
  article-title: Optimization of 3D printing concrete with coarse aggregate via proper mix design and printing process
  publication-title: J. Build. Eng.
– volume: 150
  year: 2021
  ident: b56
  article-title: Modelling the interlayer bond strength of 3D printed concrete with surface moisture
  publication-title: Cem. Concr. Res.
– start-page: 1
  year: 2022
  end-page: 21.
  ident: b79
  article-title: Deep neural networks and tabular data: A survey
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 230
  year: 2020
  ident: b48
  article-title: Effect of the printing method and mortar’s workability on pull-out strength of 3D printed elements
  publication-title: Constr. Build. Mater.
– volume: 273
  year: 2021
  ident: b14
  article-title: A review of 3D printed concrete: Performance requirements, testing measurements and mix design
  publication-title: Constr. Build. Mater.
– volume: 158
  year: 2024
  ident: b30
  article-title: Reinforcement bond performance in 3D concrete printing: Explainable ensemble learning augmented by deep generative adversarial networks
  publication-title: Autom. Constr.
– volume: 36
  start-page: 78
  year: 2012
  end-page: 83
  ident: b63
  article-title: Concrete–reinforcement bond in different concrete classes
  publication-title: Constr. Build. Mater.
– volume: 356
  year: 2022
  ident: b80
  article-title: Explainable ensemble learning model for predicting steel section-concrete bond strength
  publication-title: Constr. Build. Mater.
– volume: 158
  year: 2022
  ident: b3
  article-title: On sustainability and digital fabrication with concrete
  publication-title: Cem. Concr. Res.
– volume: 152
  year: 2023
  ident: b71
  article-title: Work estimation of construction workers for productivity monitoring using kinematic data and deep learning
  publication-title: Autom. Constr.
– volume: 157
  year: 2022
  ident: b12
  article-title: A roadmap for quality control of hardening and hardened printed concrete
  publication-title: Cem. Concr. Res.
– start-page: 131
  year: 2020
  end-page: 139.
  ident: b11
  article-title: Reinforcement strategies for 3D-concrete-printing
  publication-title: Civil Eng. Design
– volume: 15
  start-page: 178
  year: 2020
  end-page: 193
  ident: b24
  article-title: Improving surface finish quality in extrusion-based 3D concrete printing using machine learning-based extrudate geometry control
  publication-title: Virtual Phys. Prototyp.
– start-page: 241
  year: 2019
  end-page: 264
  ident: b53
  article-title: Chapter 12 - interlayer strength of 3D printed concrete: Influencing factors and method of enhancing
  publication-title: 3D Concrete Printing Technology
– start-page: 1
  year: 2023
  end-page: 12
  ident: b43
  article-title: Cross-validation: What does it estimate and how well does it do it?
  publication-title: J. Amer. Statist. Assoc.
– volume: 355
  year: 2022
  ident: b46
  article-title: Characterizing the bond properties of automatically placed helical reinforcement in 3D printed concrete
  publication-title: Constr. Build. Mater.
– volume: 39
  start-page: 1928
  year: 2024
  end-page: 1945
  ident: b67
  article-title: Prior knowledge-infused neural network for efficient performance assessment of structures through few-shot incremental learning
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
– volume: 149
  year: 2023
  ident: b65
  article-title: Embedding prior knowledge into data-driven structural performance prediction to extrapolate from training domains
  publication-title: J. Eng. Mech.
– volume: 132
  year: 2021
  ident: b35
  article-title: Probabilistic assessment of time to cracking of concrete cover due to corrosion using semantic segmentation of imaging probe sensor data
  publication-title: Autom. Constr.
– year: 2016
  ident: b76
  article-title: XGBoost: A scalable tree boosting system
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 146
  year: 2023
  ident: b16
  article-title: Nozzle criteria for enhancing extrudability, buildability and interlayer bonding in 3D printing concrete
  publication-title: Autom. Constr.
– volume: 142
  year: 2022
  ident: b17
  article-title: Numerical simulation of elastic buckling in 3D concrete printing using the lattice model with geometric nonlinearity
  publication-title: Autom. Constr.
– start-page: 4765
  year: 2017
  end-page: 4774
  ident: b68
  article-title: A unified approach to interpreting model predictions
  publication-title: Advances in Neural Information Processing Systems, vol. 30
– volume: 112
  start-page: 86
  year: 2018
  end-page: 95
  ident: b4
  article-title: The role of early age structural build-up in digital fabrication with concrete
  publication-title: Cem. Concr. Res.
– volume: 52
  year: 2022
  ident: b81
  article-title: Auto-tuning ensemble models for estimating shear resistance of headed studs in concrete
  publication-title: J. Build. Eng.
– start-page: 895
  year: 2020
  end-page: 905
  ident: b10
  publication-title: Simultaneous Reinforcement of Concrete While 3D Printing
– year: 2018
  ident: b50
  article-title: Traditional reinforcement in 3D concrete printed structures
  publication-title: Eindhoven University of Technology
– volume: 18
  start-page: 275
  year: 2004
  end-page: 285
  ident: b83
  article-title: An introduction to decision tree modeling
  publication-title: J. Chemometric.
– volume: 413
  year: 2024
  ident: b28
  article-title: Eco-friendly 3D printed concrete with fine aggregate replacements: Fabrication, characterization and machine learning prediction
  publication-title: Constr. Build. Mater.
– volume: 37
  start-page: 1566
  year: 2022
  end-page: 1581
  ident: b64
  article-title: Multifidelity approach for data-driven prediction models of structural behaviors with limited data
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
– volume: 572
  start-page: 522
  year: 2021
  end-page: 542
  ident: b77
  article-title: Approximating XGBoost with an interpretable decision tree
  publication-title: Inform. Sci.
– volume: 134
  year: 2020
  ident: b2
  article-title: A process classification framework for defining and describing digital fabrication with concrete
  publication-title: Cem. Concr. Res.
– volume: 271
  year: 2022
  ident: b27
  article-title: Convolutional neural network for predicting crack pattern and stress-crack width curve of air-void structure in 3D printed concrete
  publication-title: Eng. Fract. Mech.
– start-page: 390
  year: 2013
  end-page: 402
  ident: b72
  article-title: Fib Model Code for Concrete Structures 2010
– start-page: 2623
  year: 2019
  end-page: 2631
  ident: b41
  article-title: Optuna: A next-generation hyperparameter optimization framework
  publication-title: KDD’19: Proceedings of the 25th ACM SIGKDD International Conferencce on Knowledge Discovery and Data Mining
– volume: 72
  year: 2023
  ident: b29
  article-title: Interpretable machine learning for predicting the strength of 3D printed fiber-reinforced concrete (3DP-FRC)
  publication-title: J. Build. Eng.
– year: 2015
  ident: b31
  article-title: Decision Making Under Uncertainty: Theory and Application
– volume: 36
  start-page: 638
  year: 2021
  end-page: 655
  ident: b18
  article-title: A discrete lattice model for assessment of buildability performance of 3D-printed concrete
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
– volume: 119
  year: 2021
  ident: b7
  article-title: Integrating reinforcement in digital fabrication with concrete: A review and classification framework
  publication-title: Cem. Concr. Compos.
– volume: 3
  start-page: 499
  year: 2023
  end-page: 517
  ident: b82
  article-title: Error metrics and performance fitness indicators for artificial intelligence and machine learning in engineering and sciences
  publication-title: Architect. Struct. Construct.
– volume: 76
  start-page: 65
  year: 2015
  end-page: 73
  ident: b33
  article-title: A probabilistic assessment for classification of bridges against fire hazard
  publication-title: Fire Saf. J.
– volume: 32
  start-page: 569
  year: 2010
  end-page: 575
  ident: b42
  article-title: Sensitivity analysis of k-fold cross validation in prediction error estimation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2014
  ident: b74
  article-title: Understanding Random Forests: From Theory to Practice
– year: 2012
  ident: b40
  article-title: Practical Bayesian optimization of machine learning algorithms
– volume: 147
  year: 2023
  ident: b70
  article-title: Time series prediction of tunnel boring machine (TBM) performance during excavation using causal explainable artificial intelligence (CX-ai)
  publication-title: Autom. Constr.
– volume: 349
  year: 2022
  ident: b8
  article-title: Bond behavior between steel bars and 3D printed concrete: Effect of concrete rheological property, steel bar diameter and paste coating
  publication-title: Constr. Build. Mater.
– volume: 55
  year: 2023
  ident: b39
  article-title: Recent advances in Bayesian optimization
– year: 2019
  ident: b38
  article-title: NGBoost: Natural gradient boosting for probabilistic prediction
  publication-title: 25th Americas Conference on Information Systems (AMCIS 2019)
– volume: 56
  year: 2022
  ident: b13
  article-title: Optimization of 3D printing concrete with coarse aggregate via proper mix design and printing process
  publication-title: J. Build. Eng.
– volume: 125
  year: 2022
  ident: b22
  article-title: Bending behaviour of steel cable reinforced 3D printed concrete in the direction perpendicular to the interfaces
  publication-title: Cem. Concr. Compos.
– volume: 133
  year: 2022
  ident: b20
  article-title: Inter-laboratory study on the influence of 3D concrete printing set-ups on the bond behaviour of various reinforcements
  publication-title: Cem. Concr. Compos.
– volume: 141
  year: 2022
  ident: b9
  article-title: Nail planting to enhance the interface bonding strength in 3D printed concrete
  publication-title: Autom. Constr.
– volume: 30
  year: 2017
  ident: b78
  article-title: LightGBM: A highly efficient gradient boosting decision tree
  publication-title: Advances in Neural Information Processing Systems, vol. 30 (NIPS 2017)
– start-page: 665
  year: 2011
  end-page: 670.
  ident: b15
  article-title: Development of a viable concrete printing process
  publication-title: 28th International Symposium on Automation and Robotics in Construction, ISARC 2011
– volume: 148
  year: 2022
  ident: b32
  article-title: Probabilistic machine-learning methods for performance prediction of structure and infrastructures through natural gradient boosting
  publication-title: J. Struct. Eng.
– volume: 129
  year: 2021
  ident: b69
  article-title: An engineer’s guide to explainable artificial intelligence and interpretable machine learning: Navigating causality, forced goodness, and the false perception of inference
  publication-title: Autom. Constr.
– volume: 440
  year: 2024
  ident: b55
  article-title: Evaluation of anisotropy and statistical parameters of compressive strength for 3D printed concrete
  publication-title: Constr. Build. Mater.
– volume: 226–227
  year: 2021
  ident: b19
  article-title: Uncertainty quantification for the representative volume element of geometrically monoclinic 3D printed concrete
  publication-title: Int. J. Solids Struct.
– volume: 229
  year: 2019
  ident: b52
  article-title: Effect of concrete cover on the bond-slip behavior between steel section and concrete in SRC structures
  publication-title: Constr. Build. Mater.
– volume: 122
  year: 2021
  ident: b5
  article-title: Large-scale 3D printing concrete technology: Current status and future opportunities
  publication-title: Cem. Concr. Compos.
– volume: 10
  start-page: 123
  year: 1996
  end-page: 129
  ident: b62
  article-title: Effect of reinforcement corrosion on bond strength
  publication-title: Constr. Build. Mater.
– volume: 284
  year: 2021
  ident: b21
  article-title: Smart sensor tags for seepage sensing protected by 3D-printed case for embedding in concrete structures
  publication-title: Constr. Build. Mater.
– year: 2018
  ident: b51
  article-title: Study on bond capacity of 3D printed concrete with cable reinforcement
– volume: 179
  start-page: 125
  year: 2018
  end-page: 137
  ident: b57
  article-title: 3D-printed steel reinforcement for digital concrete construction - manufacture, mechanical properties and bond behaviour
  publication-title: Constr. Build. Mater.
– volume: 141
  year: 2022
  ident: b59
  article-title: Barbed-wire reinforcement for 3D concrete printing
  publication-title: Autom. Constr.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b73
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 179
  start-page: 125
  year: 2018
  end-page: 137
  ident: b49
  article-title: 3D-printed steel reinforcement for digital concrete construction – manufacture, mechanical properties and bond behaviour
  publication-title: Constr. Build. Mater.
– volume: 375
  year: 2023
  ident: b26
  article-title: AI-based performance prediction for 3D-printed concrete considering anisotropy and steam curing condition
  publication-title: Constr. Build. Mater.
– volume: 112
  start-page: 111
  year: 2018
  end-page: 121
  ident: b6
  article-title: Rethinking reinforcement for digital fabrication with concrete
  publication-title: Cem. Concr. Res.
– volume: 256
  year: 2020
  ident: b47
  article-title: Mechanical assessment of concrete – steel bonding in 3D printed elements
  publication-title: Constr. Build. Mater.
– volume: 355
  year: 2022
  ident: 10.1016/j.autcon.2024.105754_b46
  article-title: Characterizing the bond properties of automatically placed helical reinforcement in 3D printed concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.129228
– volume: 345
  year: 2012
  ident: 10.1016/j.autcon.2024.105754_b61
  article-title: Pearson’s correlation coefficient
  publication-title: BMJ
– volume: 157
  year: 2022
  ident: 10.1016/j.autcon.2024.105754_b12
  article-title: A roadmap for quality control of hardening and hardened printed concrete
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2022.106800
– volume: 413
  year: 2024
  ident: 10.1016/j.autcon.2024.105754_b28
  article-title: Eco-friendly 3D printed concrete with fine aggregate replacements: Fabrication, characterization and machine learning prediction
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2024.134905
– volume: 256
  year: 2020
  ident: 10.1016/j.autcon.2024.105754_b47
  article-title: Mechanical assessment of concrete – steel bonding in 3D printed elements
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.119457
– volume: 119
  year: 2021
  ident: 10.1016/j.autcon.2024.105754_b7
  article-title: Integrating reinforcement in digital fabrication with concrete: A review and classification framework
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2021.103964
– volume: 284
  year: 2021
  ident: 10.1016/j.autcon.2024.105754_b21
  article-title: Smart sensor tags for seepage sensing protected by 3D-printed case for embedding in concrete structures
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.122784
– volume: 55
  issue: 13s
  year: 2023
  ident: 10.1016/j.autcon.2024.105754_b39
  article-title: Recent advances in Bayesian optimization
– start-page: 1
  year: 2023
  ident: 10.1016/j.autcon.2024.105754_b43
  article-title: Cross-validation: What does it estimate and how well does it do it?
  publication-title: J. Amer. Statist. Assoc.
– volume: 15
  start-page: 178
  issue: 2
  year: 2020
  ident: 10.1016/j.autcon.2024.105754_b24
  article-title: Improving surface finish quality in extrusion-based 3D concrete printing using machine learning-based extrudate geometry control
  publication-title: Virtual Phys. Prototyp.
  doi: 10.1080/17452759.2020.1713580
– year: 1994
  ident: 10.1016/j.autcon.2024.105754_b44
– start-page: 4765
  year: 2017
  ident: 10.1016/j.autcon.2024.105754_b68
  article-title: A unified approach to interpreting model predictions
– volume: 36
  start-page: 78
  year: 2012
  ident: 10.1016/j.autcon.2024.105754_b63
  article-title: Concrete–reinforcement bond in different concrete classes
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2012.04.074
– volume: 156
  year: 2023
  ident: 10.1016/j.autcon.2024.105754_b36
  article-title: Identification of concrete surface damage based on probabilistic deep learning of images
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2023.105141
– volume: 122
  year: 2021
  ident: 10.1016/j.autcon.2024.105754_b5
  article-title: Large-scale 3D printing concrete technology: Current status and future opportunities
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2021.104115
– volume: 56
  year: 2022
  ident: 10.1016/j.autcon.2024.105754_b13
  article-title: Optimization of 3D printing concrete with coarse aggregate via proper mix design and printing process
  publication-title: J. Build. Eng.
– volume: 226–227
  year: 2021
  ident: 10.1016/j.autcon.2024.105754_b19
  article-title: Uncertainty quantification for the representative volume element of geometrically monoclinic 3D printed concrete
  publication-title: Int. J. Solids Struct.
– volume: 20
  year: 2024
  ident: 10.1016/j.autcon.2024.105754_b66
  article-title: Language model enhanced surface chloride concentration determination for concrete within splash environment based on limited field records
  publication-title: Case Stud. Construct. Mater.
– volume: 330
  year: 2022
  ident: 10.1016/j.autcon.2024.105754_b34
  article-title: You only design once (YODO): Gaussian process-batch Bayesian optimization framework for mixture design of ultra high performance concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.127270
– volume: 129
  year: 2021
  ident: 10.1016/j.autcon.2024.105754_b69
  article-title: An engineer’s guide to explainable artificial intelligence and interpretable machine learning: Navigating causality, forced goodness, and the false perception of inference
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.103821
– volume: 112
  start-page: 86
  year: 2018
  ident: 10.1016/j.autcon.2024.105754_b4
  article-title: The role of early age structural build-up in digital fabrication with concrete
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2018.05.011
– volume: 273
  year: 2021
  ident: 10.1016/j.autcon.2024.105754_b14
  article-title: A review of 3D printed concrete: Performance requirements, testing measurements and mix design
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.121745
– volume: 149
  issue: 12
  year: 2023
  ident: 10.1016/j.autcon.2024.105754_b65
  article-title: Embedding prior knowledge into data-driven structural performance prediction to extrapolate from training domains
  publication-title: J. Eng. Mech.
  doi: 10.1061/JENMDT.EMENG-7062
– volume: 32
  start-page: 569
  issue: 3
  year: 2010
  ident: 10.1016/j.autcon.2024.105754_b42
  article-title: Sensitivity analysis of k-fold cross validation in prediction error estimation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2009.187
– volume: 229
  year: 2019
  ident: 10.1016/j.autcon.2024.105754_b52
  article-title: Effect of concrete cover on the bond-slip behavior between steel section and concrete in SRC structures
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.116855
– volume: 356
  year: 2022
  ident: 10.1016/j.autcon.2024.105754_b80
  article-title: Explainable ensemble learning model for predicting steel section-concrete bond strength
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.129239
– volume: 132
  year: 2020
  ident: 10.1016/j.autcon.2024.105754_b1
  article-title: Extrusion-based additive manufacturing with cement-based materials – production steps, processes, and their underlying physics: A review
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2020.106037
– volume: 30
  year: 2017
  ident: 10.1016/j.autcon.2024.105754_b78
  article-title: LightGBM: A highly efficient gradient boosting decision tree
– start-page: 131
  year: 2020
  ident: 10.1016/j.autcon.2024.105754_b11
  article-title: Reinforcement strategies for 3D-concrete-printing
  publication-title: Civil Eng. Design
  doi: 10.1002/cend.202000022
– volume: 134
  year: 2020
  ident: 10.1016/j.autcon.2024.105754_b2
  article-title: A process classification framework for defining and describing digital fabrication with concrete
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2020.106068
– volume: 72
  year: 2023
  ident: 10.1016/j.autcon.2024.105754_b29
  article-title: Interpretable machine learning for predicting the strength of 3D printed fiber-reinforced concrete (3DP-FRC)
  publication-title: J. Build. Eng.
– volume: 146
  year: 2023
  ident: 10.1016/j.autcon.2024.105754_b16
  article-title: Nozzle criteria for enhancing extrudability, buildability and interlayer bonding in 3D printing concrete
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104671
– volume: 132
  year: 2021
  ident: 10.1016/j.autcon.2024.105754_b35
  article-title: Probabilistic assessment of time to cracking of concrete cover due to corrosion using semantic segmentation of imaging probe sensor data
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.103963
– start-page: 390
  year: 2013
  ident: 10.1016/j.autcon.2024.105754_b72
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.autcon.2024.105754_b73
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 10
  start-page: 123
  issue: 2
  year: 1996
  ident: 10.1016/j.autcon.2024.105754_b62
  article-title: Effect of reinforcement corrosion on bond strength
  publication-title: Constr. Build. Mater.
  doi: 10.1016/0950-0618(95)00077-1
– volume: 52
  year: 2022
  ident: 10.1016/j.autcon.2024.105754_b81
  article-title: Auto-tuning ensemble models for estimating shear resistance of headed studs in concrete
  publication-title: J. Build. Eng.
– start-page: 895
  year: 2020
  ident: 10.1016/j.autcon.2024.105754_b10
– volume: 152
  year: 2023
  ident: 10.1016/j.autcon.2024.105754_b71
  article-title: Work estimation of construction workers for productivity monitoring using kinematic data and deep learning
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2023.104932
– volume: 76
  start-page: 65
  year: 2015
  ident: 10.1016/j.autcon.2024.105754_b33
  article-title: A probabilistic assessment for classification of bridges against fire hazard
  publication-title: Fire Saf. J.
  doi: 10.1016/j.firesaf.2015.06.001
– volume: 3
  start-page: 499
  issue: 4
  year: 2023
  ident: 10.1016/j.autcon.2024.105754_b82
  article-title: Error metrics and performance fitness indicators for artificial intelligence and machine learning in engineering and sciences
  publication-title: Architect. Struct. Construct.
  doi: 10.1007/s44150-021-00015-8
– year: 2018
  ident: 10.1016/j.autcon.2024.105754_b50
  article-title: Traditional reinforcement in 3D concrete printed structures
  publication-title: Eindhoven University of Technology
– volume: 179
  start-page: 125
  year: 2018
  ident: 10.1016/j.autcon.2024.105754_b49
  article-title: 3D-printed steel reinforcement for digital concrete construction – manufacture, mechanical properties and bond behaviour
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.05.202
– volume: 271
  year: 2022
  ident: 10.1016/j.autcon.2024.105754_b27
  article-title: Convolutional neural network for predicting crack pattern and stress-crack width curve of air-void structure in 3D printed concrete
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2022.108624
– volume: 150
  year: 2021
  ident: 10.1016/j.autcon.2024.105754_b56
  article-title: Modelling the interlayer bond strength of 3D printed concrete with surface moisture
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2021.106559
– volume: 142
  year: 2022
  ident: 10.1016/j.autcon.2024.105754_b17
  article-title: Numerical simulation of elastic buckling in 3D concrete printing using the lattice model with geometric nonlinearity
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104485
– start-page: 241
  year: 2019
  ident: 10.1016/j.autcon.2024.105754_b53
  article-title: Chapter 12 - interlayer strength of 3D printed concrete: Influencing factors and method of enhancing
– volume: 179
  start-page: 125
  year: 2018
  ident: 10.1016/j.autcon.2024.105754_b57
  article-title: 3D-printed steel reinforcement for digital concrete construction - manufacture, mechanical properties and bond behaviour
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.05.202
– volume: 188
  start-page: 56
  year: 2017
  ident: 10.1016/j.autcon.2024.105754_b37
  article-title: Deep learning based ensemble approach for probabilistic wind power forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.11.111
– volume: 440
  year: 2024
  ident: 10.1016/j.autcon.2024.105754_b55
  article-title: Evaluation of anisotropy and statistical parameters of compressive strength for 3D printed concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2024.137417
– volume: 303
  year: 2021
  ident: 10.1016/j.autcon.2024.105754_b75
  article-title: Development of data-driven prediction model for CFRP-steel bond strength by implementing ensemble learning algorithms
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.124470
– volume: 49
  year: 2022
  ident: 10.1016/j.autcon.2024.105754_b45
  article-title: Experimental study on the bond behaviour between steel bars and 3D printed concrete
  publication-title: J. Build. Eng.
– volume: 375
  year: 2023
  ident: 10.1016/j.autcon.2024.105754_b26
  article-title: AI-based performance prediction for 3D-printed concrete considering anisotropy and steam curing condition
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2023.130898
– volume: 18
  start-page: 275
  issue: 6
  year: 2004
  ident: 10.1016/j.autcon.2024.105754_b83
  article-title: An introduction to decision tree modeling
  publication-title: J. Chemometric.
  doi: 10.1002/cem.873
– volume: 147
  year: 2023
  ident: 10.1016/j.autcon.2024.105754_b70
  article-title: Time series prediction of tunnel boring machine (TBM) performance during excavation using causal explainable artificial intelligence (CX-ai)
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104730
– year: 2016
  ident: 10.1016/j.autcon.2024.105754_b76
  article-title: XGBoost: A scalable tree boosting system
– volume: 572
  start-page: 522
  year: 2021
  ident: 10.1016/j.autcon.2024.105754_b77
  article-title: Approximating XGBoost with an interpretable decision tree
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2021.05.055
– year: 2015
  ident: 10.1016/j.autcon.2024.105754_b31
– start-page: 2623
  year: 2019
  ident: 10.1016/j.autcon.2024.105754_b41
  article-title: Optuna: A next-generation hyperparameter optimization framework
– year: 2018
  ident: 10.1016/j.autcon.2024.105754_b51
– volume: 37
  start-page: 1566
  issue: 12
  year: 2022
  ident: 10.1016/j.autcon.2024.105754_b64
  article-title: Multifidelity approach for data-driven prediction models of structural behaviors with limited data
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12817
– volume: 349
  year: 2022
  ident: 10.1016/j.autcon.2024.105754_b8
  article-title: Bond behavior between steel bars and 3D printed concrete: Effect of concrete rheological property, steel bar diameter and paste coating
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.128708
– volume: 148
  issue: 8
  year: 2022
  ident: 10.1016/j.autcon.2024.105754_b32
  article-title: Probabilistic machine-learning methods for performance prediction of structure and infrastructures through natural gradient boosting
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0003401
– volume: 133
  year: 2022
  ident: 10.1016/j.autcon.2024.105754_b20
  article-title: Inter-laboratory study on the influence of 3D concrete printing set-ups on the bond behaviour of various reinforcements
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2022.104660
– volume: 56
  year: 2023
  ident: 10.1016/j.autcon.2024.105754_b25
  article-title: Tailoring 3D printed concrete through explainable artificial intelligence
  publication-title: Structures
  doi: 10.1016/j.istruc.2023.07.040
– start-page: 665
  year: 2011
  ident: 10.1016/j.autcon.2024.105754_b15
  article-title: Development of a viable concrete printing process
– volume: 158
  year: 2024
  ident: 10.1016/j.autcon.2024.105754_b30
  article-title: Reinforcement bond performance in 3D concrete printing: Explainable ensemble learning augmented by deep generative adversarial networks
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2023.105164
– volume: 240
  year: 2021
  ident: 10.1016/j.autcon.2024.105754_b58
  article-title: Structural behaviour of 3D printed concrete beams with various reinforcement strategies
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2021.112380
– year: 2014
  ident: 10.1016/j.autcon.2024.105754_b74
– year: 2019
  ident: 10.1016/j.autcon.2024.105754_b38
  article-title: NGBoost: Natural gradient boosting for probabilistic prediction
– year: 2005
  ident: 10.1016/j.autcon.2024.105754_b84
– volume: 36
  start-page: 638
  issue: 5
  year: 2021
  ident: 10.1016/j.autcon.2024.105754_b18
  article-title: A discrete lattice model for assessment of buildability performance of 3D-printed concrete
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12700
– volume: 4
  issue: 1
  year: 2016
  ident: 10.1016/j.autcon.2024.105754_b60
  article-title: Missing data imputation: focusing on single imputation
  publication-title: Annal. Transl. Med.
– volume: 39
  start-page: 1928
  issue: 13
  year: 2024
  ident: 10.1016/j.autcon.2024.105754_b67
  article-title: Prior knowledge-infused neural network for efficient performance assessment of structures through few-shot incremental learning
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.13175
– volume: 158
  year: 2022
  ident: 10.1016/j.autcon.2024.105754_b3
  article-title: On sustainability and digital fabrication with concrete
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2022.106837
– volume: 125
  year: 2022
  ident: 10.1016/j.autcon.2024.105754_b22
  article-title: Bending behaviour of steel cable reinforced 3D printed concrete in the direction perpendicular to the interfaces
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2021.104313
– volume: 230
  year: 2020
  ident: 10.1016/j.autcon.2024.105754_b48
  article-title: Effect of the printing method and mortar’s workability on pull-out strength of 3D printed elements
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.117002
– volume: 141
  year: 2022
  ident: 10.1016/j.autcon.2024.105754_b9
  article-title: Nail planting to enhance the interface bonding strength in 3D printed concrete
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104392
– volume: 141
  year: 2022
  ident: 10.1016/j.autcon.2024.105754_b59
  article-title: Barbed-wire reinforcement for 3D concrete printing
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104438
– volume: 112
  start-page: 111
  year: 2018
  ident: 10.1016/j.autcon.2024.105754_b6
  article-title: Rethinking reinforcement for digital fabrication with concrete
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2018.05.020
– start-page: 1
  year: 2022
  ident: 10.1016/j.autcon.2024.105754_b79
  article-title: Deep neural networks and tabular data: A survey
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 193
  year: 2020
  ident: 10.1016/j.autcon.2024.105754_b23
  article-title: Modelling and parameter optimization for filament deformation in 3D cementitious material printing using support vector machine
  publication-title: Composites B
  doi: 10.1016/j.compositesb.2020.108018
– volume: 56
  year: 2022
  ident: 10.1016/j.autcon.2024.105754_b54
  article-title: Optimization of 3D printing concrete with coarse aggregate via proper mix design and printing process
  publication-title: J. Build. Eng.
– year: 2012
  ident: 10.1016/j.autcon.2024.105754_b40
SSID ssj0007069
Score 2.479618
Snippet Three-dimensional concrete printing (3DCP) faces challenges in determining and ensuring adequate bond strength between reinforcement and printed concrete....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105754
SubjectTerms 3D concrete printing
Bond strength
Embedment length
Probabilistic prediction
Trustworthy machine learning
Title Trustworthy machine learning-enhanced 3D concrete printing: Predicting bond strength and designing reinforcement embedment length
URI https://dx.doi.org/10.1016/j.autcon.2024.105754
Volume 168
WOSCitedRecordID wos001333686600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0926-5805
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0007069
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLRJwQFBAlJd84LYycpLNw9xWbRGgqqqgoIhLtHHsbqptWm23VTnyA_jPzPiRZFlU6IFLFHkdJ9r54ozH3zdDyGsRShFrIViquGLjUMVsGqoxG2uVZVUqZWR28L_upfv7WZ6Lg8Hgp9fCXM7TpsmursTZfzU1tIGxUTp7A3O3g0IDnIPR4Qhmh-O_GR5VFIb59310YqiSyteGOGKqmdkt_2gHCefgMi5RKVU3Xvh8sMCdG8OFLlHaglqS5sjp3ypD98DfFspkXJUmuDhSJ6WqzNncdO57vJOL5amVR44M5b3LWNsFw9HOed2wTxd1F-C3k1AO8GV7ddt526lJPs9q9m1W94MW4bhHAHHRxzBhccbjlYnYFthxUykWILb5pddmeRtwOEaODwYN8AZvuu6rSbV_-9i1FETPbjsu7CgFjlLYUW6RjTCNRTYkG5MPu_nH9tOe8sQmb3RP77WYhjC4_jR_9nV6_svhA3LfLTzoxALmIRmoZpPc8br0801yr5ea8hH50YMRdTCiazCi0Q71MKIeRm9pByKKIKIeRBRARFsQ0RUQ0RZE1ILoMfnybvdw-z1z5TqYhHXn0uj3Iq2l4FUAflEiIymFrgQXqQpDOcU92wTaqkhVnE_hY8C10mWgdRYEGpYCT8iwOW3UU0KFAkc40WGpwF8PsrKssPw811mCO_lqukUi_8cW0uWyx5Iq8-I6s24R1l51ZnO5_KV_6m1WOH_U-pkFAPHaK5_d8E7Pyd3uLXlBhvAiqpfktrxc1ueLVw6FvwACvbOH
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trustworthy+machine+learning-enhanced+3D+concrete+printing%3A+Predicting+bond+strength+and+designing+reinforcement+embedment+length&rft.jtitle=Automation+in+construction&rft.au=Ma%2C+Xin-Rui&rft.au=Wang%2C+Xian-Lin&rft.au=Chen%2C+Shi-Zhi&rft.date=2024-12-01&rft.issn=0926-5805&rft.volume=168&rft.spage=105754&rft_id=info:doi/10.1016%2Fj.autcon.2024.105754&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_autcon_2024_105754
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-5805&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-5805&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-5805&client=summon