An improved TSVD-GCV inversion algorithm of pore size distribution in time-domain induced polarization using migration Hankel matrix
Reservoir porosity obtained from time-domain induced polarization (TDIP) well logging plays a vital role in estimating the hydraulic properties and obtain the reservoir parameters in a water-flood oil-field. Improving the inversion accuracy of the reservoir porosity can enhance the oil recovery in t...
Uložené v:
| Vydané v: | Journal of petroleum science & engineering Ročník 183; s. 106368 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.12.2019
|
| Predmet: | |
| ISSN: | 0920-4105, 1873-4715 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Reservoir porosity obtained from time-domain induced polarization (TDIP) well logging plays a vital role in estimating the hydraulic properties and obtain the reservoir parameters in a water-flood oil-field. Improving the inversion accuracy of the reservoir porosity can enhance the oil recovery in the water-flood oil-filed. Evaluating reservoir pore size distribution through induced polarization decay curve is confronted with the problems of poor applicability of data pre-processing, low accuracy and lacking of evaluation criteria for inversion results of pore size distribution. The basic principles of TDIP are introduced and the relationship between pore relaxation time and pore diameter is given. Combining the mathematical characteristics of polarization decay curve data, the performance and the limitations of existing pre-processing algorithms are analyzed and pointed out, respectively. An improved data pre-processing algorithm using the spatial characteristics of linear transformation based on migration Hankel matrix is proposed, and this method improves the inversion accuracy of pore size distribution greatly. In the engineering application, 2-logarithmic sampling method is proposed to sample the polarization decay data for more efficient petroleum exploration with less sample points. The different regularization methods, regularization matrix and regularization parameter determination methods are compared and analyzed for the inversion of the pore size distribution. The numerical simulation experimental results show that the stability and accuracy of Truncated Singular Value Decomposition - Generalized Cross Validation (TSVD-GCV), Truncated Singular Value Decomposition - L Curve (TSVD-L) and Tikhonov-I-L are appropriate for the inversion of pore size distribution. Because of the truth that the pore size distribution of rock is unknown, Backus-Gilbert (BG) theory is introduced to evaluate the inversion results of rock polarization decay curve data of a mining area in Jilin Province. The rock sample experiment shows that the TSVD-GCV inversion algorithm has the best performance.
•Separating noise from sampling signal by introducing migration Hankel matrix to migrate feature space.•Obtaining high inversion accuracy of pore size distribution within less sampling points using 2-logarithmic sampling method.•The TSVD-GCV algorithm has the best pore size distribution inversion performance by introducing the BG theory. |
|---|---|
| AbstractList | Reservoir porosity obtained from time-domain induced polarization (TDIP) well logging plays a vital role in estimating the hydraulic properties and obtain the reservoir parameters in a water-flood oil-field. Improving the inversion accuracy of the reservoir porosity can enhance the oil recovery in the water-flood oil-filed. Evaluating reservoir pore size distribution through induced polarization decay curve is confronted with the problems of poor applicability of data pre-processing, low accuracy and lacking of evaluation criteria for inversion results of pore size distribution. The basic principles of TDIP are introduced and the relationship between pore relaxation time and pore diameter is given. Combining the mathematical characteristics of polarization decay curve data, the performance and the limitations of existing pre-processing algorithms are analyzed and pointed out, respectively. An improved data pre-processing algorithm using the spatial characteristics of linear transformation based on migration Hankel matrix is proposed, and this method improves the inversion accuracy of pore size distribution greatly. In the engineering application, 2-logarithmic sampling method is proposed to sample the polarization decay data for more efficient petroleum exploration with less sample points. The different regularization methods, regularization matrix and regularization parameter determination methods are compared and analyzed for the inversion of the pore size distribution. The numerical simulation experimental results show that the stability and accuracy of Truncated Singular Value Decomposition - Generalized Cross Validation (TSVD-GCV), Truncated Singular Value Decomposition - L Curve (TSVD-L) and Tikhonov-I-L are appropriate for the inversion of pore size distribution. Because of the truth that the pore size distribution of rock is unknown, Backus-Gilbert (BG) theory is introduced to evaluate the inversion results of rock polarization decay curve data of a mining area in Jilin Province. The rock sample experiment shows that the TSVD-GCV inversion algorithm has the best performance.
•Separating noise from sampling signal by introducing migration Hankel matrix to migrate feature space.•Obtaining high inversion accuracy of pore size distribution within less sampling points using 2-logarithmic sampling method.•The TSVD-GCV algorithm has the best pore size distribution inversion performance by introducing the BG theory. |
| ArticleNumber | 106368 |
| Author | Zhang, Jianyu Zhang, Shuo Zhou, Kaibo Huang, Zhen |
| Author_xml | – sequence: 1 givenname: Kaibo orcidid: 0000-0003-0055-3193 surname: Zhou fullname: Zhou, Kaibo email: zhoukb@hust.edu.cn organization: MOE Key Laboratory of Image Processing and Intelligence Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China – sequence: 2 givenname: Shuo surname: Zhang fullname: Zhang, Shuo organization: MOE Key Laboratory of Image Processing and Intelligence Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China – sequence: 3 givenname: Zhen surname: Huang fullname: Huang, Zhen email: zhenhuang@whpu.edu.cn organization: School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China – sequence: 4 givenname: Jianyu surname: Zhang fullname: Zhang, Jianyu organization: MOE Key Laboratory of Image Processing and Intelligence Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China |
| BookMark | eNqFkE9PwjAYhxuDiYB-Aw_9AsN2Hd3wYEJQwYTEg8i16boOX9zapS1EOfvBHcyTBz29f_I-v-R9BqhnrNEIXVMyooTym-2o0cHZahQTOmlXnPHsDPVplrIoSem4h_pkEpMooWR8gQbebwkhjLO0j76mBkPdOLvXBV69rO-j-WyNwey182ANltXGOghvNbYlbqzT2MNB4wJ8cJDvwvEGDA5Q66iwtYTjWOxUm9bYSjo4yNPNzoPZ4Bo2rpsX0rzrCteyjfm4ROelrLy--qlD9Pr4sJotouXz_Gk2XUaKER6iMctzUpaTmGaca56OpUzbhsU5zZNyksRpoYgqVBxnlOckIzIjSpaMUtUSirEhSrpc5az3TpeicVBL9ykoEUeTYis6k-JoUnQmW-z2F6YgnN4ITkL1H3zXwbp9bA_aCa9Am1YQOK2CKCz8HfANsSWW0g |
| CitedBy_id | crossref_primary_10_3390_photonics10020177 crossref_primary_10_1007_s11831_021_09594_7 crossref_primary_10_1016_j_measurement_2024_114703 crossref_primary_10_1177_10775463241310018 |
| Cites_doi | 10.1016/j.ymssp.2018.08.008 10.1088/1742-2132/11/1/015006 10.1016/j.yofte.2018.12.030 10.1088/1742-2132/12/3/283 10.26804/ager.2019.02.08 10.1016/j.petrol.2004.05.004 10.1016/j.cam.2014.06.004 10.1016/j.ymssp.2017.02.036 10.1016/j.cam.2013.04.019 10.1016/j.ymssp.2010.10.002 10.1088/1361-6501/aa6bcc 10.1007/s11075-006-9053-3 10.1007/s11242-016-0758-z 10.1016/j.jsv.2017.05.004 10.1088/1742-2132/12/1/12 10.1088/1742-2140/aa7303 10.1016/j.laa.2010.06.001 10.1111/j.1365-2478.2006.00568.x 10.1016/j.jmr.2014.11.018 10.1111/j.1365-2478.2012.01080.x 10.1016/j.apm.2011.07.055 10.1088/1742-2132/11/3/035003 10.1016/j.bspc.2018.04.004 10.1016/j.cam.2018.04.049 10.1046/j.1365-246X.1998.00652.x 10.1016/j.micromeso.2017.05.024 10.1088/1361-6501/aaaca6 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. |
| Copyright_xml | – notice: 2019 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.petrol.2019.106368 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Engineering |
| EISSN | 1873-4715 |
| ExternalDocumentID | 10_1016_j_petrol_2019_106368 S0920410519307892 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ H~9 IHE IMUCA J1W JARJE KOM LY3 LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SEP SES SEW SPC SPCBC SPD SSE SSR SSZ T5K WH7 WUQ XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c306t-53bb0ff921866e675aa766e32b1b4f9427dc0cdc22816b080a80caf311c186c33 |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000501604200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-4105 |
| IngestDate | Sat Nov 29 07:16:08 EST 2025 Tue Nov 18 22:33:36 EST 2025 Fri Feb 23 02:45:51 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Keywords | Migration Hankel matrix Backus-Gilbert theory Pore size distribution TSVD-GCV Time-domain induced polarization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-53bb0ff921866e675aa766e32b1b4f9427dc0cdc22816b080a80caf311c186c33 |
| ORCID | 0000-0003-0055-3193 |
| ParticipantIDs | crossref_primary_10_1016_j_petrol_2019_106368 crossref_citationtrail_10_1016_j_petrol_2019_106368 elsevier_sciencedirect_doi_10_1016_j_petrol_2019_106368 |
| PublicationCentury | 2000 |
| PublicationDate | December 2019 2019-12-00 |
| PublicationDateYYYYMMDD | 2019-12-01 |
| PublicationDate_xml | – month: 12 year: 2019 text: December 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of petroleum science & engineering |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Wang, Wang, Cheng, Tuo (bib26) 2019; 48 Hou, Zhang, Li, Zhao, Dai (bib11) 2018; 15 Liu, Kong, Zhang, Zhou (bib18) 2014; 11 Zhao, Jia (bib31) 2017; 94 Hochstenbach, Reichel, Rodriguez (bib10) 2015; 273 Zhang, Xiao, Liao (bib30) 2017; 269 Liu, Wu, Wang, Hu (bib16) 2017; 28 Tong, Wang, Li, Yizhong, Shi (bib25) 2004; 45 Zhen, Tommy (bib32) 2017; 401 Bouhamidi, Jbilou, Reichel, Sadok (bib4) 2011; 434 Xie, Wu, Liu, Liu, Xiao (bib28) 2014; 11 Bi, Ma, Wang (bib3) 2019; 117 Chen, Gan, Liu, Yuan, Zhang, Jin (bib5) 2014; 12 Tong, Li, Wang, Jiang (bib24) 2006; 54 Xu (bib29) 1998; 135 Liu, Hu, Wang, Wu, Fan, Hu (bib14) 2018; 29 Park, Reichel, Rodriguez, Yu (bib21) 2018; 343 Wang (bib27) 2011 Gao, Xiao, Xie (bib7) 2014; 38 Javadi, Ghasemzadeh (bib12) 2017; 14 Morigi, Reichel, Sgallari (bib19) 2006; 43 Ge, Fan, Li, Wang, Deng (bib9) 2015; 251 Liu, Hu, Wu, Wang, Xie (bib15) 2017; 17 Ge, Fan, Cao, Wang, Cong, Liu (bib8) 2015; 12 Alhashmi, Blunt, Bijeljic (bib1) 2016; 115 Liu, Ostadhassan (bib17) 2019; 3 Reza, Kenan (bib22) 2016; 70 Ali Ahmadi, Zendehboudi, Lohi, Elkamel, Chatzis (bib2) 2013; 61 Dykes, Reichel (bib6) 2014; 255 Nasehi Tehrani, McEwan, Jin, van Schaik (bib20) 2012; 36 Khaleel, Mohd Sagheer, Baburaj, George (bib13) 2018; 44 Ricci, Pennacchi (bib23) 2011; 25 Ge (10.1016/j.petrol.2019.106368_bib8) 2015; 12 Khaleel (10.1016/j.petrol.2019.106368_bib13) 2018; 44 Xie (10.1016/j.petrol.2019.106368_bib28) 2014; 11 Tong (10.1016/j.petrol.2019.106368_bib24) 2006; 54 Hou (10.1016/j.petrol.2019.106368_bib11) 2018; 15 Liu (10.1016/j.petrol.2019.106368_bib16) 2017; 28 Liu (10.1016/j.petrol.2019.106368_bib15) 2017; 17 Ali Ahmadi (10.1016/j.petrol.2019.106368_bib2) 2013; 61 Liu (10.1016/j.petrol.2019.106368_bib18) 2014; 11 Hochstenbach (10.1016/j.petrol.2019.106368_bib10) 2015; 273 Morigi (10.1016/j.petrol.2019.106368_bib19) 2006; 43 Park (10.1016/j.petrol.2019.106368_bib21) 2018; 343 Javadi (10.1016/j.petrol.2019.106368_bib12) 2017; 14 Liu (10.1016/j.petrol.2019.106368_bib17) 2019; 3 Reza (10.1016/j.petrol.2019.106368_bib22) 2016; 70 Bouhamidi (10.1016/j.petrol.2019.106368_bib4) 2011; 434 Wang (10.1016/j.petrol.2019.106368_bib27) 2011 Zhang (10.1016/j.petrol.2019.106368_bib30) 2017; 269 Gao (10.1016/j.petrol.2019.106368_bib7) 2014; 38 Zhen (10.1016/j.petrol.2019.106368_bib32) 2017; 401 Ge (10.1016/j.petrol.2019.106368_bib9) 2015; 251 Nasehi Tehrani (10.1016/j.petrol.2019.106368_bib20) 2012; 36 Ricci (10.1016/j.petrol.2019.106368_bib23) 2011; 25 Liu (10.1016/j.petrol.2019.106368_bib14) 2018; 29 Zhao (10.1016/j.petrol.2019.106368_bib31) 2017; 94 Tong (10.1016/j.petrol.2019.106368_bib25) 2004; 45 Bi (10.1016/j.petrol.2019.106368_bib3) 2019; 117 Chen (10.1016/j.petrol.2019.106368_bib5) 2014; 12 Alhashmi (10.1016/j.petrol.2019.106368_bib1) 2016; 115 Xu (10.1016/j.petrol.2019.106368_bib29) 1998; 135 Wang (10.1016/j.petrol.2019.106368_bib26) 2019; 48 Dykes (10.1016/j.petrol.2019.106368_bib6) 2014; 255 |
| References_xml | – volume: 38 start-page: 50 year: 2014 end-page: 56 ident: bib7 article-title: Evaluating regular parameter of Phillips method and assessing inversion based on BG theory publication-title: J. China Univ. Pet. – volume: 115 start-page: 215 year: 2016 end-page: 237 ident: bib1 article-title: The impact of pore structure heterogeneity, transport, and reaction conditions on fluid-fluid reaction rate studied on images of pore space publication-title: Transp. Porous Media – volume: 11 year: 2014 ident: bib28 article-title: De-noising methods for NMR logging echo signals based on wavelet transform publication-title: J. Geophys. Eng. – volume: 54 start-page: 623 year: 2006 end-page: 631 ident: bib24 article-title: A time-domain induced-polarization method for estimating permeability in a shaly sand reservoir publication-title: Geophys. Prospect. – volume: 251 start-page: 71 year: 2015 end-page: 83 ident: bib9 article-title: Noise reduction of nuclear magnetic resonance (NMR) transversal data using improved wavelet transform and exponentially weighted moving average(EWMA) publication-title: J. Magn. Reson. – volume: 135 start-page: 505 year: 1998 end-page: 514 ident: bib29 article-title: Truncated SVD methods for discrete linear ill-posed problems publication-title: Geophys. J. Int. – volume: 45 start-page: 31 year: 2004 end-page: 40 ident: bib25 article-title: Estimation of permeability of shaly sand reservoir from induced polarization relaxation time spectra publication-title: J. Pet. Sci. Eng. – volume: 117 start-page: 517 year: 2019 end-page: 536 ident: bib3 article-title: Development of a novel knock characteristic detection method for gasoline engines based on wavelet-denoising and emd decomposition publication-title: Mech. Syst. Signal Process. – volume: 343 start-page: 12 year: 2018 end-page: 25 ident: bib21 article-title: Parameter determination for Tikhonov regularization problems in general form publication-title: J. Comput. Appl. Math. – volume: 48 start-page: 151 year: 2019 end-page: 158 ident: bib26 article-title: Research on noise reduction method of RDTS using D-SVD publication-title: Opt. Fiber Technol. – volume: 434 start-page: 1677 year: 2011 end-page: 1688 ident: bib4 article-title: An extrapolated TSVD method for linear discrete ill-posed problems with Kronecker structure publication-title: Linear Algebra Appl. – volume: 43 start-page: 197 year: 2006 end-page: 213 ident: bib19 article-title: A truncated projected SVD method for linear discrete ill-posed problems publication-title: Numer. Algorithms – volume: 269 start-page: 142 year: 2017 end-page: 147 ident: bib30 article-title: Spatially resolved pore-size - T2 correlations for low-field NMR publication-title: Microporous Mesoporous Mater. – volume: 12 start-page: 12 year: 2014 end-page: 25 ident: bib5 article-title: Random noise attenuation by a selective hybrid approach using f - x empirical mode decomposition publication-title: J. Geophys. Eng. – volume: 28 year: 2017 ident: bib16 article-title: An integrated condition-monitoring method for a milling process using reduced decomposition features publication-title: Meas. Sci. Technol. – volume: 94 start-page: 129 year: 2017 end-page: 147 ident: bib31 article-title: A novel strategy for signal denoising using reweighted SVD and its applications to weak fault feature enhancement of rotating machinery publication-title: Mech. Syst. Signal Process. – volume: 15 start-page: 681 year: 2018 end-page: 695 ident: bib11 article-title: Simultaneous multi-component seismic denoising and reconstruction via k-svd publication-title: J. Geophys. Eng. – volume: 11 year: 2014 ident: bib18 article-title: Permeability estimation using relaxation time spectra derived from differential evolution inversion publication-title: J. Geophys. Eng. – volume: 25 start-page: 821 year: 2011 end-page: 838 ident: bib23 article-title: Diagnostics of gear faults based on EMD and automatic selection of intrinsic mode functions publication-title: Mech. Syst. Signal Process. – volume: 29 year: 2018 ident: bib14 article-title: An integrated multi-sensor fusion-based deep feature learning approach for rotating machinery diagnosis publication-title: Meas. Sci. Technol. – volume: 14 start-page: 1189 year: 2017 end-page: 1202 ident: bib12 article-title: Wavelet analysis for ground penetrating radar applications: a case study publication-title: J. Geophys. Eng. – volume: 3 start-page: 187 year: 2019 end-page: 197 ident: bib17 article-title: The impact of pore size distribution data presentation format on pore structure interpretation of shales publication-title: Adv. Geo-Energy Res. – year: 2011 ident: bib27 article-title: Study on Induced Polarization Potential Decay Spectrum Logging Method and Logging Prototype Development (In Chinese) – volume: 17 year: 2017 ident: bib15 article-title: A hybrid generalized hidden markov model-based condition monitoring approach for rolling bearings publication-title: Sensors – volume: 12 start-page: 283 year: 2015 end-page: 291 ident: bib8 article-title: A hybrid method for geological and geophysical data with multi-peak distributions using the PSO-GRG algorithm publication-title: J. Geophys. Eng. – volume: 36 start-page: 1095 year: 2012 end-page: 1105 ident: bib20 article-title: L1 regularization method in electrical impedance tomography by using the L1-curve (Pareto frontier curve) publication-title: Appl. Math. Model. – volume: 401 start-page: 297 year: 2017 end-page: 310 ident: bib32 article-title: A truncated generalized singular value decomposition algorithm for moving force identification with ill-posed problems publication-title: J. Sound Vib. – volume: 70 start-page: 36 year: 2016 end-page: 50 ident: bib22 article-title: SVD and Hankel matrix based de-noising approach for ball bearing fault detection and its assessment using artificial faults publication-title: Mech. Syst. Signal Process. – volume: 255 start-page: 15 year: 2014 end-page: 27 ident: bib6 article-title: Simplified GSVD computations for the solution of linear discrete ill-posed problems publication-title: J. Comput. Appl. Math. – volume: 61 start-page: 582 year: 2013 end-page: 598 ident: bib2 article-title: Reservoir permeability prediction by neural networks combined with hybrid genetic algorithm and particle swarm optimization publication-title: Geophys. Prospect. – volume: 273 start-page: 132 year: 2015 end-page: 149 ident: bib10 article-title: Regularization parameter determination for discrete ill-posed problems publication-title: J. Comput. Appl. Math. – volume: 44 start-page: 82 year: 2018 end-page: 95 ident: bib13 article-title: Denoising of Rician corrupted 3D magnetic resonance images using tensor-SVD publication-title: Biomed. Signal Process. Control – volume: 117 start-page: 517 year: 2019 ident: 10.1016/j.petrol.2019.106368_bib3 article-title: Development of a novel knock characteristic detection method for gasoline engines based on wavelet-denoising and emd decomposition publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.08.008 – volume: 38 start-page: 50 year: 2014 ident: 10.1016/j.petrol.2019.106368_bib7 article-title: Evaluating regular parameter of Phillips method and assessing inversion based on BG theory publication-title: J. China Univ. Pet. – volume: 11 year: 2014 ident: 10.1016/j.petrol.2019.106368_bib18 article-title: Permeability estimation using relaxation time spectra derived from differential evolution inversion publication-title: J. Geophys. Eng. doi: 10.1088/1742-2132/11/1/015006 – volume: 48 start-page: 151 year: 2019 ident: 10.1016/j.petrol.2019.106368_bib26 article-title: Research on noise reduction method of RDTS using D-SVD publication-title: Opt. Fiber Technol. doi: 10.1016/j.yofte.2018.12.030 – volume: 12 start-page: 283 year: 2015 ident: 10.1016/j.petrol.2019.106368_bib8 article-title: A hybrid method for geological and geophysical data with multi-peak distributions using the PSO-GRG algorithm publication-title: J. Geophys. Eng. doi: 10.1088/1742-2132/12/3/283 – volume: 3 start-page: 187 year: 2019 ident: 10.1016/j.petrol.2019.106368_bib17 article-title: The impact of pore size distribution data presentation format on pore structure interpretation of shales publication-title: Adv. Geo-Energy Res. doi: 10.26804/ager.2019.02.08 – volume: 45 start-page: 31 year: 2004 ident: 10.1016/j.petrol.2019.106368_bib25 article-title: Estimation of permeability of shaly sand reservoir from induced polarization relaxation time spectra publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2004.05.004 – volume: 273 start-page: 132 year: 2015 ident: 10.1016/j.petrol.2019.106368_bib10 article-title: Regularization parameter determination for discrete ill-posed problems publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2014.06.004 – volume: 94 start-page: 129 year: 2017 ident: 10.1016/j.petrol.2019.106368_bib31 article-title: A novel strategy for signal denoising using reweighted SVD and its applications to weak fault feature enhancement of rotating machinery publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2017.02.036 – volume: 255 start-page: 15 year: 2014 ident: 10.1016/j.petrol.2019.106368_bib6 article-title: Simplified GSVD computations for the solution of linear discrete ill-posed problems publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2013.04.019 – volume: 25 start-page: 821 year: 2011 ident: 10.1016/j.petrol.2019.106368_bib23 article-title: Diagnostics of gear faults based on EMD and automatic selection of intrinsic mode functions publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2010.10.002 – volume: 28 year: 2017 ident: 10.1016/j.petrol.2019.106368_bib16 article-title: An integrated condition-monitoring method for a milling process using reduced decomposition features publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/aa6bcc – volume: 43 start-page: 197 year: 2006 ident: 10.1016/j.petrol.2019.106368_bib19 article-title: A truncated projected SVD method for linear discrete ill-posed problems publication-title: Numer. Algorithms doi: 10.1007/s11075-006-9053-3 – year: 2011 ident: 10.1016/j.petrol.2019.106368_bib27 – volume: 15 start-page: 681 year: 2018 ident: 10.1016/j.petrol.2019.106368_bib11 article-title: Simultaneous multi-component seismic denoising and reconstruction via k-svd publication-title: J. Geophys. Eng. – volume: 115 start-page: 215 year: 2016 ident: 10.1016/j.petrol.2019.106368_bib1 article-title: The impact of pore structure heterogeneity, transport, and reaction conditions on fluid-fluid reaction rate studied on images of pore space publication-title: Transp. Porous Media doi: 10.1007/s11242-016-0758-z – volume: 401 start-page: 297 year: 2017 ident: 10.1016/j.petrol.2019.106368_bib32 article-title: A truncated generalized singular value decomposition algorithm for moving force identification with ill-posed problems publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2017.05.004 – volume: 12 start-page: 12 year: 2014 ident: 10.1016/j.petrol.2019.106368_bib5 article-title: Random noise attenuation by a selective hybrid approach using f - x empirical mode decomposition publication-title: J. Geophys. Eng. doi: 10.1088/1742-2132/12/1/12 – volume: 14 start-page: 1189 year: 2017 ident: 10.1016/j.petrol.2019.106368_bib12 article-title: Wavelet analysis for ground penetrating radar applications: a case study publication-title: J. Geophys. Eng. doi: 10.1088/1742-2140/aa7303 – volume: 434 start-page: 1677 year: 2011 ident: 10.1016/j.petrol.2019.106368_bib4 article-title: An extrapolated TSVD method for linear discrete ill-posed problems with Kronecker structure publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2010.06.001 – volume: 54 start-page: 623 year: 2006 ident: 10.1016/j.petrol.2019.106368_bib24 article-title: A time-domain induced-polarization method for estimating permeability in a shaly sand reservoir publication-title: Geophys. Prospect. doi: 10.1111/j.1365-2478.2006.00568.x – volume: 17 year: 2017 ident: 10.1016/j.petrol.2019.106368_bib15 article-title: A hybrid generalized hidden markov model-based condition monitoring approach for rolling bearings publication-title: Sensors – volume: 251 start-page: 71 year: 2015 ident: 10.1016/j.petrol.2019.106368_bib9 article-title: Noise reduction of nuclear magnetic resonance (NMR) transversal data using improved wavelet transform and exponentially weighted moving average(EWMA) publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2014.11.018 – volume: 70 start-page: 36 year: 2016 ident: 10.1016/j.petrol.2019.106368_bib22 article-title: SVD and Hankel matrix based de-noising approach for ball bearing fault detection and its assessment using artificial faults publication-title: Mech. Syst. Signal Process. – volume: 61 start-page: 582 year: 2013 ident: 10.1016/j.petrol.2019.106368_bib2 article-title: Reservoir permeability prediction by neural networks combined with hybrid genetic algorithm and particle swarm optimization publication-title: Geophys. Prospect. doi: 10.1111/j.1365-2478.2012.01080.x – volume: 36 start-page: 1095 year: 2012 ident: 10.1016/j.petrol.2019.106368_bib20 article-title: L1 regularization method in electrical impedance tomography by using the L1-curve (Pareto frontier curve) publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2011.07.055 – volume: 11 year: 2014 ident: 10.1016/j.petrol.2019.106368_bib28 article-title: De-noising methods for NMR logging echo signals based on wavelet transform publication-title: J. Geophys. Eng. doi: 10.1088/1742-2132/11/3/035003 – volume: 44 start-page: 82 year: 2018 ident: 10.1016/j.petrol.2019.106368_bib13 article-title: Denoising of Rician corrupted 3D magnetic resonance images using tensor-SVD publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2018.04.004 – volume: 343 start-page: 12 year: 2018 ident: 10.1016/j.petrol.2019.106368_bib21 article-title: Parameter determination for Tikhonov regularization problems in general form publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2018.04.049 – volume: 135 start-page: 505 year: 1998 ident: 10.1016/j.petrol.2019.106368_bib29 article-title: Truncated SVD methods for discrete linear ill-posed problems publication-title: Geophys. J. Int. doi: 10.1046/j.1365-246X.1998.00652.x – volume: 269 start-page: 142 year: 2017 ident: 10.1016/j.petrol.2019.106368_bib30 article-title: Spatially resolved pore-size - T2 correlations for low-field NMR publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2017.05.024 – volume: 29 year: 2018 ident: 10.1016/j.petrol.2019.106368_bib14 article-title: An integrated multi-sensor fusion-based deep feature learning approach for rotating machinery diagnosis publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/aaaca6 |
| SSID | ssj0003637 |
| Score | 1.887385 |
| Snippet | Reservoir porosity obtained from time-domain induced polarization (TDIP) well logging plays a vital role in estimating the hydraulic properties and obtain the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 106368 |
| SubjectTerms | Backus-Gilbert theory Migration Hankel matrix Pore size distribution Time-domain induced polarization TSVD-GCV |
| Title | An improved TSVD-GCV inversion algorithm of pore size distribution in time-domain induced polarization using migration Hankel matrix |
| URI | https://dx.doi.org/10.1016/j.petrol.2019.106368 |
| Volume | 183 |
| WOSCitedRecordID | wos000501604200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-4715 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003637 issn: 0920-4105 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeqDiQ4IBggxgD5wC0KSuI0sY_VGBs7TEgrU8Ulsh1nzWiSqmuqbmf-GP5MnuN8aR2fEhcrtey6ye8X-73X94HQWy4UU0wI22dc2n4IDXdBWQmUCFRAqfAdXhWbCE9P6XTKPg0G35tYmPU8zHO62bDFf4Ua-gBsHTr7F3C3XwodcA2gQwuwQ_tHwI9zHfq4LNYgSk7Ozt_bRwfnVpqvjWHM4vOLYpmuZlnl61wslXWV3ij9R01b-6ryfUwzZcdFxlP9MS61m8BCq8F13KZVVkaGLL2oKXTM869qbmU65f_mJyIvSOjam7HMrCaaSBNPdSkROzN2URpfj1QU27btWVl0dKw7v8y6oLZ25AmQ_7rsWzZcdstLZDvkxtgtQd_VvqnmADO7Ng0J8MzEhXbbOrnziDDWist35pa1cx-DzoCY6j63km-f6eX0aiDn6sT8cNjveOGI0SHaGX88nJ60pz4JTH7W5uc1YZqVL-H2WneLQT3RZvIYPaoBwmPDpSdooPJd9LCXqXIX3T-qKkBfP0Xfxjlu-IUbfuGWX7jlFy4SrPmFNb9wn18wGvf4hWt-4T6_cMUv3PILG35hw69n6POHw8nBsV2X8rAl6KQre0SEcJKE6QposAeEI85DuCCecIWfMN8LY-nIWHoedQMBWgynjuQJcV0JMyQhz9EwL3L1AmFdryAJY09KwvxR4tDYEaAVSC-QFMTPeA-R5slGss5zr8utzKPGofEyMnhEGo_I4LGH7HbWwuR5-c34sAEtql8ZI4NGwLNfznz5zzP30YPuNXmFhqtlqV6je3K9Sq-Wb2pC_gBhusCC |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+TSVD-GCV+inversion+algorithm+of+pore+size+distribution+in+time-domain+induced+polarization+using+migration+Hankel+matrix&rft.jtitle=Journal+of+petroleum+science+%26+engineering&rft.au=Zhou%2C+Kaibo&rft.au=Zhang%2C+Shuo&rft.au=Huang%2C+Zhen&rft.au=Zhang%2C+Jianyu&rft.date=2019-12-01&rft.pub=Elsevier+B.V&rft.issn=0920-4105&rft.eissn=1873-4715&rft.volume=183&rft_id=info:doi/10.1016%2Fj.petrol.2019.106368&rft.externalDocID=S0920410519307892 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4105&client=summon |