Online sequential ELM algorithm with forgetting factor for real applications
Sequential learning algorithms are a good choice for learning data one-by-one or chunk-by-chunk. Liang et al. has proposed OS-ELM algorithm based on the ordinary ELM algorithm, which produces better generalization performance than other famous sequential learning algorithms. One of the deficiencies...
Uloženo v:
| Vydáno v: | Neurocomputing (Amsterdam) Ročník 261; s. 144 - 152 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
25.10.2017
|
| Témata: | |
| ISSN: | 0925-2312, 1872-8286 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Sequential learning algorithms are a good choice for learning data one-by-one or chunk-by-chunk. Liang et al. has proposed OS-ELM algorithm based on the ordinary ELM algorithm, which produces better generalization performance than other famous sequential learning algorithms. One of the deficiencies of OS-ELM is that all the observations are weighted equally regardless of the acquisition time. However, the training data often have timeliness in many real industrial applications. In this paper, we propose a modified online sequential learning algorithm with the forgetting factor (named WOS-ELM algorithm) that weights the new observations more. Then a convergence analysis is presented to make sure the estimation of output weights tend to converge at the exponential speed with the arriving of new observations. For the determination of the value of forgetting factor, it would change with the forecast error automatically and get rid of excessive human interference. We employ several applications in the simulation part including time-series predication, time-variant system identification and the weather forecast problem. The simulation results show that WOS-ELM is more accurate and robust than other sequential learning algorithms. |
|---|---|
| AbstractList | Sequential learning algorithms are a good choice for learning data one-by-one or chunk-by-chunk. Liang et al. has proposed OS-ELM algorithm based on the ordinary ELM algorithm, which produces better generalization performance than other famous sequential learning algorithms. One of the deficiencies of OS-ELM is that all the observations are weighted equally regardless of the acquisition time. However, the training data often have timeliness in many real industrial applications. In this paper, we propose a modified online sequential learning algorithm with the forgetting factor (named WOS-ELM algorithm) that weights the new observations more. Then a convergence analysis is presented to make sure the estimation of output weights tend to converge at the exponential speed with the arriving of new observations. For the determination of the value of forgetting factor, it would change with the forecast error automatically and get rid of excessive human interference. We employ several applications in the simulation part including time-series predication, time-variant system identification and the weather forecast problem. The simulation results show that WOS-ELM is more accurate and robust than other sequential learning algorithms. |
| Author | Zhang, Haigang Zhang, Sen Yin, Yixin |
| Author_xml | – sequence: 1 givenname: Haigang surname: Zhang fullname: Zhang, Haigang – sequence: 2 givenname: Sen surname: Zhang fullname: Zhang, Sen email: zhangsen@ustb.edu.cn – sequence: 3 givenname: Yixin surname: Yin fullname: Yin, Yixin |
| BookMark | eNqFkE1OwzAQhS1UJNrCDVjkAgm2EycOCyRUlR8pqBtYW449Ka5Su9guiNvjUlYsYDOjGc339ObN0MQ6CwhdElwQTOqrTWFhr9y2oGkqcFsQSk7QlPCG5pzyeoKmuKUspyWhZ2gWwgZj0hDaTlG3sqOxkAV424ONRo7ZsnvK5Lh23sTXbfaRajY4v4YYjV1ng1TR-cMm85Cu5W43GiWjcTaco9NBjgEufvocvdwtnxcPebe6f1zcdrkqcR1zVnGdrAArQWJeQkN7YLVsGJe656xUuqcVY7QaGNMga1zjAfM6ma90VWldzlF11FXeheBhEDtvttJ_CoLFIRGxEcdExCERgVuREknY9S9MmfjtPHppxv_gmyMM6bF3A14EZcAq0MaDikI787fAF2vhgfk |
| CitedBy_id | crossref_primary_10_1109_TIA_2021_3051105 crossref_primary_10_1007_s00500_018_3021_4 crossref_primary_10_1177_1748302619895421 crossref_primary_10_1016_j_engappai_2020_103653 crossref_primary_10_1061_JCEMD4_COENG_14670 crossref_primary_10_1016_j_autcon_2024_105267 crossref_primary_10_1109_ACCESS_2021_3080456 crossref_primary_10_1007_s00521_018_3471_8 crossref_primary_10_1109_ACCESS_2018_2876360 crossref_primary_10_1109_ACCESS_2018_2878813 crossref_primary_10_1016_j_bpsc_2025_03_006 crossref_primary_10_1016_j_est_2023_107322 crossref_primary_10_1016_j_jfranklin_2020_05_031 crossref_primary_10_1109_ACCESS_2019_2959032 crossref_primary_10_1155_2021_3981456 crossref_primary_10_3390_sym11060801 crossref_primary_10_1088_1742_6596_1213_4_042018 crossref_primary_10_1016_j_engappai_2019_103327 crossref_primary_10_1016_j_neucom_2022_09_068 crossref_primary_10_1134_S1995080224607422 crossref_primary_10_1049_iet_ipr_2019_1016 crossref_primary_10_3390_s18020625 crossref_primary_10_1155_2021_5692621 crossref_primary_10_1109_ACCESS_2019_2960406 crossref_primary_10_3390_math10081291 crossref_primary_10_1088_1742_6596_1848_1_012095 crossref_primary_10_3390_pr7120893 crossref_primary_10_1007_s10489_024_05470_6 crossref_primary_10_1109_ACCESS_2019_2902133 |
| Cites_doi | 10.1109/TNN.2006.880583 10.1016/j.neucom.2008.01.005 10.1007/978-3-540-72383-7_127 10.1109/TCYB.2014.2307349 10.1016/j.asoc.2013.09.012 10.1016/j.neucom.2012.02.003 10.1109/TNN.2009.2024147 10.1109/TCSI.2004.842874 10.1109/TSMC.2015.2418283 10.1016/j.neucom.2009.02.013 10.1109/TSMCB.2011.2168604 10.1016/j.asoc.2008.07.005 10.1016/j.asoc.2015.03.036 10.1109/TNN.2004.836241 10.1126/science.267326 10.1016/j.jprocont.2015.01.004 10.1016/j.neucom.2005.12.126 10.1007/s00521-012-0873-x 10.1016/j.neucom.2014.05.068 10.1109/LSP.2010.2053356 10.1016/j.neucom.2010.11.030 10.1137/0322048 10.1016/j.neucom.2015.04.106 10.1162/neco.1997.9.2.461 10.1007/s13042-011-0019-y 10.1007/s12559-014-9255-2 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. |
| Copyright_xml | – notice: 2017 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2016.09.121 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 152 |
| ExternalDocumentID | 10_1016_j_neucom_2016_09_121 S0925231217302205 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61333002; 61673056; 61673055; 61671054 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c306t-548d231e53ea083e72be56a758adb853cdb245524f55dea6060f0863124d44dd3 |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000406730000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Tue Nov 18 22:35:27 EST 2025 Sat Nov 29 03:02:48 EST 2025 Fri Feb 23 02:30:24 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Extreme learning machine Forgetting factor Online learning Sequential learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-548d231e53ea083e72be56a758adb853cdb245524f55dea6060f0863124d44dd3 |
| PageCount | 9 |
| ParticipantIDs | crossref_primary_10_1016_j_neucom_2016_09_121 crossref_citationtrail_10_1016_j_neucom_2016_09_121 elsevier_sciencedirect_doi_10_1016_j_neucom_2016_09_121 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-10-25 |
| PublicationDateYYYYMMDD | 2017-10-25 |
| PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-25 day: 25 |
| PublicationDecade | 2010 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Zhao, Wang, Park (bib0012) 2012; 87 Lan, Soh, Huang (bib0011) 2009; 72 Ye, Squartini, Piazza (bib0034) 2011 Liu, Wang (bib0009) 2010; 17 Wang, Zhang, Yan (bib0024) 2015; 45 Cingolani, Squartini, Piazza (bib0013) 2008 Huang, Wang, Yuan (bib0016) 2011; 2 Huang, Saratchandran, Sundararajan (bib0022) 2005; 16 Matias, Souza, Araujo (bib0020) 2015; 27 Wang, Han (bib0019) 2014; 145 Mackey, Glass (bib0033) 1977; 197 Huang, Zhou, Ding, Zhang (bib0002) 2012; 2 Yu, Meng (bib0008) 2008 Liang, Huang, Saratchandran, Sundararajan (bib0010) 2006; 17 Lim, Lee, Pang (bib0021) 2013; 22 Ding, Chen (bib0031) 2005; 52 Sayed (bib0029) 2003 Huang, Song, Gupta, Wu (bib0028) 2014; 44 Zhang, Zhang, Yin (bib0025) 2016; 174 Chen (bib0030) 1984; 22 Suresh, Babu, Kim (bib0007) 2009; 9 Ahila, Sadasivam, Manimala (bib0004) 2015; 32 Huang, Zhu, Siew (bib0001) 2006; 70 Liu, Sundararajan, Saratchandran (bib0023) 1997; 9 Rong, Ong, Tan, Zhu (bib0005) 2008; 72 . Feng, Huang, Lin, Gay (bib0014) 2009; 20 Li, Wang, Li, Song (bib0015) 2007; 4491 Zhao, Wang, Park (bib0017) 2012; 87 Li, Wang, Zhang (bib0032) 2008; 17 Wang, Cao, Yuan (bib0006) 2011; 74 Zhou, Liu, Zhu (bib0018) 2014; 3 Han, Liu (bib0026) 2016; 19 Huang (bib0003) 2014; 6 Fletcher (bib0027) 1981; vol. 2 Huang (10.1016/j.neucom.2016.09.121_bib0016) 2011; 2 10.1016/j.neucom.2016.09.121_bib0035 Rong (10.1016/j.neucom.2016.09.121_bib0005) 2008; 72 Zhao (10.1016/j.neucom.2016.09.121_bib0012) 2012; 87 Feng (10.1016/j.neucom.2016.09.121_bib0014) 2009; 20 Li (10.1016/j.neucom.2016.09.121_bib0015) 2007; 4491 Zhang (10.1016/j.neucom.2016.09.121_bib0025) 2016; 174 Huang (10.1016/j.neucom.2016.09.121_bib0003) 2014; 6 Liu (10.1016/j.neucom.2016.09.121_bib0023) 1997; 9 Zhao (10.1016/j.neucom.2016.09.121_bib0017) 2012; 87 Huang (10.1016/j.neucom.2016.09.121_bib0022) 2005; 16 Fletcher (10.1016/j.neucom.2016.09.121_bib0027) 1981; vol. 2 Liang (10.1016/j.neucom.2016.09.121_bib0010) 2006; 17 Matias (10.1016/j.neucom.2016.09.121_bib0020) 2015; 27 Ding (10.1016/j.neucom.2016.09.121_bib0031) 2005; 52 Ahila (10.1016/j.neucom.2016.09.121_bib0004) 2015; 32 Suresh (10.1016/j.neucom.2016.09.121_bib0007) 2009; 9 Wang (10.1016/j.neucom.2016.09.121_bib0019) 2014; 145 Sayed (10.1016/j.neucom.2016.09.121_bib0029) 2003 Ye (10.1016/j.neucom.2016.09.121_bib0034) 2011 Lim (10.1016/j.neucom.2016.09.121_bib0021) 2013; 22 Huang (10.1016/j.neucom.2016.09.121_bib0001) 2006; 70 Liu (10.1016/j.neucom.2016.09.121_bib0009) 2010; 17 Lan (10.1016/j.neucom.2016.09.121_bib0011) 2009; 72 Chen (10.1016/j.neucom.2016.09.121_bib0030) 1984; 22 Huang (10.1016/j.neucom.2016.09.121_bib0028) 2014; 44 Cingolani (10.1016/j.neucom.2016.09.121_bib0013) 2008 Li (10.1016/j.neucom.2016.09.121_bib0032) 2008; 17 Huang (10.1016/j.neucom.2016.09.121_bib0002) 2012; 2 Wang (10.1016/j.neucom.2016.09.121_bib0006) 2011; 74 Wang (10.1016/j.neucom.2016.09.121_bib0024) 2015; 45 Zhou (10.1016/j.neucom.2016.09.121_bib0018) 2014; 3 Han (10.1016/j.neucom.2016.09.121_bib0026) 2016; 19 Mackey (10.1016/j.neucom.2016.09.121_bib0033) 1977; 197 Yu (10.1016/j.neucom.2016.09.121_bib0008) 2008 |
| References_xml | – volume: 19 start-page: 430 year: 2016 end-page: 437 ident: bib0026 article-title: Endpoint prediction model for basic oxygen furnace steel-making based on membrane algorithm evolving extreme learning machine publication-title: Appl. Soft Comput. – year: 2008 ident: bib0013 article-title: An extreme learning machine approach for training time variant neural networks publication-title: Proceedings of the 2008 IEEE Asia Pacific Conference on Circuits and Systems, Macao, 30 November–3 December – volume: 6 start-page: 376 year: 2014 end-page: 390 ident: bib0003 article-title: An insight into extreme learning machines: random neurons, random features and kernels publication-title: Cognit. Comput. – volume: 74 start-page: 2483 year: 2011 end-page: 2490 ident: bib0006 article-title: A study on effectiveness of extreme learning machine publication-title: Neurocomputing – volume: 22 start-page: 569 year: 2013 end-page: 576 ident: bib0021 article-title: Low complexity adaptive forgetting factor for online sequential extreme learning machine (OS-ELM) for application to nonstationary system estimations publication-title: Neural Comput. Appl. – volume: vol. 2 year: 1981 ident: bib0027 article-title: Practical Methods of Optimization: Constrained Optimization – volume: 87 start-page: 79 year: 2012 end-page: 89 ident: bib0017 article-title: Online sequential extreme learning machine with forgetting mechanism publication-title: Neurocomputing – volume: 145 start-page: 90 year: 2014 end-page: 97 ident: bib0019 article-title: Online sequential extreme learning machine with kernels for nonstationary time series prediction publication-title: Neurocomputing – volume: 2 start-page: 513 year: 2012 end-page: 529 ident: bib0002 article-title: Extreme learning machine for regression and multiclass classification publication-title: IEEE Trans. Systems. Man. Cybern. Part B Cybern. – volume: 87 start-page: 79 year: 2012 end-page: 89 ident: bib0012 article-title: Online sequential extreme learning machine with forgetting mechanism publication-title: Neuromputing – volume: 22 start-page: 758 year: 1984 end-page: 776 ident: bib0030 article-title: Recursive system identification and adaptive control by use of the modified least-squares algorithms publication-title: SIAM J. Control Optim. – volume: 70 start-page: 489 year: 2006 end-page: 501 ident: bib0001 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing – year: 2008 ident: bib0008 article-title: An enhanced online sequential extreme learning machine algorithm publication-title: Proceedings of the 2008 China Control and Decision Conference, Shandong, China, 2–4 July – volume: 9 start-page: 541 year: 2009 end-page: 552 ident: bib0007 article-title: No-reference image quality assessment using modified extreme learning machine classifier publication-title: Appl. Soft Comput. – volume: 2 start-page: 107 year: 2011 end-page: 122 ident: bib0016 article-title: Extreme learning machine: a survey publication-title: Int. J. Mach. Learn. Cybern – volume: 16 start-page: 57 year: 2005 end-page: 67 ident: bib0022 article-title: A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation publication-title: IEEE Trans. Neural Netw. – volume: 52 start-page: 555 year: 2005 end-page: 566 ident: bib0031 article-title: Performance bounds of forgetting factor least-squares algorithms for time-varying systems with finite measurement data publication-title: IEEE Trans. Circuits Syst. – volume: 45 start-page: 1549 year: 2015 end-page: 1563 ident: bib0024 article-title: Effsense: a novel mobile crowd-sensing framework for energy-efficient and cost-effective data uploading publication-title: IEEE Trans. Syst. Man Cybern. Syst. – volume: 32 start-page: 23 year: 2015 end-page: 37 ident: bib0004 article-title: An integrated PSO for parameter determination and feature selection of ELM and its application in classification of power system disturbances publication-title: Appl. Soft Comput. – volume: 17 start-page: 754 year: 2010 end-page: 757 ident: bib0009 article-title: Ensemble based extreme learning machine publication-title: IEEE Signal Process. Lett. – reference: . – volume: 3 start-page: 231 year: 2014 end-page: 237 ident: bib0018 article-title: Online regularized and kernelized extreme learning machines with forgetting mechanism publication-title: Math. Probl. Eng. – volume: 72 start-page: 359 year: 2008 end-page: 366 ident: bib0005 article-title: A fast pruned-extreme learning machine for classification problem publication-title: Neurocomputing – volume: 72 start-page: 3391 year: 2009 end-page: 3395 ident: bib0011 article-title: Ensemble of online sequential extreme learning machine publication-title: Neurocomputing – volume: 4491 start-page: 1087 year: 2007 end-page: 1093 ident: bib0015 article-title: An improved on-line sequential learning algorithm for extreme learning machine publication-title: Lect. Notes Comput. Sci. – volume: 20 start-page: 1352 year: 2009 end-page: 1357 ident: bib0014 article-title: Error minimized extreme learning machine with growth of hidden nodes and incremental learning publication-title: IEEE Trans. Neural Netw. – year: 2011 ident: bib0034 article-title: On-line extreme learning machine for training time-varying neural networks publication-title: Proceedings of the Seventh International Conference on Intelligent Computing (ICIC), Zhengzhou, China, 11–14 August – volume: 17 start-page: 1411 year: 2006 end-page: 1423 ident: bib0010 article-title: A fast and accurate online sequential learning algorithm for feedforward networks publication-title: IEEE Trans. Neural Netw. – volume: 9 start-page: 461 year: 1997 end-page: 478 ident: bib0023 article-title: A sequential learning scheme for function approximation using minimal radial basis function (RBF) neural networks publication-title: Neural Comput. – volume: 44 start-page: 2405 year: 2014 end-page: 2417 ident: bib0028 article-title: Semi-supervised and unsupervised extreme learning machines publication-title: IEEE Trans. Cybern. – volume: 27 start-page: 15 year: 2015 end-page: 21 ident: bib0020 article-title: On-line sequential extreme learning machine based on recursive partial least squares publication-title: J. Process Control – volume: 197 start-page: 287 year: 1977 end-page: 289 ident: bib0033 article-title: Oscillation and chaos in physiological control systems publication-title: Science – volume: 174 start-page: 232 year: 2016 end-page: 237 ident: bib0025 article-title: An improved ELM algorithm for the measurement of hot metal temperature in blast furnace publication-title: Neurocomputing – volume: 17 start-page: 45 year: 2008 end-page: 47 ident: bib0032 article-title: Analysis and simulation of a variable forgetting factor RLS algorithm publication-title: Mod. Electron. Tech. – year: 2003 ident: bib0029 article-title: Fundamentals of Adaptive Filtering – volume: 17 start-page: 1411 issue: 6 year: 2006 ident: 10.1016/j.neucom.2016.09.121_bib0010 article-title: A fast and accurate online sequential learning algorithm for feedforward networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2006.880583 – volume: 72 start-page: 359 issue: 1–3 year: 2008 ident: 10.1016/j.neucom.2016.09.121_bib0005 article-title: A fast pruned-extreme learning machine for classification problem publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.01.005 – volume: 4491 start-page: 1087 year: 2007 ident: 10.1016/j.neucom.2016.09.121_bib0015 article-title: An improved on-line sequential learning algorithm for extreme learning machine publication-title: Lect. Notes Comput. Sci. doi: 10.1007/978-3-540-72383-7_127 – volume: 44 start-page: 2405 issue: 12 year: 2014 ident: 10.1016/j.neucom.2016.09.121_bib0028 article-title: Semi-supervised and unsupervised extreme learning machines publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2307349 – volume: 19 start-page: 430 year: 2016 ident: 10.1016/j.neucom.2016.09.121_bib0026 article-title: Endpoint prediction model for basic oxygen furnace steel-making based on membrane algorithm evolving extreme learning machine publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2013.09.012 – volume: 87 start-page: 79 year: 2012 ident: 10.1016/j.neucom.2016.09.121_bib0012 article-title: Online sequential extreme learning machine with forgetting mechanism publication-title: Neuromputing doi: 10.1016/j.neucom.2012.02.003 – volume: 20 start-page: 1352 issue: 8 year: 2009 ident: 10.1016/j.neucom.2016.09.121_bib0014 article-title: Error minimized extreme learning machine with growth of hidden nodes and incremental learning publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2009.2024147 – volume: 52 start-page: 555 issue: 3 year: 2005 ident: 10.1016/j.neucom.2016.09.121_bib0031 article-title: Performance bounds of forgetting factor least-squares algorithms for time-varying systems with finite measurement data publication-title: IEEE Trans. Circuits Syst. doi: 10.1109/TCSI.2004.842874 – volume: 45 start-page: 1549 issue: 12 year: 2015 ident: 10.1016/j.neucom.2016.09.121_bib0024 article-title: Effsense: a novel mobile crowd-sensing framework for energy-efficient and cost-effective data uploading publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2015.2418283 – year: 2008 ident: 10.1016/j.neucom.2016.09.121_bib0013 article-title: An extreme learning machine approach for training time variant neural networks – volume: 72 start-page: 3391 issue: 13–15 year: 2009 ident: 10.1016/j.neucom.2016.09.121_bib0011 article-title: Ensemble of online sequential extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.02.013 – volume: vol. 2 year: 1981 ident: 10.1016/j.neucom.2016.09.121_bib0027 – volume: 2 start-page: 513 issue: 42 year: 2012 ident: 10.1016/j.neucom.2016.09.121_bib0002 article-title: Extreme learning machine for regression and multiclass classification publication-title: IEEE Trans. Systems. Man. Cybern. Part B Cybern. doi: 10.1109/TSMCB.2011.2168604 – ident: 10.1016/j.neucom.2016.09.121_bib0035 – volume: 9 start-page: 541 issue: 2 year: 2009 ident: 10.1016/j.neucom.2016.09.121_bib0007 article-title: No-reference image quality assessment using modified extreme learning machine classifier publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2008.07.005 – volume: 32 start-page: 23 year: 2015 ident: 10.1016/j.neucom.2016.09.121_bib0004 article-title: An integrated PSO for parameter determination and feature selection of ELM and its application in classification of power system disturbances publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.03.036 – volume: 87 start-page: 79 year: 2012 ident: 10.1016/j.neucom.2016.09.121_bib0017 article-title: Online sequential extreme learning machine with forgetting mechanism publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.02.003 – volume: 16 start-page: 57 issue: 1 year: 2005 ident: 10.1016/j.neucom.2016.09.121_bib0022 article-title: A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2004.836241 – volume: 17 start-page: 45 year: 2008 ident: 10.1016/j.neucom.2016.09.121_bib0032 article-title: Analysis and simulation of a variable forgetting factor RLS algorithm publication-title: Mod. Electron. Tech. – year: 2008 ident: 10.1016/j.neucom.2016.09.121_bib0008 article-title: An enhanced online sequential extreme learning machine algorithm – volume: 197 start-page: 287 year: 1977 ident: 10.1016/j.neucom.2016.09.121_bib0033 article-title: Oscillation and chaos in physiological control systems publication-title: Science doi: 10.1126/science.267326 – volume: 27 start-page: 15 year: 2015 ident: 10.1016/j.neucom.2016.09.121_bib0020 article-title: On-line sequential extreme learning machine based on recursive partial least squares publication-title: J. Process Control doi: 10.1016/j.jprocont.2015.01.004 – volume: 70 start-page: 489 issue: 1–3 year: 2006 ident: 10.1016/j.neucom.2016.09.121_bib0001 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 22 start-page: 569 year: 2013 ident: 10.1016/j.neucom.2016.09.121_bib0021 article-title: Low complexity adaptive forgetting factor for online sequential extreme learning machine (OS-ELM) for application to nonstationary system estimations publication-title: Neural Comput. Appl. doi: 10.1007/s00521-012-0873-x – volume: 145 start-page: 90 issue: 5 year: 2014 ident: 10.1016/j.neucom.2016.09.121_bib0019 article-title: Online sequential extreme learning machine with kernels for nonstationary time series prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.05.068 – year: 2011 ident: 10.1016/j.neucom.2016.09.121_bib0034 article-title: On-line extreme learning machine for training time-varying neural networks – volume: 17 start-page: 754 issue: 8 year: 2010 ident: 10.1016/j.neucom.2016.09.121_bib0009 article-title: Ensemble based extreme learning machine publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2010.2053356 – volume: 74 start-page: 2483 issue: 16 year: 2011 ident: 10.1016/j.neucom.2016.09.121_bib0006 article-title: A study on effectiveness of extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.11.030 – volume: 22 start-page: 758 issue: 5 year: 1984 ident: 10.1016/j.neucom.2016.09.121_bib0030 article-title: Recursive system identification and adaptive control by use of the modified least-squares algorithms publication-title: SIAM J. Control Optim. doi: 10.1137/0322048 – volume: 174 start-page: 232 issue: A year: 2016 ident: 10.1016/j.neucom.2016.09.121_bib0025 article-title: An improved ELM algorithm for the measurement of hot metal temperature in blast furnace publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.04.106 – volume: 9 start-page: 461 issue: 2 year: 1997 ident: 10.1016/j.neucom.2016.09.121_bib0023 article-title: A sequential learning scheme for function approximation using minimal radial basis function (RBF) neural networks publication-title: Neural Comput. doi: 10.1162/neco.1997.9.2.461 – volume: 3 start-page: 231 year: 2014 ident: 10.1016/j.neucom.2016.09.121_bib0018 article-title: Online regularized and kernelized extreme learning machines with forgetting mechanism publication-title: Math. Probl. Eng. – volume: 2 start-page: 107 issue: 2 year: 2011 ident: 10.1016/j.neucom.2016.09.121_bib0016 article-title: Extreme learning machine: a survey publication-title: Int. J. Mach. Learn. Cybern doi: 10.1007/s13042-011-0019-y – year: 2003 ident: 10.1016/j.neucom.2016.09.121_bib0029 – volume: 6 start-page: 376 issue: 3 year: 2014 ident: 10.1016/j.neucom.2016.09.121_bib0003 article-title: An insight into extreme learning machines: random neurons, random features and kernels publication-title: Cognit. Comput. doi: 10.1007/s12559-014-9255-2 |
| SSID | ssj0017129 |
| Score | 2.3589463 |
| Snippet | Sequential learning algorithms are a good choice for learning data one-by-one or chunk-by-chunk. Liang et al. has proposed OS-ELM algorithm based on the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 144 |
| SubjectTerms | Extreme learning machine Forgetting factor Online learning Sequential learning |
| Title | Online sequential ELM algorithm with forgetting factor for real applications |
| URI | https://dx.doi.org/10.1016/j.neucom.2016.09.121 |
| Volume | 261 |
| WOSCitedRecordID | wos000406730000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swELc22MNexj7F1yY_7A15yocdx48VKgLUIaSxqTxFbuywIgiohKl_Pmefk4Z1YgNpL1Fl1a1z_uV8d7n7HSGfUyNEYkvFdK4E49pqprUWzHJlXVZUKn2bzh8jeXSUj8fqOAT0b3w7AVnX-Xyurv_rVsMYbLYrnX3Ednc_CgPwGTYdrrDtcP2njUfy0B3MkW5cQHw4-rqjL86uZtPm5yVGXisfCfcpz9hxx6cbzhzLcP-Vdt909TQepW8CEcILg0vHsmAcpLpwQheA3tfTMx2OxXuB6UXt2SnyF5xO54H-O0Qf4EQDtY2VyhgSWyqLwdhiIhgYjqhmLWrWXCa-Zr2vehMkYg_KM0YmyHAOx8hsu6TiMdpw_qW2ty7fBxaVOabaGAutfyPP_uaW4lYSgyZzNcXPyWoihQL9tzo4GI4PuzdOMk6QlzEsvS2z9LmAy__1ZzOmZ5qcvCavgk9BB4iFN-SZrd-StbZfBw3q-x0ZITToAhoUoEE7aFAHDbqABkVouBHqoEH70HhPvu8NT3b3WeimwUpwCxsGrqmBG7MitRrsbiuTiRWZBn9RmwkYbaWZJBweXF4JYawGxzaqwN8FUXDDuTHpB7JSX9V2ndAoTVObZzyfRCW3WZbrSIuqqqSykpfKbJC0FU5RBqp51_HkomhzCs8LFGnhRFpEqgCRbhDWzbpGqpW_fF-2ci-CuYhmYAFQeXDm5pNnbpGXi6dgm6w0s1v7kbwofzXTm9mngKk7tOmQ1A |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+sequential+ELM+algorithm+with+forgetting+factor+for+real+applications&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Zhang%2C+Haigang&rft.au=Zhang%2C+Sen&rft.au=Yin%2C+Yixin&rft.date=2017-10-25&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=261&rft.spage=144&rft.epage=152&rft_id=info:doi/10.1016%2Fj.neucom.2016.09.121&rft.externalDocID=S0925231217302205 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |