Trustworthy machine learning-enhanced 3D concrete printing: Predicting bond strength and designing reinforcement embedment length
Three-dimensional concrete printing (3DCP) faces challenges in determining and ensuring adequate bond strength between reinforcement and printed concrete. Traditional methods for predicting bond performance are merely deterministic without considering potential uncertainty, which would lead to risks...
Saved in:
| Published in: | Automation in construction Vol. 168; p. 105754 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.12.2024
|
| Subjects: | |
| ISSN: | 0926-5805 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Three-dimensional concrete printing (3DCP) faces challenges in determining and ensuring adequate bond strength between reinforcement and printed concrete. Traditional methods for predicting bond performance are merely deterministic without considering potential uncertainty, which would lead to risks for structural safety. To address this issue, this paper develops a trustworthy machine learning based prediction model for bond strength in reinforced printed concrete (RPC) structures using Natural Gradient Boosting algorithm. This developed model provides both scalar bond strength predictions and corresponding standard deviations, and in the test, it achieved a 94.5% safety rate and outperformed empirical formulas and deterministic approaches. Instructive guidance can be offered for structural engineers and designers in determining reinforcement embedment lengths for 3D-printed concrete during constructions. This probabilistic prediction approach can further enhance the safety and efficiency of digitally fabricated concrete structures, potentially extending its application to other critical parameters in printed concrete.
•A probabilistic machine learning (ML) based prediction model for bond strength between reinforcement and printed concrete.•Higher safety rate by proposed model in comparison with previous ones.•A trustworthy approach for optimal embedment length design in printed concrete.•Ensuring safety rather than statistical indexes is more critical for applying ML. |
|---|---|
| AbstractList | Three-dimensional concrete printing (3DCP) faces challenges in determining and ensuring adequate bond strength between reinforcement and printed concrete. Traditional methods for predicting bond performance are merely deterministic without considering potential uncertainty, which would lead to risks for structural safety. To address this issue, this paper develops a trustworthy machine learning based prediction model for bond strength in reinforced printed concrete (RPC) structures using Natural Gradient Boosting algorithm. This developed model provides both scalar bond strength predictions and corresponding standard deviations, and in the test, it achieved a 94.5% safety rate and outperformed empirical formulas and deterministic approaches. Instructive guidance can be offered for structural engineers and designers in determining reinforcement embedment lengths for 3D-printed concrete during constructions. This probabilistic prediction approach can further enhance the safety and efficiency of digitally fabricated concrete structures, potentially extending its application to other critical parameters in printed concrete.
•A probabilistic machine learning (ML) based prediction model for bond strength between reinforcement and printed concrete.•Higher safety rate by proposed model in comparison with previous ones.•A trustworthy approach for optimal embedment length design in printed concrete.•Ensuring safety rather than statistical indexes is more critical for applying ML. |
| ArticleNumber | 105754 |
| Author | Ma, Xin-Rui Chen, Shi-Zhi Wang, Xian-Lin |
| Author_xml | – sequence: 1 givenname: Xin-Rui orcidid: 0009-0003-5292-6016 surname: Ma fullname: Ma, Xin-Rui organization: School of Highway, Chang’an University, Xi’an, 710064, China – sequence: 2 givenname: Xian-Lin surname: Wang fullname: Wang, Xian-Lin organization: School of Civil Engineering, Tongji University, Shanghai, 200092, China – sequence: 3 givenname: Shi-Zhi surname: Chen fullname: Chen, Shi-Zhi email: szchen@chd.edu.cn organization: School of Highway, Chang’an University, Xi’an, 710064, China |
| BookMark | eNqFkLtOwzAUhj0UibbwBgx-gZbjuEmTDkioXKVKMJTZcu3jxlXjINsFdeTNcRomBpjO9f91zjciA9c6JOSKwZQBK653U3mIqnXTDLJZauXzfDYgQ6iyYpKXkJ-TUQg7AJhDUQ3J19ofQvxsfayPtJGqtg7pHqV31m0n6GrpFGrK72jyVB4j0ndvXUzTBX31qK3qcrppnaYhenTbWFOZCo3BbjsX6tE603qFDbpIsdmgPmX70_IFOTNyH_DyJ47J28P9evk0Wb08Pi9vVxPFoYjpds65MaoCzYAXheJKVUZXUM0xy5RkWcmK1NMcNYDMGYBBs2HGlIwZKPmYzHpf5dsQPBqRHmmkPwoGokMndqJHJzp0okeXZItfMmWjjLZ10Uu7_09804sxPfZh0YugLHZErUcVhW7t3wbfeyCUxA |
| CitedBy_id | crossref_primary_10_1016_j_engstruct_2025_119652 crossref_primary_10_1016_j_cscm_2025_e05259 crossref_primary_10_1617_s11527_025_02785_9 crossref_primary_10_1016_j_conbuildmat_2025_141467 crossref_primary_10_1016_j_autcon_2025_106241 crossref_primary_10_1016_j_eswa_2025_127302 crossref_primary_10_1016_j_mtcomm_2024_110999 crossref_primary_10_3390_mca30040083 crossref_primary_10_1016_j_engappai_2025_110954 crossref_primary_10_1016_j_engappai_2025_112117 crossref_primary_10_1016_j_istruc_2025_108988 |
| Cites_doi | 10.1016/j.conbuildmat.2022.129228 10.1016/j.cemconres.2022.106800 10.1016/j.conbuildmat.2024.134905 10.1016/j.conbuildmat.2020.119457 10.1016/j.cemconcomp.2021.103964 10.1016/j.conbuildmat.2021.122784 10.1080/17452759.2020.1713580 10.1016/j.conbuildmat.2012.04.074 10.1016/j.autcon.2023.105141 10.1016/j.cemconcomp.2021.104115 10.1016/j.conbuildmat.2022.127270 10.1016/j.autcon.2021.103821 10.1016/j.cemconres.2018.05.011 10.1016/j.conbuildmat.2020.121745 10.1061/JENMDT.EMENG-7062 10.1109/TPAMI.2009.187 10.1016/j.conbuildmat.2019.116855 10.1016/j.conbuildmat.2022.129239 10.1016/j.cemconres.2020.106037 10.1002/cend.202000022 10.1016/j.cemconres.2020.106068 10.1016/j.autcon.2022.104671 10.1016/j.autcon.2021.103963 10.1023/A:1010933404324 10.1016/0950-0618(95)00077-1 10.1016/j.autcon.2023.104932 10.1016/j.firesaf.2015.06.001 10.1007/s44150-021-00015-8 10.1016/j.conbuildmat.2018.05.202 10.1016/j.engfracmech.2022.108624 10.1016/j.cemconres.2021.106559 10.1016/j.autcon.2022.104485 10.1016/j.apenergy.2016.11.111 10.1016/j.conbuildmat.2024.137417 10.1016/j.conbuildmat.2021.124470 10.1016/j.conbuildmat.2023.130898 10.1002/cem.873 10.1016/j.autcon.2022.104730 10.1016/j.ins.2021.05.055 10.1111/mice.12817 10.1016/j.conbuildmat.2022.128708 10.1061/(ASCE)ST.1943-541X.0003401 10.1016/j.cemconcomp.2022.104660 10.1016/j.istruc.2023.07.040 10.1016/j.autcon.2023.105164 10.1016/j.engstruct.2021.112380 10.1111/mice.12700 10.1111/mice.13175 10.1016/j.cemconres.2022.106837 10.1016/j.cemconcomp.2021.104313 10.1016/j.conbuildmat.2019.117002 10.1016/j.autcon.2022.104392 10.1016/j.autcon.2022.104438 10.1016/j.cemconres.2018.05.020 10.1016/j.compositesb.2020.108018 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.autcon.2024.105754 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| ExternalDocumentID | 10_1016_j_autcon_2024_105754 S0926580524004904 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXKI AAXUO ABMAC ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM MO0 N9A NEJ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSB SSD SST SSZ T5K ~G- 9DU AAQXK AATTM AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ LY7 M41 R2- SET WUQ ZMT ~HD |
| ID | FETCH-LOGICAL-c306t-58333ffc90d10366c3cc9fd9097e22ca128163ccd3ed00a5100fefb1ff811f083 |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001333686600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0926-5805 |
| IngestDate | Tue Nov 18 21:55:06 EST 2025 Sat Nov 29 05:17:09 EST 2025 Sat Nov 09 15:59:26 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Bond strength 3D concrete printing Probabilistic prediction Embedment length Trustworthy machine learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-58333ffc90d10366c3cc9fd9097e22ca128163ccd3ed00a5100fefb1ff811f083 |
| ORCID | 0009-0003-5292-6016 |
| ParticipantIDs | crossref_primary_10_1016_j_autcon_2024_105754 crossref_citationtrail_10_1016_j_autcon_2024_105754 elsevier_sciencedirect_doi_10_1016_j_autcon_2024_105754 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 2024-12-00 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Automation in construction |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Chen, Guestrin (b76) 2016 Louppe (b74) 2014 Xiao, Chen, Ding, Zou (b22) 2022; 125 Gebhard, Esposito, Menna, Mata-Falcón (b20) 2022; 133 Snoek, Larochelle, Adams (b40) 2012 Gebhard, Mata-Falcón, Anton, Dillenburger, Kaufmann (b58) 2021; 240 Chang, Wan, Xu, Schlangen, Šavija (b27) 2022; 271 Dezaire (b51) 2018 Lin, Putranto, Wang (b21) 2021; 284 Mechtcherine, van Tittelboom, Kazemian, Kreiger, Nematollahi, Nerella, Santhanam, de Schutter, Van Zijl, Lowke, Ivaniuk, Taubert, Bos (b12) 2022; 157 Chen, Feng, Taciroglu (b67) 2024; 39 Lao, Li, Wong, Tan, Tjahjowidodo (b24) 2020; 15 Kloft, Empelmann, Hack, Herrmann, Lowke (b11) 2020 Breiman (b73) 2001; 45 Lundberg, Lee (b68) 2017 Ke, Meng, Finley, Wang, Chen, Ma, Ye, Liu (b78) 2017; 30 Wang, Liu, Yang, Lu, Li (b52) 2019; 229 Jacobsen, Teizer, ren Wandahl (b71) 2023; 152 Hass, Bos, Salet (b46) 2022; 355 (b72) 2013 Buswell, da Silva, Bos, Schipper, Lowke, Hack, Kloft, Mechtcherine, Wangler, Roussel (b2) 2020; 134 Liu, Li, Weng, Qian, Wong, Tan (b23) 2020; 193 Uddin, Ye, Deng, zhi Li, Yu (b29) 2023; 72 Wang, Banthia, Yoo (b30) 2024; 158 Almusallam, Al-Gahtani, Aziz, Rasheeduzzafar (b62) 1996; 10 Naser (b69) 2021; 129 Saleh, Tarawneh, Naser, Abedi, Almasabha (b34) 2022; 330 Ramani, Zhang, Kuang (b35) 2021; 132 Mechtcherine, Grafe, Nerella, Spaniol, Hertel, Fuessel (b57) 2018; 179 Yao, Lyu, Sun, Wang, Wang, Yang, Wei, Elchalakani, Li, Wang (b26) 2023; 375 Wang, Jin, Schmitt, Olhofer (b39) 2023; 55 Rodriguez, Perez, Lozano (b42) 2010; 32 Zhu, Egbe, Salehi, Shi, Jiao (b28) 2024; 413 Myles, Feudale, Liu, Woody, Brown (b83) 2004; 18 Şahan Arel, Şemsi Yazıcı (b63) 2012; 36 Mechtcherine, Buswell, Kloft, Bos, Hack, Wolfs, Sanjayan, Nematollahi, Ivaniuk, Neef (b7) 2021; 119 Flatt, Wangler (b3) 2022; 158 zhi Wang, qiang Li, bin Wang, chun Peng, Jiang, tao Liu (b37) 2017; 188 Chen, Feng, Wang, Taciroglu (b32) 2022; 148 Stephen Bates, Tibshirani (b43) 2023 Marchment, Sanjayan, Nematollahi, Xia (b53) 2019 Sagi, Rokach (b77) 2021; 572 Ma, Liang, Wang, Chen (b66) 2024; 20 Wang, Liu, Chen, Ruan (b81) 2022; 52 RILEM (b44) 1994 Duan, Avati, Ding, Thai, Basu, Ng, Schuler (b38) 2019 Mechtcherine, Bos, Perrot, da Silva, Nerella, Fataei, Wolfs, Sonebi, Roussel (b1) 2020; 132 Chen, Feng, Han, Wu (b75) 2021; 303 Loparo, Vakalis, Kurfess (b84) 2005 Xiao, Ji, Zhang, Ma, Mechtcherine, Pan, Wang, Ding, Duan, Du (b5) 2021; 122 Zhang, Lin, Zhang, Wang, Luo (b55) 2024; 440 Wang, Chen, Liu (b80) 2022; 356 Hou, Duan, Xiao, Ye (b14) 2021; 273 Baz, Aouad, Remond (b48) 2020; 230 Borisov, Leemann, Seß ler, Haug, Pawelczyk, Kasneci (b79) 2022 Chen, Zhang, Feng, Taciroglu (b65) 2023; 149 Wang, Jia, Deng, Zhang, Zhang, Chen, Pan, Zhang (b8) 2022; 349 Cao, Yu, Zheng, Cui (b9) 2022; 141 Sedgwick (b61) 2012; 345 Wang, Jia, Jia, Zhang, Chen, Ma, Wang, Deng, Banthia, Zhang (b54) 2022; 56 Hojati, Memari, Zahabi, Wu, Li, Park, Nazarian, Duarte (b59) 2022; 141 Ding, Qin, Xiao, Chen, Zuo (b45) 2022; 49 Goris (b50) 2018 Reiter, Wangler, Roussel, Flatt (b4) 2018; 112 Ghasemi, Naser (b25) 2023; 56 Chang, Zhang, Liang, Schlangen, Šavija (b17) 2022; 142 Lim, Buswell, Le, Wackrow, Austin, Gibb, Thorpe (b15) 2011 Chang, Xu, Chen, Gan, Schlangen, Šavija (b18) 2021; 36 Wu, Yang, Kong, Zhi, Xiao (b19) 2021; 226–227 Naser, Alavi (b82) 2023; 3 Kochenderfer (b31) 2015 Asprone, Menna, Bos, Salet, Mata-Falcón, Kaufmann (b6) 2018; 112 Chen, Feng (b64) 2022; 37 Naser, Kodur (b33) 2015; 76 Wang, Zhang, Fu (b70) 2023; 147 Mechtcherine, Grafe, Nerella, Spaniol, Hertel, Füssel (b49) 2018; 179 Zhang (b60) 2016; 4 Akiba, Sano, Yanase, Ohta, Koyama (b41) 2019 Yang, Sepasgozar, Shirowzhan, Kashani, Edwards (b16) 2023; 146 Moelich, Kruger, Combrinck (b56) 2021; 150 Wang, Jia, Jia, Zhang, Chen, Ma, Wang, Deng, Banthia, Zhang (b13) 2022; 56 Geneidy, Kumarji, Dubor, Sollazzo (b10) 2020 Zhang, Ni, Jia, Wang (b36) 2023; 156 Baz, Aouad, Leblond, Al-Mansouri, D’hondt, Remond (b47) 2020; 256 Liu (10.1016/j.autcon.2024.105754_b23) 2020; 193 Myles (10.1016/j.autcon.2024.105754_b83) 2004; 18 Wu (10.1016/j.autcon.2024.105754_b19) 2021; 226–227 zhi Wang (10.1016/j.autcon.2024.105754_b37) 2017; 188 Xiao (10.1016/j.autcon.2024.105754_b22) 2022; 125 Mechtcherine (10.1016/j.autcon.2024.105754_b49) 2018; 179 Dezaire (10.1016/j.autcon.2024.105754_b51) 2018 Chen (10.1016/j.autcon.2024.105754_b64) 2022; 37 Chang (10.1016/j.autcon.2024.105754_b17) 2022; 142 Saleh (10.1016/j.autcon.2024.105754_b34) 2022; 330 Ghasemi (10.1016/j.autcon.2024.105754_b25) 2023; 56 Asprone (10.1016/j.autcon.2024.105754_b6) 2018; 112 Chen (10.1016/j.autcon.2024.105754_b75) 2021; 303 Wang (10.1016/j.autcon.2024.105754_b70) 2023; 147 Jacobsen (10.1016/j.autcon.2024.105754_b71) 2023; 152 Lundberg (10.1016/j.autcon.2024.105754_b68) 2017 Gebhard (10.1016/j.autcon.2024.105754_b20) 2022; 133 Chen (10.1016/j.autcon.2024.105754_b76) 2016 Ke (10.1016/j.autcon.2024.105754_b78) 2017; 30 Mechtcherine (10.1016/j.autcon.2024.105754_b7) 2021; 119 Wang (10.1016/j.autcon.2024.105754_b54) 2022; 56 Wang (10.1016/j.autcon.2024.105754_b81) 2022; 52 Stephen Bates (10.1016/j.autcon.2024.105754_b43) 2023 Mechtcherine (10.1016/j.autcon.2024.105754_b12) 2022; 157 Wang (10.1016/j.autcon.2024.105754_b30) 2024; 158 Lin (10.1016/j.autcon.2024.105754_b21) 2021; 284 RILEM (10.1016/j.autcon.2024.105754_b44) 1994 Mechtcherine (10.1016/j.autcon.2024.105754_b57) 2018; 179 Buswell (10.1016/j.autcon.2024.105754_b2) 2020; 134 Hojati (10.1016/j.autcon.2024.105754_b59) 2022; 141 Yang (10.1016/j.autcon.2024.105754_b16) 2023; 146 Chang (10.1016/j.autcon.2024.105754_b27) 2022; 271 Reiter (10.1016/j.autcon.2024.105754_b4) 2018; 112 Geneidy (10.1016/j.autcon.2024.105754_b10) 2020 Yao (10.1016/j.autcon.2024.105754_b26) 2023; 375 Hou (10.1016/j.autcon.2024.105754_b14) 2021; 273 Ramani (10.1016/j.autcon.2024.105754_b35) 2021; 132 Chen (10.1016/j.autcon.2024.105754_b67) 2024; 39 Xiao (10.1016/j.autcon.2024.105754_b5) 2021; 122 Moelich (10.1016/j.autcon.2024.105754_b56) 2021; 150 Wang (10.1016/j.autcon.2024.105754_b52) 2019; 229 Ma (10.1016/j.autcon.2024.105754_b66) 2024; 20 Snoek (10.1016/j.autcon.2024.105754_b40) 2012 Wang (10.1016/j.autcon.2024.105754_b80) 2022; 356 Uddin (10.1016/j.autcon.2024.105754_b29) 2023; 72 Baz (10.1016/j.autcon.2024.105754_b47) 2020; 256 Wang (10.1016/j.autcon.2024.105754_b8) 2022; 349 Borisov (10.1016/j.autcon.2024.105754_b79) 2022 (10.1016/j.autcon.2024.105754_b72) 2013 Zhang (10.1016/j.autcon.2024.105754_b55) 2024; 440 Louppe (10.1016/j.autcon.2024.105754_b74) 2014 Sedgwick (10.1016/j.autcon.2024.105754_b61) 2012; 345 Naser (10.1016/j.autcon.2024.105754_b33) 2015; 76 Mechtcherine (10.1016/j.autcon.2024.105754_b1) 2020; 132 Zhu (10.1016/j.autcon.2024.105754_b28) 2024; 413 Marchment (10.1016/j.autcon.2024.105754_b53) 2019 Lim (10.1016/j.autcon.2024.105754_b15) 2011 Zhang (10.1016/j.autcon.2024.105754_b60) 2016; 4 Breiman (10.1016/j.autcon.2024.105754_b73) 2001; 45 Ding (10.1016/j.autcon.2024.105754_b45) 2022; 49 Naser (10.1016/j.autcon.2024.105754_b69) 2021; 129 Sagi (10.1016/j.autcon.2024.105754_b77) 2021; 572 Flatt (10.1016/j.autcon.2024.105754_b3) 2022; 158 Almusallam (10.1016/j.autcon.2024.105754_b62) 1996; 10 Rodriguez (10.1016/j.autcon.2024.105754_b42) 2010; 32 Kochenderfer (10.1016/j.autcon.2024.105754_b31) 2015 Wang (10.1016/j.autcon.2024.105754_b13) 2022; 56 Loparo (10.1016/j.autcon.2024.105754_b84) 2005 Chang (10.1016/j.autcon.2024.105754_b18) 2021; 36 Wang (10.1016/j.autcon.2024.105754_b39) 2023; 55 Chen (10.1016/j.autcon.2024.105754_b32) 2022; 148 Hass (10.1016/j.autcon.2024.105754_b46) 2022; 355 Baz (10.1016/j.autcon.2024.105754_b48) 2020; 230 Goris (10.1016/j.autcon.2024.105754_b50) 2018 Cao (10.1016/j.autcon.2024.105754_b9) 2022; 141 Lao (10.1016/j.autcon.2024.105754_b24) 2020; 15 Naser (10.1016/j.autcon.2024.105754_b82) 2023; 3 Akiba (10.1016/j.autcon.2024.105754_b41) 2019 Duan (10.1016/j.autcon.2024.105754_b38) 2019 Chen (10.1016/j.autcon.2024.105754_b65) 2023; 149 Zhang (10.1016/j.autcon.2024.105754_b36) 2023; 156 Gebhard (10.1016/j.autcon.2024.105754_b58) 2021; 240 Şahan Arel (10.1016/j.autcon.2024.105754_b63) 2012; 36 Kloft (10.1016/j.autcon.2024.105754_b11) 2020 |
| References_xml | – volume: 132 year: 2020 ident: b1 article-title: Extrusion-based additive manufacturing with cement-based materials – production steps, processes, and their underlying physics: A review publication-title: Cem. Concr. Res. – volume: 240 year: 2021 ident: b58 article-title: Structural behaviour of 3D printed concrete beams with various reinforcement strategies publication-title: Eng. Struct. – volume: 345 year: 2012 ident: b61 article-title: Pearson’s correlation coefficient publication-title: BMJ – volume: 188 start-page: 56 year: 2017 end-page: 70 ident: b37 article-title: Deep learning based ensemble approach for probabilistic wind power forecasting publication-title: Appl. Energy – volume: 4 year: 2016 ident: b60 article-title: Missing data imputation: focusing on single imputation publication-title: Annal. Transl. Med. – year: 1994 ident: b44 article-title: RILEM Technical Recommendations for the Testing and Use of Construction Materials – volume: 193 year: 2020 ident: b23 article-title: Modelling and parameter optimization for filament deformation in 3D cementitious material printing using support vector machine publication-title: Composites B – volume: 330 year: 2022 ident: b34 article-title: You only design once (YODO): Gaussian process-batch Bayesian optimization framework for mixture design of ultra high performance concrete publication-title: Constr. Build. Mater. – volume: 56 year: 2023 ident: b25 article-title: Tailoring 3D printed concrete through explainable artificial intelligence publication-title: Structures – year: 2005 ident: b84 article-title: Robotics And Automation Handbook, vol. 414 – volume: 303 year: 2021 ident: b75 article-title: Development of data-driven prediction model for CFRP-steel bond strength by implementing ensemble learning algorithms publication-title: Constr. Build. Mater. – volume: 49 year: 2022 ident: b45 article-title: Experimental study on the bond behaviour between steel bars and 3D printed concrete publication-title: J. Build. Eng. – volume: 20 year: 2024 ident: b66 article-title: Language model enhanced surface chloride concentration determination for concrete within splash environment based on limited field records publication-title: Case Stud. Construct. Mater. – volume: 156 year: 2023 ident: b36 article-title: Identification of concrete surface damage based on probabilistic deep learning of images publication-title: Autom. Constr. – volume: 56 year: 2022 ident: b54 article-title: Optimization of 3D printing concrete with coarse aggregate via proper mix design and printing process publication-title: J. Build. Eng. – volume: 150 year: 2021 ident: b56 article-title: Modelling the interlayer bond strength of 3D printed concrete with surface moisture publication-title: Cem. Concr. Res. – start-page: 1 year: 2022 end-page: 21. ident: b79 article-title: Deep neural networks and tabular data: A survey publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 230 year: 2020 ident: b48 article-title: Effect of the printing method and mortar’s workability on pull-out strength of 3D printed elements publication-title: Constr. Build. Mater. – volume: 273 year: 2021 ident: b14 article-title: A review of 3D printed concrete: Performance requirements, testing measurements and mix design publication-title: Constr. Build. Mater. – volume: 158 year: 2024 ident: b30 article-title: Reinforcement bond performance in 3D concrete printing: Explainable ensemble learning augmented by deep generative adversarial networks publication-title: Autom. Constr. – volume: 36 start-page: 78 year: 2012 end-page: 83 ident: b63 article-title: Concrete–reinforcement bond in different concrete classes publication-title: Constr. Build. Mater. – volume: 356 year: 2022 ident: b80 article-title: Explainable ensemble learning model for predicting steel section-concrete bond strength publication-title: Constr. Build. Mater. – volume: 158 year: 2022 ident: b3 article-title: On sustainability and digital fabrication with concrete publication-title: Cem. Concr. Res. – volume: 152 year: 2023 ident: b71 article-title: Work estimation of construction workers for productivity monitoring using kinematic data and deep learning publication-title: Autom. Constr. – volume: 157 year: 2022 ident: b12 article-title: A roadmap for quality control of hardening and hardened printed concrete publication-title: Cem. Concr. Res. – start-page: 131 year: 2020 end-page: 139. ident: b11 article-title: Reinforcement strategies for 3D-concrete-printing publication-title: Civil Eng. Design – volume: 15 start-page: 178 year: 2020 end-page: 193 ident: b24 article-title: Improving surface finish quality in extrusion-based 3D concrete printing using machine learning-based extrudate geometry control publication-title: Virtual Phys. Prototyp. – start-page: 241 year: 2019 end-page: 264 ident: b53 article-title: Chapter 12 - interlayer strength of 3D printed concrete: Influencing factors and method of enhancing publication-title: 3D Concrete Printing Technology – start-page: 1 year: 2023 end-page: 12 ident: b43 article-title: Cross-validation: What does it estimate and how well does it do it? publication-title: J. Amer. Statist. Assoc. – volume: 355 year: 2022 ident: b46 article-title: Characterizing the bond properties of automatically placed helical reinforcement in 3D printed concrete publication-title: Constr. Build. Mater. – volume: 39 start-page: 1928 year: 2024 end-page: 1945 ident: b67 article-title: Prior knowledge-infused neural network for efficient performance assessment of structures through few-shot incremental learning publication-title: Comput.-Aided Civ. Infrastruct. Eng. – volume: 149 year: 2023 ident: b65 article-title: Embedding prior knowledge into data-driven structural performance prediction to extrapolate from training domains publication-title: J. Eng. Mech. – volume: 132 year: 2021 ident: b35 article-title: Probabilistic assessment of time to cracking of concrete cover due to corrosion using semantic segmentation of imaging probe sensor data publication-title: Autom. Constr. – year: 2016 ident: b76 article-title: XGBoost: A scalable tree boosting system publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 146 year: 2023 ident: b16 article-title: Nozzle criteria for enhancing extrudability, buildability and interlayer bonding in 3D printing concrete publication-title: Autom. Constr. – volume: 142 year: 2022 ident: b17 article-title: Numerical simulation of elastic buckling in 3D concrete printing using the lattice model with geometric nonlinearity publication-title: Autom. Constr. – start-page: 4765 year: 2017 end-page: 4774 ident: b68 article-title: A unified approach to interpreting model predictions publication-title: Advances in Neural Information Processing Systems, vol. 30 – volume: 112 start-page: 86 year: 2018 end-page: 95 ident: b4 article-title: The role of early age structural build-up in digital fabrication with concrete publication-title: Cem. Concr. Res. – volume: 52 year: 2022 ident: b81 article-title: Auto-tuning ensemble models for estimating shear resistance of headed studs in concrete publication-title: J. Build. Eng. – start-page: 895 year: 2020 end-page: 905 ident: b10 publication-title: Simultaneous Reinforcement of Concrete While 3D Printing – year: 2018 ident: b50 article-title: Traditional reinforcement in 3D concrete printed structures publication-title: Eindhoven University of Technology – volume: 18 start-page: 275 year: 2004 end-page: 285 ident: b83 article-title: An introduction to decision tree modeling publication-title: J. Chemometric. – volume: 413 year: 2024 ident: b28 article-title: Eco-friendly 3D printed concrete with fine aggregate replacements: Fabrication, characterization and machine learning prediction publication-title: Constr. Build. Mater. – volume: 37 start-page: 1566 year: 2022 end-page: 1581 ident: b64 article-title: Multifidelity approach for data-driven prediction models of structural behaviors with limited data publication-title: Comput.-Aided Civ. Infrastruct. Eng. – volume: 572 start-page: 522 year: 2021 end-page: 542 ident: b77 article-title: Approximating XGBoost with an interpretable decision tree publication-title: Inform. Sci. – volume: 134 year: 2020 ident: b2 article-title: A process classification framework for defining and describing digital fabrication with concrete publication-title: Cem. Concr. Res. – volume: 271 year: 2022 ident: b27 article-title: Convolutional neural network for predicting crack pattern and stress-crack width curve of air-void structure in 3D printed concrete publication-title: Eng. Fract. Mech. – start-page: 390 year: 2013 end-page: 402 ident: b72 article-title: Fib Model Code for Concrete Structures 2010 – start-page: 2623 year: 2019 end-page: 2631 ident: b41 article-title: Optuna: A next-generation hyperparameter optimization framework publication-title: KDD’19: Proceedings of the 25th ACM SIGKDD International Conferencce on Knowledge Discovery and Data Mining – volume: 72 year: 2023 ident: b29 article-title: Interpretable machine learning for predicting the strength of 3D printed fiber-reinforced concrete (3DP-FRC) publication-title: J. Build. Eng. – year: 2015 ident: b31 article-title: Decision Making Under Uncertainty: Theory and Application – volume: 36 start-page: 638 year: 2021 end-page: 655 ident: b18 article-title: A discrete lattice model for assessment of buildability performance of 3D-printed concrete publication-title: Comput.-Aided Civ. Infrastruct. Eng. – volume: 119 year: 2021 ident: b7 article-title: Integrating reinforcement in digital fabrication with concrete: A review and classification framework publication-title: Cem. Concr. Compos. – volume: 3 start-page: 499 year: 2023 end-page: 517 ident: b82 article-title: Error metrics and performance fitness indicators for artificial intelligence and machine learning in engineering and sciences publication-title: Architect. Struct. Construct. – volume: 76 start-page: 65 year: 2015 end-page: 73 ident: b33 article-title: A probabilistic assessment for classification of bridges against fire hazard publication-title: Fire Saf. J. – volume: 32 start-page: 569 year: 2010 end-page: 575 ident: b42 article-title: Sensitivity analysis of k-fold cross validation in prediction error estimation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2014 ident: b74 article-title: Understanding Random Forests: From Theory to Practice – year: 2012 ident: b40 article-title: Practical Bayesian optimization of machine learning algorithms – volume: 147 year: 2023 ident: b70 article-title: Time series prediction of tunnel boring machine (TBM) performance during excavation using causal explainable artificial intelligence (CX-ai) publication-title: Autom. Constr. – volume: 349 year: 2022 ident: b8 article-title: Bond behavior between steel bars and 3D printed concrete: Effect of concrete rheological property, steel bar diameter and paste coating publication-title: Constr. Build. Mater. – volume: 55 year: 2023 ident: b39 article-title: Recent advances in Bayesian optimization – year: 2019 ident: b38 article-title: NGBoost: Natural gradient boosting for probabilistic prediction publication-title: 25th Americas Conference on Information Systems (AMCIS 2019) – volume: 56 year: 2022 ident: b13 article-title: Optimization of 3D printing concrete with coarse aggregate via proper mix design and printing process publication-title: J. Build. Eng. – volume: 125 year: 2022 ident: b22 article-title: Bending behaviour of steel cable reinforced 3D printed concrete in the direction perpendicular to the interfaces publication-title: Cem. Concr. Compos. – volume: 133 year: 2022 ident: b20 article-title: Inter-laboratory study on the influence of 3D concrete printing set-ups on the bond behaviour of various reinforcements publication-title: Cem. Concr. Compos. – volume: 141 year: 2022 ident: b9 article-title: Nail planting to enhance the interface bonding strength in 3D printed concrete publication-title: Autom. Constr. – volume: 30 year: 2017 ident: b78 article-title: LightGBM: A highly efficient gradient boosting decision tree publication-title: Advances in Neural Information Processing Systems, vol. 30 (NIPS 2017) – start-page: 665 year: 2011 end-page: 670. ident: b15 article-title: Development of a viable concrete printing process publication-title: 28th International Symposium on Automation and Robotics in Construction, ISARC 2011 – volume: 148 year: 2022 ident: b32 article-title: Probabilistic machine-learning methods for performance prediction of structure and infrastructures through natural gradient boosting publication-title: J. Struct. Eng. – volume: 129 year: 2021 ident: b69 article-title: An engineer’s guide to explainable artificial intelligence and interpretable machine learning: Navigating causality, forced goodness, and the false perception of inference publication-title: Autom. Constr. – volume: 440 year: 2024 ident: b55 article-title: Evaluation of anisotropy and statistical parameters of compressive strength for 3D printed concrete publication-title: Constr. Build. Mater. – volume: 226–227 year: 2021 ident: b19 article-title: Uncertainty quantification for the representative volume element of geometrically monoclinic 3D printed concrete publication-title: Int. J. Solids Struct. – volume: 229 year: 2019 ident: b52 article-title: Effect of concrete cover on the bond-slip behavior between steel section and concrete in SRC structures publication-title: Constr. Build. Mater. – volume: 122 year: 2021 ident: b5 article-title: Large-scale 3D printing concrete technology: Current status and future opportunities publication-title: Cem. Concr. Compos. – volume: 10 start-page: 123 year: 1996 end-page: 129 ident: b62 article-title: Effect of reinforcement corrosion on bond strength publication-title: Constr. Build. Mater. – volume: 284 year: 2021 ident: b21 article-title: Smart sensor tags for seepage sensing protected by 3D-printed case for embedding in concrete structures publication-title: Constr. Build. Mater. – year: 2018 ident: b51 article-title: Study on bond capacity of 3D printed concrete with cable reinforcement – volume: 179 start-page: 125 year: 2018 end-page: 137 ident: b57 article-title: 3D-printed steel reinforcement for digital concrete construction - manufacture, mechanical properties and bond behaviour publication-title: Constr. Build. Mater. – volume: 141 year: 2022 ident: b59 article-title: Barbed-wire reinforcement for 3D concrete printing publication-title: Autom. Constr. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b73 article-title: Random forests publication-title: Mach. Learn. – volume: 179 start-page: 125 year: 2018 end-page: 137 ident: b49 article-title: 3D-printed steel reinforcement for digital concrete construction – manufacture, mechanical properties and bond behaviour publication-title: Constr. Build. Mater. – volume: 375 year: 2023 ident: b26 article-title: AI-based performance prediction for 3D-printed concrete considering anisotropy and steam curing condition publication-title: Constr. Build. Mater. – volume: 112 start-page: 111 year: 2018 end-page: 121 ident: b6 article-title: Rethinking reinforcement for digital fabrication with concrete publication-title: Cem. Concr. Res. – volume: 256 year: 2020 ident: b47 article-title: Mechanical assessment of concrete – steel bonding in 3D printed elements publication-title: Constr. Build. Mater. – volume: 355 year: 2022 ident: 10.1016/j.autcon.2024.105754_b46 article-title: Characterizing the bond properties of automatically placed helical reinforcement in 3D printed concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2022.129228 – volume: 345 year: 2012 ident: 10.1016/j.autcon.2024.105754_b61 article-title: Pearson’s correlation coefficient publication-title: BMJ – volume: 157 year: 2022 ident: 10.1016/j.autcon.2024.105754_b12 article-title: A roadmap for quality control of hardening and hardened printed concrete publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2022.106800 – volume: 413 year: 2024 ident: 10.1016/j.autcon.2024.105754_b28 article-title: Eco-friendly 3D printed concrete with fine aggregate replacements: Fabrication, characterization and machine learning prediction publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2024.134905 – volume: 256 year: 2020 ident: 10.1016/j.autcon.2024.105754_b47 article-title: Mechanical assessment of concrete – steel bonding in 3D printed elements publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.119457 – volume: 119 year: 2021 ident: 10.1016/j.autcon.2024.105754_b7 article-title: Integrating reinforcement in digital fabrication with concrete: A review and classification framework publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2021.103964 – volume: 284 year: 2021 ident: 10.1016/j.autcon.2024.105754_b21 article-title: Smart sensor tags for seepage sensing protected by 3D-printed case for embedding in concrete structures publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.122784 – volume: 55 issue: 13s year: 2023 ident: 10.1016/j.autcon.2024.105754_b39 article-title: Recent advances in Bayesian optimization – start-page: 1 year: 2023 ident: 10.1016/j.autcon.2024.105754_b43 article-title: Cross-validation: What does it estimate and how well does it do it? publication-title: J. Amer. Statist. Assoc. – volume: 15 start-page: 178 issue: 2 year: 2020 ident: 10.1016/j.autcon.2024.105754_b24 article-title: Improving surface finish quality in extrusion-based 3D concrete printing using machine learning-based extrudate geometry control publication-title: Virtual Phys. Prototyp. doi: 10.1080/17452759.2020.1713580 – year: 1994 ident: 10.1016/j.autcon.2024.105754_b44 – start-page: 4765 year: 2017 ident: 10.1016/j.autcon.2024.105754_b68 article-title: A unified approach to interpreting model predictions – volume: 36 start-page: 78 year: 2012 ident: 10.1016/j.autcon.2024.105754_b63 article-title: Concrete–reinforcement bond in different concrete classes publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2012.04.074 – volume: 156 year: 2023 ident: 10.1016/j.autcon.2024.105754_b36 article-title: Identification of concrete surface damage based on probabilistic deep learning of images publication-title: Autom. Constr. doi: 10.1016/j.autcon.2023.105141 – volume: 122 year: 2021 ident: 10.1016/j.autcon.2024.105754_b5 article-title: Large-scale 3D printing concrete technology: Current status and future opportunities publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2021.104115 – volume: 56 year: 2022 ident: 10.1016/j.autcon.2024.105754_b13 article-title: Optimization of 3D printing concrete with coarse aggregate via proper mix design and printing process publication-title: J. Build. Eng. – volume: 226–227 year: 2021 ident: 10.1016/j.autcon.2024.105754_b19 article-title: Uncertainty quantification for the representative volume element of geometrically monoclinic 3D printed concrete publication-title: Int. J. Solids Struct. – volume: 20 year: 2024 ident: 10.1016/j.autcon.2024.105754_b66 article-title: Language model enhanced surface chloride concentration determination for concrete within splash environment based on limited field records publication-title: Case Stud. Construct. Mater. – volume: 330 year: 2022 ident: 10.1016/j.autcon.2024.105754_b34 article-title: You only design once (YODO): Gaussian process-batch Bayesian optimization framework for mixture design of ultra high performance concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2022.127270 – volume: 129 year: 2021 ident: 10.1016/j.autcon.2024.105754_b69 article-title: An engineer’s guide to explainable artificial intelligence and interpretable machine learning: Navigating causality, forced goodness, and the false perception of inference publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103821 – volume: 112 start-page: 86 year: 2018 ident: 10.1016/j.autcon.2024.105754_b4 article-title: The role of early age structural build-up in digital fabrication with concrete publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2018.05.011 – volume: 273 year: 2021 ident: 10.1016/j.autcon.2024.105754_b14 article-title: A review of 3D printed concrete: Performance requirements, testing measurements and mix design publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.121745 – volume: 149 issue: 12 year: 2023 ident: 10.1016/j.autcon.2024.105754_b65 article-title: Embedding prior knowledge into data-driven structural performance prediction to extrapolate from training domains publication-title: J. Eng. Mech. doi: 10.1061/JENMDT.EMENG-7062 – volume: 32 start-page: 569 issue: 3 year: 2010 ident: 10.1016/j.autcon.2024.105754_b42 article-title: Sensitivity analysis of k-fold cross validation in prediction error estimation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2009.187 – volume: 229 year: 2019 ident: 10.1016/j.autcon.2024.105754_b52 article-title: Effect of concrete cover on the bond-slip behavior between steel section and concrete in SRC structures publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.116855 – volume: 356 year: 2022 ident: 10.1016/j.autcon.2024.105754_b80 article-title: Explainable ensemble learning model for predicting steel section-concrete bond strength publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2022.129239 – volume: 132 year: 2020 ident: 10.1016/j.autcon.2024.105754_b1 article-title: Extrusion-based additive manufacturing with cement-based materials – production steps, processes, and their underlying physics: A review publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2020.106037 – volume: 30 year: 2017 ident: 10.1016/j.autcon.2024.105754_b78 article-title: LightGBM: A highly efficient gradient boosting decision tree – start-page: 131 year: 2020 ident: 10.1016/j.autcon.2024.105754_b11 article-title: Reinforcement strategies for 3D-concrete-printing publication-title: Civil Eng. Design doi: 10.1002/cend.202000022 – volume: 134 year: 2020 ident: 10.1016/j.autcon.2024.105754_b2 article-title: A process classification framework for defining and describing digital fabrication with concrete publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2020.106068 – volume: 72 year: 2023 ident: 10.1016/j.autcon.2024.105754_b29 article-title: Interpretable machine learning for predicting the strength of 3D printed fiber-reinforced concrete (3DP-FRC) publication-title: J. Build. Eng. – volume: 146 year: 2023 ident: 10.1016/j.autcon.2024.105754_b16 article-title: Nozzle criteria for enhancing extrudability, buildability and interlayer bonding in 3D printing concrete publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104671 – volume: 132 year: 2021 ident: 10.1016/j.autcon.2024.105754_b35 article-title: Probabilistic assessment of time to cracking of concrete cover due to corrosion using semantic segmentation of imaging probe sensor data publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103963 – start-page: 390 year: 2013 ident: 10.1016/j.autcon.2024.105754_b72 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.autcon.2024.105754_b73 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 10 start-page: 123 issue: 2 year: 1996 ident: 10.1016/j.autcon.2024.105754_b62 article-title: Effect of reinforcement corrosion on bond strength publication-title: Constr. Build. Mater. doi: 10.1016/0950-0618(95)00077-1 – volume: 52 year: 2022 ident: 10.1016/j.autcon.2024.105754_b81 article-title: Auto-tuning ensemble models for estimating shear resistance of headed studs in concrete publication-title: J. Build. Eng. – start-page: 895 year: 2020 ident: 10.1016/j.autcon.2024.105754_b10 – volume: 152 year: 2023 ident: 10.1016/j.autcon.2024.105754_b71 article-title: Work estimation of construction workers for productivity monitoring using kinematic data and deep learning publication-title: Autom. Constr. doi: 10.1016/j.autcon.2023.104932 – volume: 76 start-page: 65 year: 2015 ident: 10.1016/j.autcon.2024.105754_b33 article-title: A probabilistic assessment for classification of bridges against fire hazard publication-title: Fire Saf. J. doi: 10.1016/j.firesaf.2015.06.001 – volume: 3 start-page: 499 issue: 4 year: 2023 ident: 10.1016/j.autcon.2024.105754_b82 article-title: Error metrics and performance fitness indicators for artificial intelligence and machine learning in engineering and sciences publication-title: Architect. Struct. Construct. doi: 10.1007/s44150-021-00015-8 – year: 2018 ident: 10.1016/j.autcon.2024.105754_b50 article-title: Traditional reinforcement in 3D concrete printed structures publication-title: Eindhoven University of Technology – volume: 179 start-page: 125 year: 2018 ident: 10.1016/j.autcon.2024.105754_b49 article-title: 3D-printed steel reinforcement for digital concrete construction – manufacture, mechanical properties and bond behaviour publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.05.202 – volume: 271 year: 2022 ident: 10.1016/j.autcon.2024.105754_b27 article-title: Convolutional neural network for predicting crack pattern and stress-crack width curve of air-void structure in 3D printed concrete publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2022.108624 – volume: 150 year: 2021 ident: 10.1016/j.autcon.2024.105754_b56 article-title: Modelling the interlayer bond strength of 3D printed concrete with surface moisture publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2021.106559 – volume: 142 year: 2022 ident: 10.1016/j.autcon.2024.105754_b17 article-title: Numerical simulation of elastic buckling in 3D concrete printing using the lattice model with geometric nonlinearity publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104485 – start-page: 241 year: 2019 ident: 10.1016/j.autcon.2024.105754_b53 article-title: Chapter 12 - interlayer strength of 3D printed concrete: Influencing factors and method of enhancing – volume: 179 start-page: 125 year: 2018 ident: 10.1016/j.autcon.2024.105754_b57 article-title: 3D-printed steel reinforcement for digital concrete construction - manufacture, mechanical properties and bond behaviour publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.05.202 – volume: 188 start-page: 56 year: 2017 ident: 10.1016/j.autcon.2024.105754_b37 article-title: Deep learning based ensemble approach for probabilistic wind power forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.11.111 – volume: 440 year: 2024 ident: 10.1016/j.autcon.2024.105754_b55 article-title: Evaluation of anisotropy and statistical parameters of compressive strength for 3D printed concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2024.137417 – volume: 303 year: 2021 ident: 10.1016/j.autcon.2024.105754_b75 article-title: Development of data-driven prediction model for CFRP-steel bond strength by implementing ensemble learning algorithms publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.124470 – volume: 49 year: 2022 ident: 10.1016/j.autcon.2024.105754_b45 article-title: Experimental study on the bond behaviour between steel bars and 3D printed concrete publication-title: J. Build. Eng. – volume: 375 year: 2023 ident: 10.1016/j.autcon.2024.105754_b26 article-title: AI-based performance prediction for 3D-printed concrete considering anisotropy and steam curing condition publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2023.130898 – volume: 18 start-page: 275 issue: 6 year: 2004 ident: 10.1016/j.autcon.2024.105754_b83 article-title: An introduction to decision tree modeling publication-title: J. Chemometric. doi: 10.1002/cem.873 – volume: 147 year: 2023 ident: 10.1016/j.autcon.2024.105754_b70 article-title: Time series prediction of tunnel boring machine (TBM) performance during excavation using causal explainable artificial intelligence (CX-ai) publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104730 – year: 2016 ident: 10.1016/j.autcon.2024.105754_b76 article-title: XGBoost: A scalable tree boosting system – volume: 572 start-page: 522 year: 2021 ident: 10.1016/j.autcon.2024.105754_b77 article-title: Approximating XGBoost with an interpretable decision tree publication-title: Inform. Sci. doi: 10.1016/j.ins.2021.05.055 – year: 2015 ident: 10.1016/j.autcon.2024.105754_b31 – start-page: 2623 year: 2019 ident: 10.1016/j.autcon.2024.105754_b41 article-title: Optuna: A next-generation hyperparameter optimization framework – year: 2018 ident: 10.1016/j.autcon.2024.105754_b51 – volume: 37 start-page: 1566 issue: 12 year: 2022 ident: 10.1016/j.autcon.2024.105754_b64 article-title: Multifidelity approach for data-driven prediction models of structural behaviors with limited data publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12817 – volume: 349 year: 2022 ident: 10.1016/j.autcon.2024.105754_b8 article-title: Bond behavior between steel bars and 3D printed concrete: Effect of concrete rheological property, steel bar diameter and paste coating publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2022.128708 – volume: 148 issue: 8 year: 2022 ident: 10.1016/j.autcon.2024.105754_b32 article-title: Probabilistic machine-learning methods for performance prediction of structure and infrastructures through natural gradient boosting publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)ST.1943-541X.0003401 – volume: 133 year: 2022 ident: 10.1016/j.autcon.2024.105754_b20 article-title: Inter-laboratory study on the influence of 3D concrete printing set-ups on the bond behaviour of various reinforcements publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2022.104660 – volume: 56 year: 2023 ident: 10.1016/j.autcon.2024.105754_b25 article-title: Tailoring 3D printed concrete through explainable artificial intelligence publication-title: Structures doi: 10.1016/j.istruc.2023.07.040 – start-page: 665 year: 2011 ident: 10.1016/j.autcon.2024.105754_b15 article-title: Development of a viable concrete printing process – volume: 158 year: 2024 ident: 10.1016/j.autcon.2024.105754_b30 article-title: Reinforcement bond performance in 3D concrete printing: Explainable ensemble learning augmented by deep generative adversarial networks publication-title: Autom. Constr. doi: 10.1016/j.autcon.2023.105164 – volume: 240 year: 2021 ident: 10.1016/j.autcon.2024.105754_b58 article-title: Structural behaviour of 3D printed concrete beams with various reinforcement strategies publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2021.112380 – year: 2014 ident: 10.1016/j.autcon.2024.105754_b74 – year: 2019 ident: 10.1016/j.autcon.2024.105754_b38 article-title: NGBoost: Natural gradient boosting for probabilistic prediction – year: 2005 ident: 10.1016/j.autcon.2024.105754_b84 – volume: 36 start-page: 638 issue: 5 year: 2021 ident: 10.1016/j.autcon.2024.105754_b18 article-title: A discrete lattice model for assessment of buildability performance of 3D-printed concrete publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12700 – volume: 4 issue: 1 year: 2016 ident: 10.1016/j.autcon.2024.105754_b60 article-title: Missing data imputation: focusing on single imputation publication-title: Annal. Transl. Med. – volume: 39 start-page: 1928 issue: 13 year: 2024 ident: 10.1016/j.autcon.2024.105754_b67 article-title: Prior knowledge-infused neural network for efficient performance assessment of structures through few-shot incremental learning publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.13175 – volume: 158 year: 2022 ident: 10.1016/j.autcon.2024.105754_b3 article-title: On sustainability and digital fabrication with concrete publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2022.106837 – volume: 125 year: 2022 ident: 10.1016/j.autcon.2024.105754_b22 article-title: Bending behaviour of steel cable reinforced 3D printed concrete in the direction perpendicular to the interfaces publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2021.104313 – volume: 230 year: 2020 ident: 10.1016/j.autcon.2024.105754_b48 article-title: Effect of the printing method and mortar’s workability on pull-out strength of 3D printed elements publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.117002 – volume: 141 year: 2022 ident: 10.1016/j.autcon.2024.105754_b9 article-title: Nail planting to enhance the interface bonding strength in 3D printed concrete publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104392 – volume: 141 year: 2022 ident: 10.1016/j.autcon.2024.105754_b59 article-title: Barbed-wire reinforcement for 3D concrete printing publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104438 – volume: 112 start-page: 111 year: 2018 ident: 10.1016/j.autcon.2024.105754_b6 article-title: Rethinking reinforcement for digital fabrication with concrete publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2018.05.020 – start-page: 1 year: 2022 ident: 10.1016/j.autcon.2024.105754_b79 article-title: Deep neural networks and tabular data: A survey publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 193 year: 2020 ident: 10.1016/j.autcon.2024.105754_b23 article-title: Modelling and parameter optimization for filament deformation in 3D cementitious material printing using support vector machine publication-title: Composites B doi: 10.1016/j.compositesb.2020.108018 – volume: 56 year: 2022 ident: 10.1016/j.autcon.2024.105754_b54 article-title: Optimization of 3D printing concrete with coarse aggregate via proper mix design and printing process publication-title: J. Build. Eng. – year: 2012 ident: 10.1016/j.autcon.2024.105754_b40 |
| SSID | ssj0007069 |
| Score | 2.479618 |
| Snippet | Three-dimensional concrete printing (3DCP) faces challenges in determining and ensuring adequate bond strength between reinforcement and printed concrete.... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 105754 |
| SubjectTerms | 3D concrete printing Bond strength Embedment length Probabilistic prediction Trustworthy machine learning |
| Title | Trustworthy machine learning-enhanced 3D concrete printing: Predicting bond strength and designing reinforcement embedment length |
| URI | https://dx.doi.org/10.1016/j.autcon.2024.105754 |
| Volume | 168 |
| WOSCitedRecordID | wos001333686600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0926-5805 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0007069 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLRJwQFBAlJd84LYycpLNw9xWbRGgqqqgoIhLtHHsbqptWm23VTnyA_jPzPiRZFlU6IFLFHkdJ9r54ozH3zdDyGsRShFrIViquGLjUMVsGqoxG2uVZVUqZWR28L_upfv7WZ6Lg8Hgp9fCXM7TpsmursTZfzU1tIGxUTp7A3O3g0IDnIPR4Qhmh-O_GR5VFIb59310YqiSyteGOGKqmdkt_2gHCefgMi5RKVU3Xvh8sMCdG8OFLlHaglqS5sjp3ypD98DfFspkXJUmuDhSJ6WqzNncdO57vJOL5amVR44M5b3LWNsFw9HOed2wTxd1F-C3k1AO8GV7ddt526lJPs9q9m1W94MW4bhHAHHRxzBhccbjlYnYFthxUykWILb5pddmeRtwOEaODwYN8AZvuu6rSbV_-9i1FETPbjsu7CgFjlLYUW6RjTCNRTYkG5MPu_nH9tOe8sQmb3RP77WYhjC4_jR_9nV6_svhA3LfLTzoxALmIRmoZpPc8br0801yr5ea8hH50YMRdTCiazCi0Q71MKIeRm9pByKKIKIeRBRARFsQ0RUQ0RZE1ILoMfnybvdw-z1z5TqYhHXn0uj3Iq2l4FUAflEiIymFrgQXqQpDOcU92wTaqkhVnE_hY8C10mWgdRYEGpYCT8iwOW3UU0KFAkc40WGpwF8PsrKssPw811mCO_lqukUi_8cW0uWyx5Iq8-I6s24R1l51ZnO5_KV_6m1WOH_U-pkFAPHaK5_d8E7Pyd3uLXlBhvAiqpfktrxc1ueLVw6FvwACvbOH |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trustworthy+machine+learning-enhanced+3D+concrete+printing%3A+Predicting+bond+strength+and+designing+reinforcement+embedment+length&rft.jtitle=Automation+in+construction&rft.au=Ma%2C+Xin-Rui&rft.au=Wang%2C+Xian-Lin&rft.au=Chen%2C+Shi-Zhi&rft.date=2024-12-01&rft.issn=0926-5805&rft.volume=168&rft.spage=105754&rft_id=info:doi/10.1016%2Fj.autcon.2024.105754&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_autcon_2024_105754 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-5805&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-5805&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-5805&client=summon |