Online sequential ELM algorithm with forgetting factor for real applications

Sequential learning algorithms are a good choice for learning data one-by-one or chunk-by-chunk. Liang et al. has proposed OS-ELM algorithm based on the ordinary ELM algorithm, which produces better generalization performance than other famous sequential learning algorithms. One of the deficiencies...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 261; s. 144 - 152
Hlavní autoři: Zhang, Haigang, Zhang, Sen, Yin, Yixin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 25.10.2017
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Sequential learning algorithms are a good choice for learning data one-by-one or chunk-by-chunk. Liang et al. has proposed OS-ELM algorithm based on the ordinary ELM algorithm, which produces better generalization performance than other famous sequential learning algorithms. One of the deficiencies of OS-ELM is that all the observations are weighted equally regardless of the acquisition time. However, the training data often have timeliness in many real industrial applications. In this paper, we propose a modified online sequential learning algorithm with the forgetting factor (named WOS-ELM algorithm) that weights the new observations more. Then a convergence analysis is presented to make sure the estimation of output weights tend to converge at the exponential speed with the arriving of new observations. For the determination of the value of forgetting factor, it would change with the forecast error automatically and get rid of excessive human interference. We employ several applications in the simulation part including time-series predication, time-variant system identification and the weather forecast problem. The simulation results show that WOS-ELM is more accurate and robust than other sequential learning algorithms.
AbstractList Sequential learning algorithms are a good choice for learning data one-by-one or chunk-by-chunk. Liang et al. has proposed OS-ELM algorithm based on the ordinary ELM algorithm, which produces better generalization performance than other famous sequential learning algorithms. One of the deficiencies of OS-ELM is that all the observations are weighted equally regardless of the acquisition time. However, the training data often have timeliness in many real industrial applications. In this paper, we propose a modified online sequential learning algorithm with the forgetting factor (named WOS-ELM algorithm) that weights the new observations more. Then a convergence analysis is presented to make sure the estimation of output weights tend to converge at the exponential speed with the arriving of new observations. For the determination of the value of forgetting factor, it would change with the forecast error automatically and get rid of excessive human interference. We employ several applications in the simulation part including time-series predication, time-variant system identification and the weather forecast problem. The simulation results show that WOS-ELM is more accurate and robust than other sequential learning algorithms.
Author Zhang, Haigang
Zhang, Sen
Yin, Yixin
Author_xml – sequence: 1
  givenname: Haigang
  surname: Zhang
  fullname: Zhang, Haigang
– sequence: 2
  givenname: Sen
  surname: Zhang
  fullname: Zhang, Sen
  email: zhangsen@ustb.edu.cn
– sequence: 3
  givenname: Yixin
  surname: Yin
  fullname: Yin, Yixin
BookMark eNqFkE1OwzAQhS1UJNrCDVjkAgm2EycOCyRUlR8pqBtYW449Ka5Su9guiNvjUlYsYDOjGc339ObN0MQ6CwhdElwQTOqrTWFhr9y2oGkqcFsQSk7QlPCG5pzyeoKmuKUspyWhZ2gWwgZj0hDaTlG3sqOxkAV424ONRo7ZsnvK5Lh23sTXbfaRajY4v4YYjV1ng1TR-cMm85Cu5W43GiWjcTaco9NBjgEufvocvdwtnxcPebe6f1zcdrkqcR1zVnGdrAArQWJeQkN7YLVsGJe656xUuqcVY7QaGNMga1zjAfM6ma90VWldzlF11FXeheBhEDtvttJ_CoLFIRGxEcdExCERgVuREknY9S9MmfjtPHppxv_gmyMM6bF3A14EZcAq0MaDikI787fAF2vhgfk
CitedBy_id crossref_primary_10_1109_TIA_2021_3051105
crossref_primary_10_1007_s00500_018_3021_4
crossref_primary_10_1177_1748302619895421
crossref_primary_10_1016_j_engappai_2020_103653
crossref_primary_10_1061_JCEMD4_COENG_14670
crossref_primary_10_1016_j_autcon_2024_105267
crossref_primary_10_1109_ACCESS_2021_3080456
crossref_primary_10_1007_s00521_018_3471_8
crossref_primary_10_1109_ACCESS_2018_2876360
crossref_primary_10_1109_ACCESS_2018_2878813
crossref_primary_10_1016_j_bpsc_2025_03_006
crossref_primary_10_1016_j_est_2023_107322
crossref_primary_10_1016_j_jfranklin_2020_05_031
crossref_primary_10_1109_ACCESS_2019_2959032
crossref_primary_10_1155_2021_3981456
crossref_primary_10_3390_sym11060801
crossref_primary_10_1088_1742_6596_1213_4_042018
crossref_primary_10_1016_j_engappai_2019_103327
crossref_primary_10_1016_j_neucom_2022_09_068
crossref_primary_10_1134_S1995080224607422
crossref_primary_10_1049_iet_ipr_2019_1016
crossref_primary_10_3390_s18020625
crossref_primary_10_1155_2021_5692621
crossref_primary_10_1109_ACCESS_2019_2960406
crossref_primary_10_3390_math10081291
crossref_primary_10_1088_1742_6596_1848_1_012095
crossref_primary_10_3390_pr7120893
crossref_primary_10_1007_s10489_024_05470_6
crossref_primary_10_1109_ACCESS_2019_2902133
Cites_doi 10.1109/TNN.2006.880583
10.1016/j.neucom.2008.01.005
10.1007/978-3-540-72383-7_127
10.1109/TCYB.2014.2307349
10.1016/j.asoc.2013.09.012
10.1016/j.neucom.2012.02.003
10.1109/TNN.2009.2024147
10.1109/TCSI.2004.842874
10.1109/TSMC.2015.2418283
10.1016/j.neucom.2009.02.013
10.1109/TSMCB.2011.2168604
10.1016/j.asoc.2008.07.005
10.1016/j.asoc.2015.03.036
10.1109/TNN.2004.836241
10.1126/science.267326
10.1016/j.jprocont.2015.01.004
10.1016/j.neucom.2005.12.126
10.1007/s00521-012-0873-x
10.1016/j.neucom.2014.05.068
10.1109/LSP.2010.2053356
10.1016/j.neucom.2010.11.030
10.1137/0322048
10.1016/j.neucom.2015.04.106
10.1162/neco.1997.9.2.461
10.1007/s13042-011-0019-y
10.1007/s12559-014-9255-2
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2016.09.121
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 152
ExternalDocumentID 10_1016_j_neucom_2016_09_121
S0925231217302205
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61333002; 61673056; 61673055; 61671054
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-548d231e53ea083e72be56a758adb853cdb245524f55dea6060f0863124d44dd3
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000406730000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Tue Nov 18 22:35:27 EST 2025
Sat Nov 29 03:02:48 EST 2025
Fri Feb 23 02:30:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Extreme learning machine
Forgetting factor
Online learning
Sequential learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-548d231e53ea083e72be56a758adb853cdb245524f55dea6060f0863124d44dd3
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_neucom_2016_09_121
crossref_citationtrail_10_1016_j_neucom_2016_09_121
elsevier_sciencedirect_doi_10_1016_j_neucom_2016_09_121
PublicationCentury 2000
PublicationDate 2017-10-25
PublicationDateYYYYMMDD 2017-10-25
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-25
  day: 25
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhao, Wang, Park (bib0012) 2012; 87
Lan, Soh, Huang (bib0011) 2009; 72
Ye, Squartini, Piazza (bib0034) 2011
Liu, Wang (bib0009) 2010; 17
Wang, Zhang, Yan (bib0024) 2015; 45
Cingolani, Squartini, Piazza (bib0013) 2008
Huang, Wang, Yuan (bib0016) 2011; 2
Huang, Saratchandran, Sundararajan (bib0022) 2005; 16
Matias, Souza, Araujo (bib0020) 2015; 27
Wang, Han (bib0019) 2014; 145
Mackey, Glass (bib0033) 1977; 197
Huang, Zhou, Ding, Zhang (bib0002) 2012; 2
Yu, Meng (bib0008) 2008
Liang, Huang, Saratchandran, Sundararajan (bib0010) 2006; 17
Lim, Lee, Pang (bib0021) 2013; 22
Ding, Chen (bib0031) 2005; 52
Sayed (bib0029) 2003
Huang, Song, Gupta, Wu (bib0028) 2014; 44
Zhang, Zhang, Yin (bib0025) 2016; 174
Chen (bib0030) 1984; 22
Suresh, Babu, Kim (bib0007) 2009; 9
Ahila, Sadasivam, Manimala (bib0004) 2015; 32
Huang, Zhu, Siew (bib0001) 2006; 70
Liu, Sundararajan, Saratchandran (bib0023) 1997; 9
Rong, Ong, Tan, Zhu (bib0005) 2008; 72
.
Feng, Huang, Lin, Gay (bib0014) 2009; 20
Li, Wang, Li, Song (bib0015) 2007; 4491
Zhao, Wang, Park (bib0017) 2012; 87
Li, Wang, Zhang (bib0032) 2008; 17
Wang, Cao, Yuan (bib0006) 2011; 74
Zhou, Liu, Zhu (bib0018) 2014; 3
Han, Liu (bib0026) 2016; 19
Huang (bib0003) 2014; 6
Fletcher (bib0027) 1981; vol. 2
Huang (10.1016/j.neucom.2016.09.121_bib0016) 2011; 2
10.1016/j.neucom.2016.09.121_bib0035
Rong (10.1016/j.neucom.2016.09.121_bib0005) 2008; 72
Zhao (10.1016/j.neucom.2016.09.121_bib0012) 2012; 87
Feng (10.1016/j.neucom.2016.09.121_bib0014) 2009; 20
Li (10.1016/j.neucom.2016.09.121_bib0015) 2007; 4491
Zhang (10.1016/j.neucom.2016.09.121_bib0025) 2016; 174
Huang (10.1016/j.neucom.2016.09.121_bib0003) 2014; 6
Liu (10.1016/j.neucom.2016.09.121_bib0023) 1997; 9
Zhao (10.1016/j.neucom.2016.09.121_bib0017) 2012; 87
Huang (10.1016/j.neucom.2016.09.121_bib0022) 2005; 16
Fletcher (10.1016/j.neucom.2016.09.121_bib0027) 1981; vol. 2
Liang (10.1016/j.neucom.2016.09.121_bib0010) 2006; 17
Matias (10.1016/j.neucom.2016.09.121_bib0020) 2015; 27
Ding (10.1016/j.neucom.2016.09.121_bib0031) 2005; 52
Ahila (10.1016/j.neucom.2016.09.121_bib0004) 2015; 32
Suresh (10.1016/j.neucom.2016.09.121_bib0007) 2009; 9
Wang (10.1016/j.neucom.2016.09.121_bib0019) 2014; 145
Sayed (10.1016/j.neucom.2016.09.121_bib0029) 2003
Ye (10.1016/j.neucom.2016.09.121_bib0034) 2011
Lim (10.1016/j.neucom.2016.09.121_bib0021) 2013; 22
Huang (10.1016/j.neucom.2016.09.121_bib0001) 2006; 70
Liu (10.1016/j.neucom.2016.09.121_bib0009) 2010; 17
Lan (10.1016/j.neucom.2016.09.121_bib0011) 2009; 72
Chen (10.1016/j.neucom.2016.09.121_bib0030) 1984; 22
Huang (10.1016/j.neucom.2016.09.121_bib0028) 2014; 44
Cingolani (10.1016/j.neucom.2016.09.121_bib0013) 2008
Li (10.1016/j.neucom.2016.09.121_bib0032) 2008; 17
Huang (10.1016/j.neucom.2016.09.121_bib0002) 2012; 2
Wang (10.1016/j.neucom.2016.09.121_bib0006) 2011; 74
Wang (10.1016/j.neucom.2016.09.121_bib0024) 2015; 45
Zhou (10.1016/j.neucom.2016.09.121_bib0018) 2014; 3
Han (10.1016/j.neucom.2016.09.121_bib0026) 2016; 19
Mackey (10.1016/j.neucom.2016.09.121_bib0033) 1977; 197
Yu (10.1016/j.neucom.2016.09.121_bib0008) 2008
References_xml – volume: 19
  start-page: 430
  year: 2016
  end-page: 437
  ident: bib0026
  article-title: Endpoint prediction model for basic oxygen furnace steel-making based on membrane algorithm evolving extreme learning machine
  publication-title: Appl. Soft Comput.
– year: 2008
  ident: bib0013
  article-title: An extreme learning machine approach for training time variant neural networks
  publication-title: Proceedings of the 2008 IEEE Asia Pacific Conference on Circuits and Systems, Macao, 30 November–3 December
– volume: 6
  start-page: 376
  year: 2014
  end-page: 390
  ident: bib0003
  article-title: An insight into extreme learning machines: random neurons, random features and kernels
  publication-title: Cognit. Comput.
– volume: 74
  start-page: 2483
  year: 2011
  end-page: 2490
  ident: bib0006
  article-title: A study on effectiveness of extreme learning machine
  publication-title: Neurocomputing
– volume: 22
  start-page: 569
  year: 2013
  end-page: 576
  ident: bib0021
  article-title: Low complexity adaptive forgetting factor for online sequential extreme learning machine (OS-ELM) for application to nonstationary system estimations
  publication-title: Neural Comput. Appl.
– volume: vol. 2
  year: 1981
  ident: bib0027
  article-title: Practical Methods of Optimization: Constrained Optimization
– volume: 87
  start-page: 79
  year: 2012
  end-page: 89
  ident: bib0017
  article-title: Online sequential extreme learning machine with forgetting mechanism
  publication-title: Neurocomputing
– volume: 145
  start-page: 90
  year: 2014
  end-page: 97
  ident: bib0019
  article-title: Online sequential extreme learning machine with kernels for nonstationary time series prediction
  publication-title: Neurocomputing
– volume: 2
  start-page: 513
  year: 2012
  end-page: 529
  ident: bib0002
  article-title: Extreme learning machine for regression and multiclass classification
  publication-title: IEEE Trans. Systems. Man. Cybern. Part B Cybern.
– volume: 87
  start-page: 79
  year: 2012
  end-page: 89
  ident: bib0012
  article-title: Online sequential extreme learning machine with forgetting mechanism
  publication-title: Neuromputing
– volume: 22
  start-page: 758
  year: 1984
  end-page: 776
  ident: bib0030
  article-title: Recursive system identification and adaptive control by use of the modified least-squares algorithms
  publication-title: SIAM J. Control Optim.
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: bib0001
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
– year: 2008
  ident: bib0008
  article-title: An enhanced online sequential extreme learning machine algorithm
  publication-title: Proceedings of the 2008 China Control and Decision Conference, Shandong, China, 2–4 July
– volume: 9
  start-page: 541
  year: 2009
  end-page: 552
  ident: bib0007
  article-title: No-reference image quality assessment using modified extreme learning machine classifier
  publication-title: Appl. Soft Comput.
– volume: 2
  start-page: 107
  year: 2011
  end-page: 122
  ident: bib0016
  article-title: Extreme learning machine: a survey
  publication-title: Int. J. Mach. Learn. Cybern
– volume: 16
  start-page: 57
  year: 2005
  end-page: 67
  ident: bib0022
  article-title: A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation
  publication-title: IEEE Trans. Neural Netw.
– volume: 52
  start-page: 555
  year: 2005
  end-page: 566
  ident: bib0031
  article-title: Performance bounds of forgetting factor least-squares algorithms for time-varying systems with finite measurement data
  publication-title: IEEE Trans. Circuits Syst.
– volume: 45
  start-page: 1549
  year: 2015
  end-page: 1563
  ident: bib0024
  article-title: Effsense: a novel mobile crowd-sensing framework for energy-efficient and cost-effective data uploading
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 32
  start-page: 23
  year: 2015
  end-page: 37
  ident: bib0004
  article-title: An integrated PSO for parameter determination and feature selection of ELM and its application in classification of power system disturbances
  publication-title: Appl. Soft Comput.
– volume: 17
  start-page: 754
  year: 2010
  end-page: 757
  ident: bib0009
  article-title: Ensemble based extreme learning machine
  publication-title: IEEE Signal Process. Lett.
– reference: .
– volume: 3
  start-page: 231
  year: 2014
  end-page: 237
  ident: bib0018
  article-title: Online regularized and kernelized extreme learning machines with forgetting mechanism
  publication-title: Math. Probl. Eng.
– volume: 72
  start-page: 359
  year: 2008
  end-page: 366
  ident: bib0005
  article-title: A fast pruned-extreme learning machine for classification problem
  publication-title: Neurocomputing
– volume: 72
  start-page: 3391
  year: 2009
  end-page: 3395
  ident: bib0011
  article-title: Ensemble of online sequential extreme learning machine
  publication-title: Neurocomputing
– volume: 4491
  start-page: 1087
  year: 2007
  end-page: 1093
  ident: bib0015
  article-title: An improved on-line sequential learning algorithm for extreme learning machine
  publication-title: Lect. Notes Comput. Sci.
– volume: 20
  start-page: 1352
  year: 2009
  end-page: 1357
  ident: bib0014
  article-title: Error minimized extreme learning machine with growth of hidden nodes and incremental learning
  publication-title: IEEE Trans. Neural Netw.
– year: 2011
  ident: bib0034
  article-title: On-line extreme learning machine for training time-varying neural networks
  publication-title: Proceedings of the Seventh International Conference on Intelligent Computing (ICIC), Zhengzhou, China, 11–14 August
– volume: 17
  start-page: 1411
  year: 2006
  end-page: 1423
  ident: bib0010
  article-title: A fast and accurate online sequential learning algorithm for feedforward networks
  publication-title: IEEE Trans. Neural Netw.
– volume: 9
  start-page: 461
  year: 1997
  end-page: 478
  ident: bib0023
  article-title: A sequential learning scheme for function approximation using minimal radial basis function (RBF) neural networks
  publication-title: Neural Comput.
– volume: 44
  start-page: 2405
  year: 2014
  end-page: 2417
  ident: bib0028
  article-title: Semi-supervised and unsupervised extreme learning machines
  publication-title: IEEE Trans. Cybern.
– volume: 27
  start-page: 15
  year: 2015
  end-page: 21
  ident: bib0020
  article-title: On-line sequential extreme learning machine based on recursive partial least squares
  publication-title: J. Process Control
– volume: 197
  start-page: 287
  year: 1977
  end-page: 289
  ident: bib0033
  article-title: Oscillation and chaos in physiological control systems
  publication-title: Science
– volume: 174
  start-page: 232
  year: 2016
  end-page: 237
  ident: bib0025
  article-title: An improved ELM algorithm for the measurement of hot metal temperature in blast furnace
  publication-title: Neurocomputing
– volume: 17
  start-page: 45
  year: 2008
  end-page: 47
  ident: bib0032
  article-title: Analysis and simulation of a variable forgetting factor RLS algorithm
  publication-title: Mod. Electron. Tech.
– year: 2003
  ident: bib0029
  article-title: Fundamentals of Adaptive Filtering
– volume: 17
  start-page: 1411
  issue: 6
  year: 2006
  ident: 10.1016/j.neucom.2016.09.121_bib0010
  article-title: A fast and accurate online sequential learning algorithm for feedforward networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2006.880583
– volume: 72
  start-page: 359
  issue: 1–3
  year: 2008
  ident: 10.1016/j.neucom.2016.09.121_bib0005
  article-title: A fast pruned-extreme learning machine for classification problem
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.01.005
– volume: 4491
  start-page: 1087
  year: 2007
  ident: 10.1016/j.neucom.2016.09.121_bib0015
  article-title: An improved on-line sequential learning algorithm for extreme learning machine
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-540-72383-7_127
– volume: 44
  start-page: 2405
  issue: 12
  year: 2014
  ident: 10.1016/j.neucom.2016.09.121_bib0028
  article-title: Semi-supervised and unsupervised extreme learning machines
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2307349
– volume: 19
  start-page: 430
  year: 2016
  ident: 10.1016/j.neucom.2016.09.121_bib0026
  article-title: Endpoint prediction model for basic oxygen furnace steel-making based on membrane algorithm evolving extreme learning machine
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.09.012
– volume: 87
  start-page: 79
  year: 2012
  ident: 10.1016/j.neucom.2016.09.121_bib0012
  article-title: Online sequential extreme learning machine with forgetting mechanism
  publication-title: Neuromputing
  doi: 10.1016/j.neucom.2012.02.003
– volume: 20
  start-page: 1352
  issue: 8
  year: 2009
  ident: 10.1016/j.neucom.2016.09.121_bib0014
  article-title: Error minimized extreme learning machine with growth of hidden nodes and incremental learning
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2009.2024147
– volume: 52
  start-page: 555
  issue: 3
  year: 2005
  ident: 10.1016/j.neucom.2016.09.121_bib0031
  article-title: Performance bounds of forgetting factor least-squares algorithms for time-varying systems with finite measurement data
  publication-title: IEEE Trans. Circuits Syst.
  doi: 10.1109/TCSI.2004.842874
– volume: 45
  start-page: 1549
  issue: 12
  year: 2015
  ident: 10.1016/j.neucom.2016.09.121_bib0024
  article-title: Effsense: a novel mobile crowd-sensing framework for energy-efficient and cost-effective data uploading
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2015.2418283
– year: 2008
  ident: 10.1016/j.neucom.2016.09.121_bib0013
  article-title: An extreme learning machine approach for training time variant neural networks
– volume: 72
  start-page: 3391
  issue: 13–15
  year: 2009
  ident: 10.1016/j.neucom.2016.09.121_bib0011
  article-title: Ensemble of online sequential extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.02.013
– volume: vol. 2
  year: 1981
  ident: 10.1016/j.neucom.2016.09.121_bib0027
– volume: 2
  start-page: 513
  issue: 42
  year: 2012
  ident: 10.1016/j.neucom.2016.09.121_bib0002
  article-title: Extreme learning machine for regression and multiclass classification
  publication-title: IEEE Trans. Systems. Man. Cybern. Part B Cybern.
  doi: 10.1109/TSMCB.2011.2168604
– ident: 10.1016/j.neucom.2016.09.121_bib0035
– volume: 9
  start-page: 541
  issue: 2
  year: 2009
  ident: 10.1016/j.neucom.2016.09.121_bib0007
  article-title: No-reference image quality assessment using modified extreme learning machine classifier
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2008.07.005
– volume: 32
  start-page: 23
  year: 2015
  ident: 10.1016/j.neucom.2016.09.121_bib0004
  article-title: An integrated PSO for parameter determination and feature selection of ELM and its application in classification of power system disturbances
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.03.036
– volume: 87
  start-page: 79
  year: 2012
  ident: 10.1016/j.neucom.2016.09.121_bib0017
  article-title: Online sequential extreme learning machine with forgetting mechanism
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.02.003
– volume: 16
  start-page: 57
  issue: 1
  year: 2005
  ident: 10.1016/j.neucom.2016.09.121_bib0022
  article-title: A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2004.836241
– volume: 17
  start-page: 45
  year: 2008
  ident: 10.1016/j.neucom.2016.09.121_bib0032
  article-title: Analysis and simulation of a variable forgetting factor RLS algorithm
  publication-title: Mod. Electron. Tech.
– year: 2008
  ident: 10.1016/j.neucom.2016.09.121_bib0008
  article-title: An enhanced online sequential extreme learning machine algorithm
– volume: 197
  start-page: 287
  year: 1977
  ident: 10.1016/j.neucom.2016.09.121_bib0033
  article-title: Oscillation and chaos in physiological control systems
  publication-title: Science
  doi: 10.1126/science.267326
– volume: 27
  start-page: 15
  year: 2015
  ident: 10.1016/j.neucom.2016.09.121_bib0020
  article-title: On-line sequential extreme learning machine based on recursive partial least squares
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2015.01.004
– volume: 70
  start-page: 489
  issue: 1–3
  year: 2006
  ident: 10.1016/j.neucom.2016.09.121_bib0001
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 22
  start-page: 569
  year: 2013
  ident: 10.1016/j.neucom.2016.09.121_bib0021
  article-title: Low complexity adaptive forgetting factor for online sequential extreme learning machine (OS-ELM) for application to nonstationary system estimations
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-012-0873-x
– volume: 145
  start-page: 90
  issue: 5
  year: 2014
  ident: 10.1016/j.neucom.2016.09.121_bib0019
  article-title: Online sequential extreme learning machine with kernels for nonstationary time series prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.05.068
– year: 2011
  ident: 10.1016/j.neucom.2016.09.121_bib0034
  article-title: On-line extreme learning machine for training time-varying neural networks
– volume: 17
  start-page: 754
  issue: 8
  year: 2010
  ident: 10.1016/j.neucom.2016.09.121_bib0009
  article-title: Ensemble based extreme learning machine
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2010.2053356
– volume: 74
  start-page: 2483
  issue: 16
  year: 2011
  ident: 10.1016/j.neucom.2016.09.121_bib0006
  article-title: A study on effectiveness of extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.11.030
– volume: 22
  start-page: 758
  issue: 5
  year: 1984
  ident: 10.1016/j.neucom.2016.09.121_bib0030
  article-title: Recursive system identification and adaptive control by use of the modified least-squares algorithms
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0322048
– volume: 174
  start-page: 232
  issue: A
  year: 2016
  ident: 10.1016/j.neucom.2016.09.121_bib0025
  article-title: An improved ELM algorithm for the measurement of hot metal temperature in blast furnace
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.04.106
– volume: 9
  start-page: 461
  issue: 2
  year: 1997
  ident: 10.1016/j.neucom.2016.09.121_bib0023
  article-title: A sequential learning scheme for function approximation using minimal radial basis function (RBF) neural networks
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.2.461
– volume: 3
  start-page: 231
  year: 2014
  ident: 10.1016/j.neucom.2016.09.121_bib0018
  article-title: Online regularized and kernelized extreme learning machines with forgetting mechanism
  publication-title: Math. Probl. Eng.
– volume: 2
  start-page: 107
  issue: 2
  year: 2011
  ident: 10.1016/j.neucom.2016.09.121_bib0016
  article-title: Extreme learning machine: a survey
  publication-title: Int. J. Mach. Learn. Cybern
  doi: 10.1007/s13042-011-0019-y
– year: 2003
  ident: 10.1016/j.neucom.2016.09.121_bib0029
– volume: 6
  start-page: 376
  issue: 3
  year: 2014
  ident: 10.1016/j.neucom.2016.09.121_bib0003
  article-title: An insight into extreme learning machines: random neurons, random features and kernels
  publication-title: Cognit. Comput.
  doi: 10.1007/s12559-014-9255-2
SSID ssj0017129
Score 2.3589463
Snippet Sequential learning algorithms are a good choice for learning data one-by-one or chunk-by-chunk. Liang et al. has proposed OS-ELM algorithm based on the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 144
SubjectTerms Extreme learning machine
Forgetting factor
Online learning
Sequential learning
Title Online sequential ELM algorithm with forgetting factor for real applications
URI https://dx.doi.org/10.1016/j.neucom.2016.09.121
Volume 261
WOSCitedRecordID wos000406730000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swELc22MNexj7F1yY_7A15yocdx48VKgLUIaSxqTxFbuywIgiohKl_Pmefk4Z1YgNpL1Fl1a1z_uV8d7n7HSGfUyNEYkvFdK4E49pqprUWzHJlXVZUKn2bzh8jeXSUj8fqOAT0b3w7AVnX-Xyurv_rVsMYbLYrnX3Ednc_CgPwGTYdrrDtcP2njUfy0B3MkW5cQHw4-rqjL86uZtPm5yVGXisfCfcpz9hxx6cbzhzLcP-Vdt909TQepW8CEcILg0vHsmAcpLpwQheA3tfTMx2OxXuB6UXt2SnyF5xO54H-O0Qf4EQDtY2VyhgSWyqLwdhiIhgYjqhmLWrWXCa-Zr2vehMkYg_KM0YmyHAOx8hsu6TiMdpw_qW2ty7fBxaVOabaGAutfyPP_uaW4lYSgyZzNcXPyWoihQL9tzo4GI4PuzdOMk6QlzEsvS2z9LmAy__1ZzOmZ5qcvCavgk9BB4iFN-SZrd-StbZfBw3q-x0ZITToAhoUoEE7aFAHDbqABkVouBHqoEH70HhPvu8NT3b3WeimwUpwCxsGrqmBG7MitRrsbiuTiRWZBn9RmwkYbaWZJBweXF4JYawGxzaqwN8FUXDDuTHpB7JSX9V2ndAoTVObZzyfRCW3WZbrSIuqqqSykpfKbJC0FU5RBqp51_HkomhzCs8LFGnhRFpEqgCRbhDWzbpGqpW_fF-2ci-CuYhmYAFQeXDm5pNnbpGXi6dgm6w0s1v7kbwofzXTm9mngKk7tOmQ1A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+sequential+ELM+algorithm+with+forgetting+factor+for+real+applications&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Zhang%2C+Haigang&rft.au=Zhang%2C+Sen&rft.au=Yin%2C+Yixin&rft.date=2017-10-25&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=261&rft.spage=144&rft.epage=152&rft_id=info:doi/10.1016%2Fj.neucom.2016.09.121&rft.externalDocID=S0925231217302205
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon