A survey of fitness landscape analysis for optimization

•FLA has attracted attention of researchers for its research significance and application.•This paper attempts to give an overview of fitness landscape analysis for optimization.•Future research works are discussed and given in four aspects. Over past few decades, as a powerful analytical tool to ch...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) Vol. 503; pp. 129 - 139
Main Authors: Zou, Feng, Chen, Debao, Liu, Hui, Cao, Siyu, Ji, Xuying, Zhang, Yan
Format: Journal Article
Language:English
Published: Elsevier B.V 07.09.2022
Subjects:
ISSN:0925-2312, 1872-8286
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •FLA has attracted attention of researchers for its research significance and application.•This paper attempts to give an overview of fitness landscape analysis for optimization.•Future research works are discussed and given in four aspects. Over past few decades, as a powerful analytical tool to characterize the fitness landscape of a problem, fitness landscape analysis (FLA) has been widely concerned and utilized for all kinds of optimization areas. Since its introduction by Sewell Wright in 1932, FLA has attracted more and more attention of researchers for its research significance and application value such as an intuitive understanding features of complex optimization problems, explaining evolutionary algorithm behavior, assessing performances of algorithms, and guiding selections and/or configures of algorithms. This paper attempts to give an overview of fitness landscape analysis and its typical application for optimization so far. We hope that this survey can help to understand features of complex optimization problems in depth and thus to improve the certain algorithm performance of for a given optimization problem.
AbstractList •FLA has attracted attention of researchers for its research significance and application.•This paper attempts to give an overview of fitness landscape analysis for optimization.•Future research works are discussed and given in four aspects. Over past few decades, as a powerful analytical tool to characterize the fitness landscape of a problem, fitness landscape analysis (FLA) has been widely concerned and utilized for all kinds of optimization areas. Since its introduction by Sewell Wright in 1932, FLA has attracted more and more attention of researchers for its research significance and application value such as an intuitive understanding features of complex optimization problems, explaining evolutionary algorithm behavior, assessing performances of algorithms, and guiding selections and/or configures of algorithms. This paper attempts to give an overview of fitness landscape analysis and its typical application for optimization so far. We hope that this survey can help to understand features of complex optimization problems in depth and thus to improve the certain algorithm performance of for a given optimization problem.
Author Zou, Feng
Chen, Debao
Cao, Siyu
Ji, Xuying
Liu, Hui
Zhang, Yan
Author_xml – sequence: 1
  givenname: Feng
  orcidid: 0000-0001-5373-8779
  surname: Zou
  fullname: Zou, Feng
  organization: School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China
– sequence: 2
  givenname: Debao
  surname: Chen
  fullname: Chen, Debao
  email: chendb_8@163.com
  organization: School of Computer Science and Technology, Huaibei Normal University, Huaibei 235000, China
– sequence: 3
  givenname: Hui
  surname: Liu
  fullname: Liu, Hui
  organization: School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China
– sequence: 4
  givenname: Siyu
  surname: Cao
  fullname: Cao, Siyu
  organization: School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China
– sequence: 5
  givenname: Xuying
  surname: Ji
  fullname: Ji, Xuying
  organization: School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China
– sequence: 6
  givenname: Yan
  surname: Zhang
  fullname: Zhang, Yan
  organization: School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China
BookMark eNqFj8tKAzEYhYNUsK2-gYt5gRn_XCYzdSGU4g0KbnQdMskfSJkmJZkW6tM7ta5c6OqczXc434xMQgxIyC2FigKVd5sq4N7EbcWAsQpkBa24IFPaNqxsWSsnZAoLVpeMU3ZFZjlvAGhD2WJKmmWR9-mAxyK6wvkhYM5Fr4PNRu-w0EH3x-xz4WIq4m7wW_-pBx_DNbl0us9485Nz8vH0-L56Kddvz6-r5bo0HORQ1nxhgdGuk0LYZuxgatcIRzvNkFszNgCOVrC6lbxjAlujO2k5Cj0etHxOxHnXpJhzQqd2yW91OioK6iSvNuosr07yCqQa5Ufs_hdm_PB9fEja9__BD2cYR7GDx6Sy8RgMWp_QDMpG__fAF9OIers
CitedBy_id crossref_primary_10_1016_j_eswa_2025_126403
crossref_primary_10_1016_j_ins_2022_08_001
crossref_primary_10_1016_j_ins_2023_03_101
crossref_primary_10_1016_j_eswa_2025_129514
crossref_primary_10_1145_3748518
crossref_primary_10_3390_sym17030435
crossref_primary_10_3390_math13101580
crossref_primary_10_1016_j_asoc_2023_110473
crossref_primary_10_1007_s10462_023_10470_y
crossref_primary_10_1016_j_ins_2024_121134
crossref_primary_10_1016_j_swevo_2025_101879
crossref_primary_10_3390_data9120142
crossref_primary_10_1016_j_asoc_2022_109793
crossref_primary_10_1016_j_asoc_2022_109751
crossref_primary_10_1016_j_swevo_2025_102002
crossref_primary_10_1016_j_eswa_2024_125863
crossref_primary_10_3390_a15120478
crossref_primary_10_1007_s40747_023_01005_7
crossref_primary_10_1016_j_neucom_2023_126549
crossref_primary_10_3390_info16030190
crossref_primary_10_1038_s41534_024_00819_8
crossref_primary_10_1016_j_swevo_2023_101448
crossref_primary_10_3390_a18080520
crossref_primary_10_1016_j_swevo_2024_101669
crossref_primary_10_3390_modelling6010009
crossref_primary_10_1016_j_asoc_2024_111952
crossref_primary_10_1016_j_asoc_2024_112128
crossref_primary_10_1016_j_segan_2024_101367
crossref_primary_10_1002_wics_70028
crossref_primary_10_1007_s00500_023_08402_7
crossref_primary_10_3390_app15105732
crossref_primary_10_1007_s42235_024_00505_7
crossref_primary_10_1162_artl_a_00448
crossref_primary_10_1016_j_swevo_2025_102038
Cites_doi 10.1016/j.neucom.2013.01.009
10.1145/1389095.1389204
10.1109/TEVC.2017.2744324
10.1016/j.neucom.2018.06.076
10.1007/978-3-319-01128-8_6
10.1007/s11227-020-03482-w
10.1007/s00500-016-2474-6
10.1007/s00500-019-04363-y
10.1109/TEVC.2018.2843566
10.1109/4235.585893
10.1111/j.1558-5646.1976.tb00911.x
10.1145/2001576.2001681
10.1109/TNN.2008.2004370
10.1016/j.cam.2005.07.016
10.1109/MCI.2006.329691
10.1007/BF01238256
10.3390/pr8111363
10.1016/j.future.2018.06.054
10.1016/j.asoc.2015.01.047
10.1016/j.asoc.2020.106693
10.1007/s10462-012-9328-0
10.1016/j.ins.2007.09.008
10.15439/2017F470
10.1016/j.ins.2020.11.023
10.1007/978-3-319-99259-4_19
10.1109/TEVC.2004.831258
10.1007/BF01531277
10.1007/s00521-007-0135-5
10.1086/283642
10.1023/A:1008202821328
10.1016/j.eswa.2020.114211
10.1016/j.ins.2021.01.021
10.1007/11844297_1
10.1016/j.patcog.2008.05.014
10.1016/j.neucom.2006.05.003
10.1007/s10732-010-9155-x
10.1016/j.swevo.2021.100952
10.1007/978-3-540-71605-1_22
10.1007/978-3-030-12598-1_11
10.1016/j.neucom.2005.06.008
10.1162/evco_a_00237
10.1145/2576768.2598320
10.1109/ACCESS.2019.2896355
10.1016/j.ins.2018.09.019
10.1007/s00500-020-05250-7
10.1016/j.ejor.2004.08.024
10.1016/j.neucom.2006.10.026
10.1016/j.ins.2017.08.028
10.1002/cplx.20092
10.1109/TEVC.2014.2302006
10.1016/j.neucom.2009.11.036
10.1109/CEC.2014.6900272
10.1016/j.asoc.2016.11.041
10.1613/jair.445
10.1142/S0218001499000604
10.1007/978-3-319-16549-3_72
10.1016/j.ins.2014.05.053
10.1016/j.neunet.2019.01.001
10.1007/978-3-319-54157-0_23
10.3390/e24010053
10.1016/j.ins.2022.05.106
10.1162/evco_a_00242
10.1016/j.procs.2022.01.299
10.1007/978-3-642-30665-5_5
10.1145/2739480.2754642
10.1016/j.neucom.2005.06.010
10.1007/978-3-319-13563-2_39
10.1007/s00500-018-3448-7
10.1007/978-3-319-07494-8_9
10.1007/s00500-016-2126-x
10.1007/s00521-009-0274-y
10.1016/j.tcs.2019.10.033
10.1016/j.neucom.2019.12.141
10.1007/978-3-030-25147-5_7
10.1140/epjs/s11734-021-00206-w
10.1109/TEVC.2010.2046175
10.1007/s11042-020-10139-6
10.1016/j.eswa.2011.09.076
10.1109/TSMCB.2008.915539
10.1145/3377930.3390183
10.1007/BF00202749
10.1016/j.physa.2015.12.062
10.1145/1143997.1144085
10.1162/1063656054088549
10.1504/IJAHUC.2017.083479
10.1016/j.ymssp.2012.01.004
10.1142/S0218001404003824
10.1016/j.eswa.2019.113033
10.1016/j.ins.2020.03.035
10.1016/j.procs.2019.02.012
10.1016/j.apm.2006.04.014
10.1016/j.swevo.2016.01.004
10.1016/j.ejor.2014.06.009
10.1016/j.biosystems.2017.02.002
10.1371/journal.pone.0165803
10.1162/106365602317301754
10.1016/j.neucom.2008.09.030
10.1016/j.asoc.2020.106138
10.1007/s10732-017-9334-0
10.1007/s00500-017-2833-y
10.1162/1063656041774956
10.1145/1143997.1144091
10.1016/j.swevo.2019.100571
10.1109/4235.887234
10.1515/JISYS.1999.9.1.1
10.1016/j.cad.2010.12.015
10.1103/PhysRevE.78.066114
10.1109/CEC.2003.1299585
10.1016/j.swevo.2016.12.005
10.1016/j.asoc.2007.05.007
10.1162/106365600568095
10.1162/evco.1996.4.4.335
10.1145/1143997.1144152
10.1007/s12065-015-0132-z
10.1145/2001576.2001690
10.1016/j.physd.2007.08.016
10.1162/EVCO_a_00100
10.1016/j.cor.2005.11.022
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2022.06.084
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 139
ExternalDocumentID 10_1016_j_neucom_2022_06_084
S0925231222008153
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-539d021bb644d79d00c5f74f1ba2e3dc4f1003ed425863b24e8cab6d3e4a712d3
ISICitedReferencesCount 49
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000843491800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Tue Nov 18 22:35:27 EST 2025
Sat Nov 29 07:13:34 EST 2025
Fri Feb 23 02:37:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Landscape analysis
Algorithm selection
Survey
Heuristic algorithms
Fitness landscape
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-539d021bb644d79d00c5f74f1ba2e3dc4f1003ed425863b24e8cab6d3e4a712d3
ORCID 0000-0001-5373-8779
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_neucom_2022_06_084
crossref_citationtrail_10_1016_j_neucom_2022_06_084
elsevier_sciencedirect_doi_10_1016_j_neucom_2022_06_084
PublicationCentury 2000
PublicationDate 2022-09-07
PublicationDateYYYYMMDD 2022-09-07
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-07
  day: 07
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References P. Merz, Memetic algorithms for combinatorial optimization problems: Fitness Landscapes and effective search strategies. Ph. D. thesis, Department of Electrical Engineering and Computer Science, University of Siegen, 2000.
Malago, Matteucci, Pistone (b0415) 2013
Das, Mullick, Suganthan (b0120) 2016; 27
Huang, Du (b0035) 2008; 19
Ochoa, Veerapen, Whitley (b0485) 2015
Jones, Forrest (b0350) 1995; 95
Tantar, Dhaenens, Figueira (b0785) 2008
Han, Huang (b0060) 2006; 174
Richter (b0565) 2008; 237
Takahama, Sakai (b0680) 2012
Hu, Jia, Huang (b0015) 2010; 73
Lu (b0455) 2014
Wang, Tan, Liu (b0110) 2018; 22
S. Picek, D. Jakobovic, From fitness landscape to crossover operator choice. Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation. 2014: 815–822.
Stadler (b0335) 1995
Škvorc, Eftimov, Korošec (b0555) 2020; 90
Zhao, Xue, Yang (b0540) 2019; 7
S. Verel, A. Liefooghe, C. Dhaenens, Set-based multiobjective fitness landscapes: a preliminary study. Proceedings of the 13th annual conference on Genetic and evolutionary computation. 2011: 769–776.
Kerschke, Trautmann (b0805) 2016
Tomassini, Vanneschi, Collard (b0360) 2005; 13
Sallam, Elsayed, Sarker (b0625) 2017; 418
Huang, Xu, Li (b0765) 2019; 50
Richter (b0860) 2017; 153
P. Kerschke, C. Grimme, An expedition to multimodal multi-objective optimization landscapes. International Conference on Evolutionary Multi-Criterion Optimization. Springer, Cham, 2017: 329–343.
Huang (b0070) 1999; 13
W. Beaudoin, S. Verel, P. Collard, et al. Deceptiveness and neutrality the nd family of fitness landscapes. Proceedings of the 8th annual conference on Genetic and evolutionary computation. 2006: 507–514.
Zheng, Huang, Sun (b0030) 2006; 69
Mu, Wang, Xin (b0655) 2020; 527
Sallam, Elsayed, Sarker (b0700) 2017
Li, Meng, Huang (b0365) 2021; 458
Kennedy, Eberhart (b0105) 1995
Pitzer, Affenzeller, Beham (b0215) 2010; 2010
Katoch, Chauhan, Kumar (b0080) 2021; 80
Du, Huang, Zhang (b0055) 2006; 70
Marmion, Dhaenens, Jourdan (b0525) 2011
Daolio, Verel, Ochoa (b0545) 2010
Cui, Zhang, Li (b0645) 2018; 89
Alyahya, Rowe (b0265) 2016
Kuk, Goncalves, Pozo (b0715) 2019
Spiessens, De Weger, Manderick (b0325) 1991; 1991
Fieldsend, Alyahya (b0290) 2019
M. Lunacek, D. Whitley, The dispersion metric and the CMA evolution strategy. Proceedings of the 8th annual conference on Genetic and evolutionary computation. 2006: 477–484.
Hordijk, Kauffman (b0320) 2005; 10
Neri, Zhou (b0650) 2020
McMenemy, Veerapen, Ochoa (b0495) 2018
Dorigo, Birattari, Stutzle (b0085) 2006; 1
Saini, Saha (b0775) 2021; 230
P. Kerschke, M. Preuss, C. Hernández, et al. Cell mapping techniques for exploratory landscape analysis. EVOLVE-A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation V. Springer, Cham, 2014: 115–131.
Han, Ling, Huang (b0140) 2010; 19
Huang, Li, Tian (b0825) 2020; 96
Werth, Beham, Karder (b0880) 2022; 200
S. Verel, P. Collard, M. Clergue, Where are bottlenecks in NK fitness landscapes?. The 2003 Congress on Evolutionary Computation, 2003. CEC'03. IEEE, 2003, 1: 273–280.
Li, Wang, Huang (b0020) 2009; 73
Altenberg (b0250) 1994; 3
Deb, Goldberg (b0425) 1994; 10
Malan, Engelbrecht (b0235) 2009
Sallam, Elsayed, Sarker (b0630) 2018; 2018
Zhao, Huang, Du (b0155) 2004; 18
Lande (b0395) 1976
Tayarani-N, Prügel-Bennett (b0550) 2015; 8
Vassilev, Fogarty, Miller (b0345) 2000; 8
Consoli, Mei, Minku (b0705) 2016; 20
P. Rohlfshagen, X. Yao, Dynamic combinatorial optimization problems: A fitness landscape analysis. Metaheuristics for Dynamic Optimization. Springer, Berlin, Heidelberg, 2013: 79–97.
Merkuryeva, Bolshakovs (b0180) 2011; 12
Muñoz-Herrera, Suchan (b0520) 2022; 24
P. Kerschke, M. Preuss, S. Wessing, et al. Detecting funnel structures by means of exploratory landscape analysis. Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation. 2015: 265–272.
Wolpert, Macready (b0160) 1997; 1
Li, Huang, Wang (b0025) 2008; 41
Goldberg (b0420) 1987
Czech (b0230) 2008
Aleti, Moser (b0750) 2015
Huang, Ma (b0065) 1999; 9
Paquete, Stützle (b0780) 2006; 169
Karaboga, Basturk (b0095) 2008; 8
Tavares, Pereira, Costa (b0175) 2008; 38
Mohan, Baskaran (b0090) 2012; 39
Zou, Chen, Xu (b0130) 2019; 335
Lu, Zhou, Fei (b0190) 2019; 472
H. Richter, Evolutionary optimization in spatio–temporal fitness landscapes. Parallel Problem Solving from Nature-PPSN IX. Springer, Berlin, Heidelberg, 2006: 1–10.
Li, Li, Chen (b0240) 2019; 23
Sallam, Elsayed, Sarker (b0635) 2020; 162
B. Van Stein, M. Emmerich, Z. Yang, Fitness landscape analysis of nk landscapes and vehicle routing problems by expanded barrier trees. EVOLVE-A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation IV. Springer, Heidelberg, 2013: 75–89.
Verel, Ochoa, Tomassini (b0285) 2010; 15
Lu, Li, Yao (b0450) 2011
Sun, Huang, Zheng (b0150) 2006; 69
H. Richter, Codynamic fitness landscapes of coevolutionary minimal substrates. 2014 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2014: 2692–2699.
Han, Huang (b0040) 2008; 17
P. Kerschke, H. Trautmann, Comprehensive feature-based landscape analysis of continuous and constrained optimization problems using the R-package flacco. Applications in Statistical Computing. Springer, Cham, 2019: 93–123.
Dantas, Pozo (b0725) 2018
G. Ochoa, M. Tomassini, S. Vérel, et al. A study of NK landscapes' basins and local optima networks. Proceedings of the 10th annual conference on Genetic and evolutionary computation. 2008: 555–562.
Tu, Lu (b0075) 2004; 8
Hernando, Mendiburu, Lozano (b0260) 2013; 21
Frank, Cheeseman, Stutz (b0220) 1997; 7
Schiavinotto, Stützle (b0560) 2007; 34
Altenberg (b0355) 1997
Engelbrecht, Bosman, Malan (b0590) 2021
Merz (b0170) 2004; 12
Malan, Engelbrecht (b0600) 2014
Muñoz, Kirley, Halgamuge (b0595) 2012
Mavrovouniotis, Li, Yang (b0830) 2017; 33
Ochoa, Veerapen (b0490) 2018; 24
Agasiev (b0480) 2019; 150
Poursoltan, Neumann (b0745) 2015
Storn, Price (b0115) 1997; 11
Lande (b0400) 1980; 116
Chen, Hu, Hirasawa (b0430) 2008
Reidys, Stadler (b0385) 2001; 117
Lu, Shi, Fei (b0865) 2017; 51
Garza-Fabre, Toscano-Pulido, Rodriguez-Tello (b0580) 2015; 243
Huang, Li, Ouyang (b0640) 2018; 22
Dantas, Pozo (b0730) 2020; 805
Yazdani, Nguyen, Branke (b0870) 2019; 23
S. Wright, The roles of mutation, inbreeding, crossbreeding, and selection in evolution, 1932.
Alyahya, Rowe (b0270) 2014
Zhao, Huang (b0050) 2007; 31
L. Vanneschi, Y. Pirola, P. Collard, A quantitative study of neutrality in GP boolean landscapes Proceedings of the 8th annual conference on Genetic and evolutionary computation. 2006: 895–902.
Kerschke, Hoos, Neumann (b0670) 2019; 27
Yang, Hu, Zhang (b0660) 2021; 25
Xie, Zou, Yang (b0875) 2021; 560
O. Mersmann, B. Bischl, H. Trautmann, et al. Exploratory landscape analysis. Proceedings of the 13th annual conference on Genetic and evolutionary computation. 2011: 829–836.
Tan, Li, Wang (b0195) 2021; 549
Hordijk (b0340) 1996; 4
Czogalla, Fink (b0530) 2012; 18
Lee, Jung, Sadollah (b0585) 2020; 24
P.D. Turney, Increasing evolvability considered as a large-scale trend in evolution. arXiv preprint cs/0212042, 2002.
Tan, Li, Tian (b0735) 2021; 77
Whitley, Rowe (b0300) 2014
Tharwat, Schenck (b0740) 2021; 67
R. Morgan, M. Gallagher, Fitness landscape analysis of circles in a square packing problems. Asia-Pacific Conference on Simulated Evolution and Learning. Springer, Cham, 2014: 455–466.
A Jankovic, C. Doerr, Landscape-aware fixed-budget performance regression and algorithm selection for modular CMA-ES variants. Proceedings of the 2020 Genetic and Evolutionary Computation Conference. 2020: 841–849.
Pitzer, Beham, Affenzeller (b0690) 2013
Merz, Freisleben (b0165) 2000; 4
Horn, Goldberg (b0210) 1995; 3
C. Grimme, P. Kerschke, Trautmann H. Multimodality in Multi-Objective Optimization–More Boon than Bane? International Conference on Evolutionary Multi-Criterion Optimization. Springer, Cham, 2019: 126–138.
Lu, Huang (b0010) 2013; 113
M. Lipsitch, Adaptation on rugged landscapes generated by local interactions of neighboring genes. Proceedings of the Fourth International Conference on Genetic Algorithms, San Mateo, CA. 1991.
Smith, Husbands, O'Shea (b0460) 2002; 10
Tomassini (b0390) 2016; 448
Karaboga, Gorkemli, Ozturk (b0100) 2014; 42
Tinós, Yang (b0855) 2014; 282
Liefooghe, Derbel, Verel (b0535) 2017
Takahama, Sakai (b0685) 2012
G. Greenfield, A. Aleti, On Pathological Fitness Landscapes for Constrained Combinatorial Optimization. FedCSIS (Position Papers). 2017: 81–86.
Stadler (b0205) 2002
Hordijk, Kauffman (b0835) 2005; 10
Vanneschi, Clergue, Collard (b0445) 2004
Schäpermeier, Grimme, Kerschke (b0810) 2021
Tomassini, Verel, Ochoa (b0280) 2008; 78
Basseur, Goëffon (b0380) 2015; 30
Du, Huang, Wang (b0145) 2007; 70
Ling, Song, Han (b0135) 2016; 11
Richter (b0185) 2013
Pei, Takagi (b0620) 2017; 25
Vassilev, Fogarty, Miller (b0315) 2003
Wang, Li, Zhang (b0710) 2017; 22
Weinberger (b0225) 1990; 63
Malan, Engelbrecht (b0410) 2013
Liang, Li, Qu (b0675) 2019
Rao, Savsani, Vakharia (b0125) 2011; 43
L. Vanneschi, M. Tomassini, P. Collard, et al. A comprehensive view of fitness landscapes with neutrality and fitness clouds. European Conference on Genetic Programming. Springer, Berlin, Heidelberg, 2007: 241–250.
Li, Fan, Zhang (b0005) 2019; 112
Alyahya, Rowe (b0505) 2019; 27
Worden, Manson (b0615) 2012; 29
Han, Ling, Huang (b0045) 2008; 178
Dantas, Pozo (b0720) 2018
S. Rosenthal, M. Borschbach, A concept for real-valued multi-objective landscape analysis characterizing two biochemical optimization problems. European Conference on the Applications of Evolutionary Computation. Springer, Cham, 2015: 897–909.
Garnier, Kallel (b0255) 2001
A. Vodopija, T. Tušar, B. Filipič, Characterization of Constrained Continuous Multiobjective Optimization Problems: A Feature Space Perspective. arXiv preprint arXiv:2109.04564, 2021.
Muñoz, Kirley, Halgamuge (b0475) 2014; 19
Santana, Mendiburu, Lozano (b0800) 2015
Ventresca, Ombuki-Berman, Runka (b0575) 2013
A. Liefooghe, B. Derbel, S. Verel, et al. On Pareto local optimal solutions networks. International Conference on Parallel Problem Solving from Nature. Springer, Cham, 2018: 232–244.
Najaran (b0665) 202
10.1016/j.neucom.2022.06.084_b0500
Ventresca (10.1016/j.neucom.2022.06.084_b0575) 2013
Schiavinotto (10.1016/j.neucom.2022.06.084_b0560) 2007; 34
Kennedy (10.1016/j.neucom.2022.06.084_b0105) 1995
Li (10.1016/j.neucom.2022.06.084_b0365) 2021; 458
Sallam (10.1016/j.neucom.2022.06.084_b0625) 2017; 418
Vassilev (10.1016/j.neucom.2022.06.084_b0315) 2003
Czech (10.1016/j.neucom.2022.06.084_b0230) 2008
Takahama (10.1016/j.neucom.2022.06.084_b0685) 2012
Lu (10.1016/j.neucom.2022.06.084_b0010) 2013; 113
Horn (10.1016/j.neucom.2022.06.084_b0210) 1995; 3
Smith (10.1016/j.neucom.2022.06.084_b0460) 2002; 10
Engelbrecht (10.1016/j.neucom.2022.06.084_b0590) 2021
Hordijk (10.1016/j.neucom.2022.06.084_b0340) 1996; 4
Huang (10.1016/j.neucom.2022.06.084_b0825) 2020; 96
Yazdani (10.1016/j.neucom.2022.06.084_b0870) 2019; 23
Du (10.1016/j.neucom.2022.06.084_b0055) 2006; 70
Pitzer (10.1016/j.neucom.2022.06.084_b0215) 2010; 2010
Worden (10.1016/j.neucom.2022.06.084_b0615) 2012; 29
10.1016/j.neucom.2022.06.084_b0465
10.1016/j.neucom.2022.06.084_b0610
Sun (10.1016/j.neucom.2022.06.084_b0150) 2006; 69
Aleti (10.1016/j.neucom.2022.06.084_b0750) 2015
Consoli (10.1016/j.neucom.2022.06.084_b0705) 2016; 20
Spiessens (10.1016/j.neucom.2022.06.084_b0325) 1991; 1991
Xie (10.1016/j.neucom.2022.06.084_b0875) 2021; 560
Liang (10.1016/j.neucom.2022.06.084_b0675) 2019
Malan (10.1016/j.neucom.2022.06.084_b0235) 2009
Tharwat (10.1016/j.neucom.2022.06.084_b0740) 2021; 67
Marmion (10.1016/j.neucom.2022.06.084_b0525) 2011
Lu (10.1016/j.neucom.2022.06.084_b0455) 2014
Altenberg (10.1016/j.neucom.2022.06.084_b0250) 1994; 3
Muñoz (10.1016/j.neucom.2022.06.084_b0595) 2012
Zhao (10.1016/j.neucom.2022.06.084_b0155) 2004; 18
10.1016/j.neucom.2022.06.084_b0295
Lu (10.1016/j.neucom.2022.06.084_b0190) 2019; 472
10.1016/j.neucom.2022.06.084_b0330
Hu (10.1016/j.neucom.2022.06.084_b0015) 2010; 73
Weinberger (10.1016/j.neucom.2022.06.084_b0225) 1990; 63
Huang (10.1016/j.neucom.2022.06.084_b0640) 2018; 22
10.1016/j.neucom.2022.06.084_b0695
Fieldsend (10.1016/j.neucom.2022.06.084_b0290) 2019
Pei (10.1016/j.neucom.2022.06.084_b0620) 2017; 25
10.1016/j.neucom.2022.06.084_b0850
10.1016/j.neucom.2022.06.084_b0840
10.1016/j.neucom.2022.06.084_b0845
10.1016/j.neucom.2022.06.084_b0605
Huang (10.1016/j.neucom.2022.06.084_b0070) 1999; 13
Dorigo (10.1016/j.neucom.2022.06.084_b0085) 2006; 1
Tan (10.1016/j.neucom.2022.06.084_b0195) 2021; 549
Malan (10.1016/j.neucom.2022.06.084_b0410) 2013
Tomassini (10.1016/j.neucom.2022.06.084_b0360) 2005; 13
Kovács (10.1016/j.neucom.2022.06.084_b0515) 2020; 8
Czogalla (10.1016/j.neucom.2022.06.084_b0530) 2012; 18
Škvorc (10.1016/j.neucom.2022.06.084_b0555) 2020; 90
Huang (10.1016/j.neucom.2022.06.084_b0065) 1999; 9
Lande (10.1016/j.neucom.2022.06.084_b0400) 1980; 116
Zhao (10.1016/j.neucom.2022.06.084_b0050) 2007; 31
Mu (10.1016/j.neucom.2022.06.084_b0655) 2020; 527
Ling (10.1016/j.neucom.2022.06.084_b0135) 2016; 11
Sallam (10.1016/j.neucom.2022.06.084_b0700) 2017
Dykhuizen (10.1016/j.neucom.2022.06.084_b0405) 1994; 8
10.1016/j.neucom.2022.06.084_b0440
10.1016/j.neucom.2022.06.084_b0200
Muñoz-Herrera (10.1016/j.neucom.2022.06.084_b0520) 2022; 24
Hordijk (10.1016/j.neucom.2022.06.084_b0835) 2005; 10
10.1016/j.neucom.2022.06.084_b0435
Du (10.1016/j.neucom.2022.06.084_b0145) 2007; 70
Sallam (10.1016/j.neucom.2022.06.084_b0630) 2018; 2018
Malago (10.1016/j.neucom.2022.06.084_b0415) 2013
Vanneschi (10.1016/j.neucom.2022.06.084_b0445) 2004
Li (10.1016/j.neucom.2022.06.084_b0240) 2019; 23
Tomassini (10.1016/j.neucom.2022.06.084_b0390) 2016; 448
Watson (10.1016/j.neucom.2022.06.084_b0570) 2010
Dantas (10.1016/j.neucom.2022.06.084_b0730) 2020; 805
Poursoltan (10.1016/j.neucom.2022.06.084_b0745) 2015
Mavrovouniotis (10.1016/j.neucom.2022.06.084_b0830) 2017; 33
Wang (10.1016/j.neucom.2022.06.084_b0110) 2018; 22
Richter (10.1016/j.neucom.2022.06.084_b0860) 2017; 153
Malan (10.1016/j.neucom.2022.06.084_b0600) 2014
Cui (10.1016/j.neucom.2022.06.084_b0645) 2018; 89
Garnier (10.1016/j.neucom.2022.06.084_b0255) 2001
Pitzer (10.1016/j.neucom.2022.06.084_b0690) 2013
Tu (10.1016/j.neucom.2022.06.084_b0075) 2004; 8
Li (10.1016/j.neucom.2022.06.084_b0005) 2019; 112
Altenberg (10.1016/j.neucom.2022.06.084_b0355) 1997
Lu (10.1016/j.neucom.2022.06.084_b0450) 2011
Najaran (10.1016/j.neucom.2022.06.084_b0665) 2021; 168
10.1016/j.neucom.2022.06.084_b0790
10.1016/j.neucom.2022.06.084_b0275
10.1016/j.neucom.2022.06.084_b0310
10.1016/j.neucom.2022.06.084_b0795
10.1016/j.neucom.2022.06.084_b0820
Neri (10.1016/j.neucom.2022.06.084_b0650) 2020
10.1016/j.neucom.2022.06.084_b0305
Lu (10.1016/j.neucom.2022.06.084_b0865) 2017; 51
Kuk (10.1016/j.neucom.2022.06.084_b0715) 2019
Karaboga (10.1016/j.neucom.2022.06.084_b0095) 2008; 8
Garza-Fabre (10.1016/j.neucom.2022.06.084_b0580) 2015; 243
Chen (10.1016/j.neucom.2022.06.084_b0430) 2008
Merz (10.1016/j.neucom.2022.06.084_b0165) 2000; 4
Tavares (10.1016/j.neucom.2022.06.084_b0175) 2008; 38
Basseur (10.1016/j.neucom.2022.06.084_b0380) 2015; 30
Li (10.1016/j.neucom.2022.06.084_b0020) 2009; 73
Huang (10.1016/j.neucom.2022.06.084_b0035) 2008; 19
Vassilev (10.1016/j.neucom.2022.06.084_b0345) 2000; 8
Ochoa (10.1016/j.neucom.2022.06.084_b0485) 2015
Zhao (10.1016/j.neucom.2022.06.084_b0540) 2019; 7
McMenemy (10.1016/j.neucom.2022.06.084_b0495) 2018
Merz (10.1016/j.neucom.2022.06.084_b0170) 2004; 12
Frank (10.1016/j.neucom.2022.06.084_b0220) 1997; 7
Dantas (10.1016/j.neucom.2022.06.084_b0720) 2018
Santana (10.1016/j.neucom.2022.06.084_b0800) 2015
Mohan (10.1016/j.neucom.2022.06.084_b0090) 2012; 39
10.1016/j.neucom.2022.06.084_b0815
Liefooghe (10.1016/j.neucom.2022.06.084_b0535) 2017
Lande (10.1016/j.neucom.2022.06.084_b0395) 1976
Agasiev (10.1016/j.neucom.2022.06.084_b0480) 2019; 150
Tan (10.1016/j.neucom.2022.06.084_b0735) 2021; 77
Deb (10.1016/j.neucom.2022.06.084_b0425) 1994; 10
Das (10.1016/j.neucom.2022.06.084_b0120) 2016; 27
Wolpert (10.1016/j.neucom.2022.06.084_b0160) 1997; 1
10.1016/j.neucom.2022.06.084_b0370
10.1016/j.neucom.2022.06.084_b0770
10.1016/j.neucom.2022.06.084_b0375
Daolio (10.1016/j.neucom.2022.06.084_b0545) 2010
Takahama (10.1016/j.neucom.2022.06.084_b0680) 2012
Tantar (10.1016/j.neucom.2022.06.084_b0785) 2008
Huang (10.1016/j.neucom.2022.06.084_b0765) 2019; 50
Merkuryeva (10.1016/j.neucom.2022.06.084_b0180) 2011; 12
Sallam (10.1016/j.neucom.2022.06.084_b0635) 2020; 162
Richter (10.1016/j.neucom.2022.06.084_b0185) 2013
Han (10.1016/j.neucom.2022.06.084_b0040) 2008; 17
Muñoz (10.1016/j.neucom.2022.06.084_b0475) 2014; 19
Lee (10.1016/j.neucom.2022.06.084_b0585) 2020; 24
Storn (10.1016/j.neucom.2022.06.084_b0115) 1997; 11
Hernando (10.1016/j.neucom.2022.06.084_b0260) 2013; 21
Richter (10.1016/j.neucom.2022.06.084_b0565) 2008; 237
Hordijk (10.1016/j.neucom.2022.06.084_b0320) 2005; 10
Kerschke (10.1016/j.neucom.2022.06.084_b0805) 2016
Saini (10.1016/j.neucom.2022.06.084_b0775) 2021; 230
Schäpermeier (10.1016/j.neucom.2022.06.084_b0810) 2021
Tomassini (10.1016/j.neucom.2022.06.084_b0280) 2008; 78
Tinós (10.1016/j.neucom.2022.06.084_b0855) 2014; 282
Paquete (10.1016/j.neucom.2022.06.084_b0780) 2006; 169
Verel (10.1016/j.neucom.2022.06.084_b0285) 2010; 15
Whitley (10.1016/j.neucom.2022.06.084_b0300) 2014
Rao (10.1016/j.neucom.2022.06.084_b0125) 2011; 43
10.1016/j.neucom.2022.06.084_b0760
10.1016/j.neucom.2022.06.084_b0245
10.1016/j.neucom.2022.06.084_b0510
10.1016/j.neucom.2022.06.084_b0755
Zou (10.1016/j.neucom.2022.06.084_b0130) 2019; 335
Ochoa (10.1016/j.neucom.2022.06.084_b0490) 2018; 24
Wang (10.1016/j.neucom.2022.06.084_b0710) 2017; 22
Han (10.1016/j.neucom.2022.06.084_b0060) 2006; 174
Dantas (10.1016/j.neucom.2022.06.084_b0725) 2018
Han (10.1016/j.neucom.2022.06.084_b0140) 2010; 19
Goldberg (10.1016/j.neucom.2022.06.084_b0420) 1987
Werth (10.1016/j.neucom.2022.06.084_b0880) 2022; 200
Jones (10.1016/j.neucom.2022.06.084_b0350) 1995; 95
Stadler (10.1016/j.neucom.2022.06.084_b0205) 2002
Tayarani-N (10.1016/j.neucom.2022.06.084_b0550) 2015; 8
Han (10.1016/j.neucom.2022.06.084_b0045) 2008; 178
Yang (10.1016/j.neucom.2022.06.084_b0660) 2021; 25
Zheng (10.1016/j.neucom.2022.06.084_b0030) 2006; 69
Kerschke (10.1016/j.neucom.2022.06.084_b0670) 2019; 27
Karaboga (10.1016/j.neucom.2022.06.084_b0100) 2014; 42
Alyahya (10.1016/j.neucom.2022.06.084_b0265) 2016
Li (10.1016/j.neucom.2022.06.084_b0025) 2008; 41
Reidys (10.1016/j.neucom.2022.06.084_b0385) 2001; 117
10.1016/j.neucom.2022.06.084_b0470
Stadler (10.1016/j.neucom.2022.06.084_b0335) 1995
Alyahya (10.1016/j.neucom.2022.06.084_b0505) 2019; 27
Katoch (10.1016/j.neucom.2022.06.084_b0080) 2021; 80
Alyahya (10.1016/j.neucom.2022.06.084_b0270) 2014
References_xml – reference: P. Kerschke, C. Grimme, An expedition to multimodal multi-objective optimization landscapes. International Conference on Evolutionary Multi-Criterion Optimization. Springer, Cham, 2017: 329–343.
– volume: 77
  start-page: 5726
  year: 2021
  end-page: 5756
  ident: b0735
  article-title: A novel mutation strategy selection mechanism for differential evolution based on local fitness landscape
  publication-title: J. Supercomp.
– reference: S. Verel, A. Liefooghe, C. Dhaenens, Set-based multiobjective fitness landscapes: a preliminary study. Proceedings of the 13th annual conference on Genetic and evolutionary computation. 2011: 769–776.
– volume: 7
  start-page: 249
  year: 1997
  end-page: 281
  ident: b0220
  article-title: When gravity fails: Local search topology
  publication-title: J. Artificial Intelligence Res.
– volume: 69
  start-page: 878
  year: 2006
  end-page: 883
  ident: b0030
  article-title: Nonnegative independent component analysis based on minimizing mutual information technique
  publication-title: Neurocomputing
– start-page: 238
  year: 2011
  end-page: 252
  ident: b0525
  article-title: On the neutrality of flowshop scheduling fitness landscapes
  publication-title: International Conference on Learning and Intelligent Optimization
– volume: 17
  start-page: 433
  year: 2008
  end-page: 439
  ident: b0040
  article-title: A new constrained learning algorithm for function approximation by encoding a priori information into feedforward neural networks
  publication-title: Neural Comput. Appl.
– volume: 472
  start-page: 126
  year: 2019
  end-page: 144
  ident: b0190
  article-title: Spatial-domain fitness landscape analysis for combinatorial optimization
  publication-title: Inf. Sci.
– volume: 805
  start-page: 62
  year: 2020
  end-page: 75
  ident: b0730
  article-title: On the use of fitness landscape features in meta-learning based algorithm selection for the quadratic assignment problem
  publication-title: Theoret. Comput. Sci.
– volume: 89
  start-page: 478
  year: 2018
  end-page: 493
  ident: b0645
  article-title: A smart artificial bee colony algorithm with distance-fitness-based neighbor search and its application
  publication-title: Future Gener. Comp. Syst.
– volume: 23
  start-page: 143
  year: 2019
  end-page: 155
  ident: b0870
  article-title: Robust optimization over time by learning problem space characteristics
  publication-title: IEEE Trans. Evol. Comput.
– volume: 458
  start-page: 514
  year: 2021
  end-page: 525
  ident: b0365
  article-title: Fitness distance correlation and mixed search strategy for differential evolution
  publication-title: Neurocomputing
– reference: P. Kerschke, M. Preuss, S. Wessing, et al. Detecting funnel structures by means of exploratory landscape analysis. Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation. 2015: 265–272.
– start-page: 371
  year: 2017
  end-page: 387
  ident: b0700
  article-title: Differential evolution with landscape-based operator selection for solving numerical optimization problem. Intelligent and evolutionary systems
– start-page: 690
  year: 2004
  end-page: 701
  ident: b0445
  article-title: Fitness clouds and problem hardness in genetic programming
  publication-title: Genetic and Evolutionary Computation Conference
– volume: 230
  start-page: 2319
  year: 2021
  end-page: 2335
  ident: b0775
  article-title: Multi-objective optimization techniques: a survey of the state-of-the-art and applications
  publication-title: Eur. Phys. J. Special Topics
– reference: P.D. Turney, Increasing evolvability considered as a large-scale trend in evolution. arXiv preprint cs/0212042, 2002.
– start-page: 1421
  year: 2019
  end-page: 1429
  ident: b0290
  article-title: Visualising the landscape of multi-objective problems using local optima networks
  publication-title: Proceedings of the Genetic and Evolutionary Computation Conference Companion
– year: 2021
  ident: b0590
  article-title: The influence of fitness landscape characteristics on particle swarm optimisers
  publication-title: Nat. Comput.
– volume: 33
  start-page: 1
  year: 2017
  end-page: 17
  ident: b0830
  article-title: A survey of swarm intelligence for dynamic optimization: Algorithms and applications
  publication-title: Swarm Evol. Comput.
– volume: 112
  start-page: 1
  year: 2019
  end-page: 14
  ident: b0005
  article-title: Robust dimensionality reduction via feature space to feature space distance metric learning
  publication-title: Neural Networks
– volume: 243
  start-page: 405
  year: 2015
  end-page: 422
  ident: b0580
  article-title: Multi-objectivization, fitness landscape transformation and search performance: a case of study on the hp model for protein structure prediction
  publication-title: Eur. J. Oper. Res.
– reference: H. Richter, Codynamic fitness landscapes of coevolutionary minimal substrates. 2014 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2014: 2692–2699.
– start-page: 314
  year: 1976
  end-page: 334
  ident: b0395
  article-title: Natural selection and random genetic drift in phenotypic evolution
  publication-title: Evolution
– volume: 42
  start-page: 21
  year: 2014
  end-page: 57
  ident: b0100
  article-title: A comprehensive survey: artificial bee colony (ABC) algorithm and applications
  publication-title: Artif. Intell. Rev.
– volume: 13
  start-page: 213
  year: 2005
  end-page: 239
  ident: b0360
  article-title: A study of fitness distance correlation as a difficulty measure in genetic programming
  publication-title: Evol. Comput.
– volume: 39
  start-page: 4618
  year: 2012
  end-page: 4627
  ident: b0090
  article-title: A survey: Ant Colony Optimization based recent research and implementation on several engineering domain
  publication-title: Expert Syst. Appl.
– volume: 78
  year: 2008
  ident: b0280
  article-title: Complex-network analysis of combinatorial spaces: The N K landscape case
  publication-title: Phys. Rev. E
– volume: 200
  start-page: 1004
  year: 2022
  end-page: 1013
  ident: b0880
  article-title: Fitness landscape analysis on binary dynamic optimization problems
  publication-title: Procedia Comput. Sci.
– reference: R. Morgan, M. Gallagher, Fitness landscape analysis of circles in a square packing problems. Asia-Pacific Conference on Simulated Evolution and Learning. Springer, Cham, 2014: 455–466.
– volume: 29
  start-page: 201
  year: 2012
  end-page: 212
  ident: b0615
  article-title: On the identification of hysteretic systems. Part I: Fitness landscapes and evolutionary identification
  publication-title: Mech. Syst. Sig. Process.
– start-page: 1
  year: 2008
  end-page: 8
  ident: b0230
  article-title: Statistical measures of a fitness landscape for the vehicle routing problem
  publication-title: 2008 IEEE International Symposium on Parallel and Distributed Processing
– volume: 67
  year: 2021
  ident: b0740
  article-title: Population initialization techniques for evolutionary algorithms for single-objective constrained optimization problems: deterministic vs. stochastic techniques
  publication-title: Swarm Evol. Comput.
– volume: 70
  start-page: 896
  year: 2007
  end-page: 903
  ident: b0145
  article-title: Shape recognition based on neural networks trained by differential evolution algorithm
  publication-title: Neurocomputing
– volume: 418
  start-page: 383
  year: 2017
  end-page: 404
  ident: b0625
  article-title: Landscape-based adaptive operator selection mechanism for differential evolution
  publication-title: Inf. Sci.
– volume: 8
  start-page: 1363
  year: 2020
  ident: b0515
  article-title: Fitness landscape analysis and Edge weighting-based optimization of vehicle routing problems
  publication-title: Processes
– start-page: 74
  year: 1987
  end-page: 88
  ident: b0420
  article-title: Simple genetic algorithms and the minimal, deceptive problem
  publication-title: Genetic Algor. Simulated Anneal.
– volume: 31
  start-page: 1271
  year: 2007
  end-page: 1281
  ident: b0050
  article-title: A mended hybrid learning algorithm for radial basis function neural networks to improve generalization capability
  publication-title: Appl. Math. Model.
– reference: G. Ochoa, M. Tomassini, S. Vérel, et al. A study of NK landscapes' basins and local optima networks. Proceedings of the 10th annual conference on Genetic and evolutionary computation. 2008: 555–562.
– volume: 560
  start-page: 307
  year: 2021
  end-page: 330
  ident: b0875
  article-title: A decision variable classification-based cooperative coevolutionary algorithm for dynamic multiobjective optimization
  publication-title: Inf. Sci.
– volume: 3
  start-page: 47
  year: 1994
  end-page: 74
  ident: b0250
  article-title: The evolution of evolvability in genetic programming
  publication-title: Adv. Genetic Programm.
– start-page: 3
  year: 2003
  end-page: 44
  ident: b0315
  article-title: Smoothness, ruggedness and neutrality of fitness landscapes: from theory to application. Advances in evolutionary computing
– volume: 10
  start-page: 41
  year: 2005
  end-page: 49
  ident: b0320
  article-title: Correlation analysis of coupled fitness landscapes
  publication-title: Complexity
– volume: 34
  start-page: 3143
  year: 2007
  end-page: 3153
  ident: b0560
  article-title: A review of metrics on permutations for search landscape analysis
  publication-title: Comput. Oper. Res.
– reference: S. Rosenthal, M. Borschbach, A concept for real-valued multi-objective landscape analysis characterizing two biochemical optimization problems. European Conference on the Applications of Evolutionary Computation. Springer, Cham, 2015: 897–909.
– reference: C. Grimme, P. Kerschke, Trautmann H. Multimodality in Multi-Objective Optimization–More Boon than Bane? International Conference on Evolutionary Multi-Criterion Optimization. Springer, Cham, 2019: 126–138.
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: b0160
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 22
  start-page: 387
  year: 2018
  end-page: 408
  ident: b0110
  article-title: Particle swarm optimization algorithm: an overview
  publication-title: Soft. Comput.
– volume: 8
  start-page: 165
  year: 2015
  end-page: 184
  ident: b0550
  article-title: Quadratic assignment problem: a landscape analysis
  publication-title: Evol. Intel.
– start-page: 343
  year: 2001
  end-page: 370
  ident: b0255
  article-title: How to Detect all Maxima of a Function. Theoretical Aspects of Evolutionary Computing
– start-page: 486
  year: 2013
  end-page: 493
  ident: b0415
  article-title: Natural gradient, fitness modelling and model selection: A unifying perspective
  publication-title: 2013 IEEE Congress on Evolutionary Computation
– volume: 3
  start-page: 243
  year: 1995
  end-page: 269
  ident: b0210
  article-title: Genetic algorithm difficulty and the modality of fitness landscapes
  publication-title: Found. Genetic Algor.
– start-page: 1
  year: 2020
  end-page: 8
  ident: b0650
  article-title: Covariance local search for memetic frameworks: A fitness landscape analysis approach
  publication-title: 2020 IEEE congress on evolutionary computation (CEC)
– volume: 10
  start-page: 385
  year: 1994
  end-page: 408
  ident: b0425
  article-title: Sufficient conditions for deceptive and easy binary functions
  publication-title: Ann. Mathem. Artificial Int.
– volume: 19
  start-page: 74
  year: 2014
  end-page: 87
  ident: b0475
  article-title: Exploratory landscape analysis of continuous space optimization problems using information content
  publication-title: IEEE Trans. Evol. Comput.
– volume: 335
  start-page: 366
  year: 2019
  end-page: 383
  ident: b0130
  article-title: A survey of teaching–learning-based optimization
  publication-title: Neurocomputing
– start-page: 932
  year: 2016
  end-page: 941
  ident: b0265
  article-title: Simple random sampling estimation of the number of local optima
  publication-title: International Conference on Parallel Problem Solving from Nature
– volume: 13
  start-page: 1083
  year: 1999
  end-page: 1101
  ident: b0070
  article-title: Radial basis probabilistic neural networks: model and application
  publication-title: Int. J. Pattern Recognit Artif Intell.
– volume: 8
  start-page: 31
  year: 2000
  end-page: 60
  ident: b0345
  article-title: Information characteristics and the structure of landscapes
  publication-title: Evol. Comput.
– start-page: 5262
  year: 2016
  end-page: 5269
  ident: b0805
  article-title: The R-Package FLACCO for exploratory landscape analysis with applications to multi-objective optimization problems
  publication-title: 2016 IEEE Congress on Evolutionary Computation (CEC)
– volume: 10
  start-page: 41
  year: 2005
  end-page: 49
  ident: b0835
  article-title: Correlation analysis of coupled fitness landscapes
  publication-title: Complexity
– volume: 51
  start-page: 192
  year: 2017
  end-page: 208
  ident: b0865
  article-title: Measures in the time and frequency domains for fitness landscape analysis of dynamic optimization problems
  publication-title: Appl. Soft Comput.
– reference: A. Liefooghe, B. Derbel, S. Verel, et al. On Pareto local optimal solutions networks. International Conference on Parallel Problem Solving from Nature. Springer, Cham, 2018: 232–244.
– volume: 174
  start-page: 34
  year: 2006
  end-page: 50
  ident: b0060
  article-title: Improved constrained learning algorithms by incorporating additional functional constraints into neural networks
  publication-title: Appl. Math. Comput.
– volume: 27
  start-page: 1
  year: 2016
  end-page: 30
  ident: b0120
  article-title: Recent advances in differential evolution–an updated survey
  publication-title: Swarm Evol. Comput.
– start-page: 1
  year: 2014
  end-page: 9
  ident: b0600
  article-title: Particle swarm optimisation failure prediction based on fitness landscape characteristics
  publication-title: 2014 IEEE Symposium on Swarm Intelligence
– volume: 95
  start-page: 184
  year: 1995
  end-page: 192
  ident: b0350
  article-title: Fitness distance correlation as a measure of problem difficulty for genetic algorithms
  publication-title: ICGA
– start-page: 1
  year: 2010
  end-page: 8
  ident: b0545
  article-title: Local optima networks of the quadratic assignment problem
  publication-title: IEEE Congress on Evolutionary Computation
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b0115
  article-title: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
– reference: P. Kerschke, M. Preuss, C. Hernández, et al. Cell mapping techniques for exploratory landscape analysis. EVOLVE-A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation V. Springer, Cham, 2014: 115–131.
– start-page: 63
  year: 2014
  end-page: 84
  ident: b0300
  article-title: Single-Funnel and Multi-funnel Landscapes and Subthreshold-Seeking Behavior. Theory and Principled Methods for the Design of Metaheuristics
– start-page: 422
  year: 2017
  end-page: 437
  ident: b0535
  article-title: A fitness landscape analysis of Pareto local search on bi-objective permutation flowshop scheduling problems
  publication-title: International Conference on Evolutionary Multi-Criterion Optimization
– volume: 1
  start-page: 28
  year: 2006
  end-page: 39
  ident: b0085
  article-title: Ant colony optimization
  publication-title: IEEE Comput. Intell. Mag.
– volume: 24
  start-page: 7383
  year: 2020
  end-page: 7393
  ident: b0585
  article-title: Performance comparison of metaheuristic algorithms using a modified Gaussian fitness landscape generator
  publication-title: Soft. Comput.
– reference: M. Lunacek, D. Whitley, The dispersion metric and the CMA evolution strategy. Proceedings of the 8th annual conference on Genetic and evolutionary computation. 2006: 477–484.
– volume: 1991
  start-page: 143
  year: 1991
  end-page: 150
  ident: b0325
  article-title: The genetic algorithm and the structure of the fitness landscape
  publication-title: ICGA
– volume: 7
  start-page: 21032
  year: 2019
  end-page: 21047
  ident: b0540
  article-title: A fitness landscape analysis for the no-wait flow shop scheduling problem with factorial representation
  publication-title: IEEE Access
– start-page: 1440
  year: 2009
  end-page: 1447
  ident: b0235
  article-title: Quantifying ruggedness of continuous landscapes using entropy
  publication-title: 2009 IEEE Congress on evolutionary computation
– volume: 73
  start-page: 1541
  year: 2010
  end-page: 1549
  ident: b0015
  article-title: Maximum margin criterion with tensor representation
  publication-title: Neurocomputing
– volume: 70
  start-page: 592
  year: 2006
  end-page: 596
  ident: b0055
  article-title: A novel full structure optimization algorithm for radial basis probabilistic neural networks
  publication-title: Neurocomputing
– volume: 80
  start-page: 8091
  year: 2021
  end-page: 8126
  ident: b0080
  article-title: A review on genetic algorithm: past, present, and future
  publication-title: Multimedia Tools Appl.
– start-page: 183
  year: 2002
  end-page: 204
  ident: b0205
  article-title: Fitness Landscapes. Biological Evolution and Statistical Physics
– start-page: 284
  year: 2019
  end-page: 298
  ident: b0675
  article-title: Mutation strategy selection based on fitness landscape analysis: a preliminary study
  publication-title: International Conference on Bio-Inspired Computing: Theories and Applications
– volume: 27
  start-page: 47
  year: 2019
  end-page: 73
  ident: b0505
  article-title: Landscape analysis of a class of NP-hard binary packing problems
  publication-title: Evol. Comput.
– start-page: 599
  year: 2010
  end-page: 623
  ident: b0570
  article-title: An introduction to fitness landscape analysis and cost models for local search
  publication-title: Handbook of metaheuristics
– reference: M. Lipsitch, Adaptation on rugged landscapes generated by local interactions of neighboring genes. Proceedings of the Fourth International Conference on Genetic Algorithms, San Mateo, CA. 1991.
– volume: 19
  start-page: 255
  year: 2010
  end-page: 261
  ident: b0140
  article-title: An improved approximation approach incorporating particle swarm optimization and a priori information into neural networks
  publication-title: Neural Comput. Appl.
– volume: 41
  start-page: 3287
  year: 2008
  end-page: 3294
  ident: b0025
  article-title: Feature extraction using constrained maximum variance mapping
  publication-title: Pattern Recogn.
– volume: 27
  start-page: 3
  year: 2019
  end-page: 45
  ident: b0670
  article-title: Automated algorithm selection: survey and perspectives
  publication-title: Evol. Comput.
– volume: 22
  start-page: 550
  year: 2017
  end-page: 563
  ident: b0710
  article-title: Population evolvability: dynamic fitness landscape analysis for population-based metaheuristic algorithms
  publication-title: IEEE Trans. Evol. Comput.
– volume: 11
  start-page: e0165803
  year: 2016
  ident: b0135
  article-title: An improved ensemble of random vector functional link networks based on particle swarm optimization with double optimization strategy
  publication-title: PLoS ONE
– volume: 527
  start-page: 253
  year: 2020
  end-page: 278
  ident: b0655
  article-title: Quantum-inspired algorithm with fitness landscape approximation in reduced dimensional spaces for numerical function optimization
  publication-title: Inf. Sci.
– volume: 18
  start-page: 1473
  year: 2004
  end-page: 1500
  ident: b0155
  article-title: Genetic optimization of radial basis probabilistic neural networks
  publication-title: Int. J. Pattern Recognit Artif Intell.
– volume: 9
  start-page: 1
  year: 1999
  end-page: 38
  ident: b0065
  article-title: Linear and nonlinear feedforward neural network classifiers: A comprehensive understanding
  publication-title: J. Intellig. Syst.
– reference: S. Picek, D. Jakobovic, From fitness landscape to crossover operator choice. Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation. 2014: 815–822.
– volume: 12
  start-page: 38
  year: 2011
  end-page: 45
  ident: b0180
  article-title: Benchmark fitness landscape analysis
  publication-title: Int. J. Simul. Syst. Sci. Technol.
– start-page: 78
  year: 1995
  end-page: 163
  ident: b0335
  article-title: Towards a Theory of Landscapes. Complex Systems and Binary Networks
– volume: 4
  start-page: 335
  year: 1996
  end-page: 360
  ident: b0340
  article-title: A measure of landscapes
  publication-title: Evol. Comput.
– volume: 113
  start-page: 213
  year: 2013
  end-page: 219
  ident: b0010
  article-title: Optimized projections for sparse representation based classification
  publication-title: Neurocomputing
– start-page: 226
  year: 2012
  end-page: 235
  ident: b0595
  article-title: A meta-learning prediction model of algorithm performance for continuous optimization problems
  publication-title: International Conference on Parallel Problem Solving from Nature
– start-page: 4104
  year: 2008
  end-page: 4111
  ident: b0785
  article-title: A priori landscape analysis in guiding interactive multi-objective metaheuristics
  publication-title: 2008 IEEE Congress on Evolutionary Computation
– volume: 282
  start-page: 214
  year: 2014
  end-page: 236
  ident: b0855
  article-title: Analysis of fitness landscape modifications in evolutionary dynamic optimization
  publication-title: Inf. Sci.
– volume: 549
  start-page: 142
  year: 2021
  end-page: 163
  ident: b0195
  article-title: Differential evolution with adaptive mutation strategy based on fitness landscape analysis
  publication-title: Inf. Sci.
– volume: 24
  start-page: 53
  year: 2022
  ident: b0520
  article-title: Constrained fitness landscape analysis of capacitated vehicle routing problems
  publication-title: Entropy
– volume: 8
  start-page: 456
  year: 2004
  end-page: 470
  ident: b0075
  article-title: A robust stochastic genetic algorithm (StGA) for global numerical optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 108
  year: 2011
  end-page: 117
  ident: b0450
  article-title: Fitness-probability cloud and a measure of problem hardness for evolutionary algorithms
  publication-title: European Conference on Evolutionary Computation in Combinatorial Optimization
– reference: B. Van Stein, M. Emmerich, Z. Yang, Fitness landscape analysis of nk landscapes and vehicle routing problems by expanded barrier trees. EVOLVE-A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation IV. Springer, Heidelberg, 2013: 75–89.
– start-page: 503
  year: 2019
  end-page: 508
  ident: b0715
  article-title: Combining fitness landscape analysis and adaptive operator selection in multi and many-objective optimization
  publication-title: 2019 8th Brazilian Conference on Intelligent Systems (BRACIS)
– volume: 150
  start-page: 53
  year: 2019
  end-page: 60
  ident: b0480
  article-title: Generalized information content based on variability map for exploratory landscape analysis of global optimization problems
  publication-title: Procedia Comput. Sci.
– start-page: 1
  year: 2015
  end-page: 13
  ident: b0485
  article-title: The multi-funnel structure of TSP fitness landscapes: A visual exploration
  publication-title: International Conference on Artificial Evolution (Evolution Artificielle)
– start-page: 1
  year: 2012
  end-page: 8
  ident: b0680
  article-title: Differential evolution with dynamic strategy and parameter selection by detecting landscape modality
  publication-title: 2012 IEEE Congress on Evolutionary Computation
– volume: 169
  start-page: 943
  year: 2006
  end-page: 959
  ident: b0780
  article-title: A study of stochastic local search algorithms for the biobjective QAP with correlated flow matrices
  publication-title: Eur. J. Oper. Res.
– reference: L. Vanneschi, M. Tomassini, P. Collard, et al. A comprehensive view of fitness landscapes with neutrality and fitness clouds. European Conference on Genetic Programming. Springer, Berlin, Heidelberg, 2007: 241–250.
– volume: 19
  start-page: 2099
  year: 2008
  end-page: 2115
  ident: b0035
  article-title: A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks
  publication-title: IEEE Trans. Neural Networks
– reference: H. Richter, Evolutionary optimization in spatio–temporal fitness landscapes. Parallel Problem Solving from Nature-PPSN IX. Springer, Berlin, Heidelberg, 2006: 1–10.
– volume: 43
  start-page: 303
  year: 2011
  end-page: 315
  ident: b0125
  article-title: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems
  publication-title: Comput. Aided Des.
– start-page: 1
  year: 2018
  end-page: 8
  ident: b0725
  article-title: A meta-learning algorithm selection approach for the quadratic assignment problem
  publication-title: 2018 IEEE Congress on Evolutionary Computation (CEC)
– reference: P. Rohlfshagen, X. Yao, Dynamic combinatorial optimization problems: A fitness landscape analysis. Metaheuristics for Dynamic Optimization. Springer, Berlin, Heidelberg, 2013: 79–97.
– volume: 168
  year: 2021
  ident: b0665
  article-title: How to exploit fitness landscape properties of timetabling problem: A new operator for quantum evolutionary algorithm
  publication-title: Expert Syst. Appl.
– volume: 96
  year: 2020
  ident: b0825
  article-title: A fitness landscape ruggedness multiobjective differential evolution algorithm with a reinforcement learning strategy
  publication-title: Appl. Soft Comput.
– volume: 38
  start-page: 604
  year: 2008
  end-page: 616
  ident: b0175
  article-title: Multidimensional knapsack problem: a fitness landscape analysis
  publication-title: IEEE Trans. Syst., Man, Cyber., Part B (Cybernetics)
– start-page: 884
  year: 2008
  end-page: 889
  ident: b0430
  article-title: Solving deceptive problems using a genetic algorithm with reserve selection
  publication-title: 2008 IEEE Congress on Evolutionary Computation
– start-page: 1477
  year: 2015
  end-page: 1478
  ident: b0800
  article-title: Multi-objective NM-landscapes
  publication-title: Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation
– volume: 30
  start-page: 688
  year: 2015
  end-page: 704
  ident: b0380
  article-title: Climbing combinatorial fitness landscapes
  publication-title: Appl. Soft Comput.
– volume: 8
  start-page: 687
  year: 2008
  end-page: 697
  ident: b0095
  article-title: On the performance of artificial bee colony (ABC) algorithm
  publication-title: Appl. Soft Comput.
– volume: 24
  start-page: 265
  year: 2018
  end-page: 294
  ident: b0490
  article-title: Mapping the global structure of TSP fitness landscapes
  publication-title: J. Heuristics
– volume: 23
  start-page: 1151
  year: 2019
  end-page: 1163
  ident: b0240
  article-title: Self-feedback differential evolution adapting to fitness landscape characteristics
  publication-title: Soft. Comput.
– volume: 15
  start-page: 783
  year: 2010
  end-page: 797
  ident: b0285
  article-title: Local optima networks of NK landscapes with neutrality
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 29
  year: 2015
  end-page: 50
  ident: b0745
  article-title: Ruggedness Quantifying for Constrained Continuous Fitness Landscapes. Evolutionary Constrained Optimization
– volume: 153
  start-page: 26
  year: 2017
  end-page: 44
  ident: b0860
  article-title: Dynamic landscape models of coevolutionary games
  publication-title: BioSystems
– volume: 25
  start-page: 1751
  year: 2021
  end-page: 1776
  ident: b0660
  article-title: An improved evolution algorithm using population competition genetic algorithm and self-correction BP neural network based on fitness landscape
  publication-title: Soft. Comput.
– reference: A. Vodopija, T. Tušar, B. Filipič, Characterization of Constrained Continuous Multiobjective Optimization Problems: A Feature Space Perspective. arXiv preprint arXiv:2109.04564, 2021.
– reference: S. Verel, P. Collard, M. Clergue, Where are bottlenecks in NK fitness landscapes?. The 2003 Congress on Evolutionary Computation, 2003. CEC'03. IEEE, 2003, 1: 273–280.
– volume: 18
  start-page: 25
  year: 2012
  end-page: 51
  ident: b0530
  article-title: Fitness landscape analysis for the no-wait flow-shop scheduling problem
  publication-title: J. Heuristics
– volume: 69
  start-page: 884
  year: 2006
  end-page: 887
  ident: b0150
  article-title: Optimal selection of time lags for temporal blind source separation based on genetic algorithm
  publication-title: Neurocomputing
– reference: S. Wright, The roles of mutation, inbreeding, crossbreeding, and selection in evolution, 1932.
– year: 2014
  ident: b0455
  article-title: Characterising Fitness Landscapes with Fitness-Probability Cloud and its Applications to Algorithm Configuration
– volume: 8
  start-page: 524
  year: 1994
  end-page: 541
  ident: b0405
  article-title: Predicted fitness changes along an environmental gradient
  publication-title: Evol. Ecol.
– volume: 50
  year: 2019
  ident: b0765
  article-title: Multiobjective differential evolution enhanced with principle component analysis for constrained optimization
  publication-title: Swarm Evol. Comput.
– volume: 22
  start-page: 7773
  year: 2018
  end-page: 7785
  ident: b0640
  article-title: A self-feedback strategy differential evolution with fitness landscape analysis
  publication-title: Soft. Comput.
– reference: G. Greenfield, A. Aleti, On Pathological Fitness Landscapes for Constrained Combinatorial Optimization. FedCSIS (Position Papers). 2017: 81–86.
– start-page: 57
  year: 1997:
  end-page: 64
  ident: b0355
  article-title: Fitness distance correlation analysis: an instructive counterexample
  publication-title: ICGA
– volume: 237
  start-page: 167
  year: 2008
  end-page: 186
  ident: b0565
  article-title: Coupled map lattices as spatio-temporal fitness functions: Landscape measures and evolutionary optimization
  publication-title: Physica D
– volume: 12
  start-page: 303
  year: 2004
  end-page: 325
  ident: b0170
  article-title: Advanced fitness landscape analysis and the performance of memetic algorithms
  publication-title: Evol. Comput.
– reference: O. Mersmann, B. Bischl, H. Trautmann, et al. Exploratory landscape analysis. Proceedings of the 13th annual conference on Genetic and evolutionary computation. 2011: 829–836.
– start-page: 1
  year: 2012
  end-page: 8
  ident: b0685
  article-title: Large scale optimization by differential evolution with landscape modality detection and a diversity archive
  publication-title: 2012 IEEE Congress on Evolutionary Computation
– start-page: 109
  year: 2013
  end-page: 120
  ident: b0690
  article-title: Automatic algorithm selection for the quadratic assignment problem using fitness landscape analysis
  publication-title: European Conference on Evolutionary Computation in Combinatorial Optimization
– volume: 116
  start-page: 463
  year: 1980
  end-page: 479
  ident: b0400
  article-title: Genetic variation and phenotypic evolution during allopatric speciation
  publication-title: Am. Nat.
– start-page: 632
  year: 2021
  end-page: 644
  ident: b0810
  article-title: To boldly show what no one has seen before: A dashboard for visualizing multi-objective landscapes
  publication-title: International Conference on Evolutionary Multi-Criterion Optimization
– start-page: 862
  year: 2014
  end-page: 871
  ident: b0270
  article-title: Local optima and weight distribution in the number partitioning problem
  publication-title: International Conference on Parallel Problem Solving from Nature
– start-page: 963
  year: 2013
  end-page: 970
  ident: b0410
  article-title: Ruggedness, funnels and gradients in fitness landscapes and the effect on PSO performance
  publication-title: 2013 IEEE Congress on Evolutionary Computation
– reference: A Jankovic, C. Doerr, Landscape-aware fixed-budget performance regression and algorithm selection for modular CMA-ES variants. Proceedings of the 2020 Genetic and Evolutionary Computation Conference. 2020: 841–849.
– volume: 178
  start-page: 907
  year: 2008
  end-page: 919
  ident: b0045
  article-title: Modified constrained learning algorithms incorporating additional functional constraints into neural networks
  publication-title: Inf. Sci.
– start-page: 11
  year: 2015
  end-page: 20
  ident: b0750
  article-title: Fitness landscape characterisation for constrained software architecture optimisation problems
  publication-title: 2015 20th International Conference on Engineering of Complex Computer Systems (ICECCS)
– volume: 73
  start-page: 191
  year: 2009
  end-page: 196
  ident: b0020
  article-title: Supervised feature extraction based on orthogonal discriminant projection
  publication-title: Neurocomputing
– volume: 2010
  start-page: 1
  year: 2010
  end-page: 6
  ident: b0215
  article-title: A closer look down the basins of attraction. UK Workshop on Computational Intelligence (UKCI)
  publication-title: IEEE
– volume: 4
  start-page: 337
  year: 2000
  end-page: 352
  ident: b0165
  article-title: Fitness landscape analysis and memetic algorithms for the quadratic assignment problem
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 214
  year: 2013
  end-page: 225
  ident: b0575
  article-title: Predicting genetic algorithm performance on the vehicle routing problem using information theoretic landscape measures
  publication-title: European Conference on Evolutionary Computation in Combinatorial Optimization
– start-page: 175
  year: 2018
  end-page: 180
  ident: b0720
  article-title: Selecting algorithms for the quadratic assignment problem with a multi-label meta-learning approach
  publication-title: 2018 7th Brazilian Conference on Intelligent Systems (BRACIS)
– reference: W. Beaudoin, S. Verel, P. Collard, et al. Deceptiveness and neutrality the nd family of fitness landscapes. Proceedings of the 8th annual conference on Genetic and evolutionary computation. 2006: 507–514.
– volume: 63
  start-page: 325
  year: 1990
  end-page: 336
  ident: b0225
  article-title: Correlated and uncorrelated fitness landscapes and how to tell the difference
  publication-title: Biol. Cybern.
– start-page: 34
  year: 2018
  end-page: 49
  ident: b0495
  article-title: How perturbation strength shapes the global structure of tsp fitness landscape
  publication-title: European Conference on Evolutionary Computation in Combinatorial Optimization
– volume: 90
  year: 2020
  ident: b0555
  article-title: Understanding the problem space in single-objective numerical optimization using exploratory landscape analysis
  publication-title: Appl. Soft Comput.
– reference: P. Kerschke, H. Trautmann, Comprehensive feature-based landscape analysis of continuous and constrained optimization problems using the R-package flacco. Applications in Statistical Computing. Springer, Cham, 2019: 93–123.
– start-page: 269
  year: 2013
  end-page: 297
  ident: b0185
  article-title: Dynamic fitness landscape analysis. Evolutionary Computation for Dynamic Optimization Problems
– reference: L. Vanneschi, Y. Pirola, P. Collard, A quantitative study of neutrality in GP boolean landscapes Proceedings of the 8th annual conference on Genetic and evolutionary computation. 2006: 895–902.
– volume: 10
  start-page: 1
  year: 2002
  end-page: 34
  ident: b0460
  article-title: Fitness landscapes and evolvability
  publication-title: Evol. Comput.
– reference: P. Merz, Memetic algorithms for combinatorial optimization problems: Fitness Landscapes and effective search strategies. Ph. D. thesis, Department of Electrical Engineering and Computer Science, University of Siegen, 2000.
– volume: 20
  start-page: 3889
  year: 2016
  end-page: 3914
  ident: b0705
  article-title: Dynamic selection of evolutionary operators based on online learning and fitness landscape analysis
  publication-title: Soft. Comput.
– volume: 448
  start-page: 163
  year: 2016
  end-page: 171
  ident: b0390
  article-title: Lévy flights in neutral fitness landscapes
  publication-title: Phys. A
– volume: 25
  start-page: 17
  year: 2017
  end-page: 30
  ident: b0620
  article-title: Local fitness landscape from paired comparison-based memetic search in interactive differential evolution and differential evolution
  publication-title: Int. J. Ad Hoc Ubiquitous Comput.
– volume: 117
  start-page: 321
  year: 2001
  end-page: 350
  ident: b0385
  article-title: Neutrality in fitness landscapes
  publication-title: Appl. Math. Comput.
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 8
  ident: b0630
  article-title: Landscape-based differential evolution for constrained optimization problems. IEEE congress on evolutionary computation (CEC)
  publication-title: IEEE
– volume: 162
  year: 2020
  ident: b0635
  article-title: Landscape-assisted multi-operator differential evolution for solving constrained optimization problems
  publication-title: Expert Syst. Appl.
– volume: 21
  start-page: 625
  year: 2013
  end-page: 658
  ident: b0260
  article-title: An evaluation of methods for estimating the number of local optima in combinatorial optimization problems
  publication-title: Evol. Comput.
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: b0105
  article-title: Particle swarm optimization
  publication-title: Proceedings of IEEE International Conference on Neural Network
– start-page: 632
  year: 2021
  ident: 10.1016/j.neucom.2022.06.084_b0810
  article-title: To boldly show what no one has seen before: A dashboard for visualizing multi-objective landscapes
– volume: 113
  start-page: 213
  year: 2013
  ident: 10.1016/j.neucom.2022.06.084_b0010
  article-title: Optimized projections for sparse representation based classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.01.009
– ident: 10.1016/j.neucom.2022.06.084_b0275
  doi: 10.1145/1389095.1389204
– ident: 10.1016/j.neucom.2022.06.084_b0310
– volume: 22
  start-page: 550
  issue: 4
  year: 2017
  ident: 10.1016/j.neucom.2022.06.084_b0710
  article-title: Population evolvability: dynamic fitness landscape analysis for population-based metaheuristic algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2744324
– start-page: 214
  year: 2013
  ident: 10.1016/j.neucom.2022.06.084_b0575
  article-title: Predicting genetic algorithm performance on the vehicle routing problem using information theoretic landscape measures
– volume: 335
  start-page: 366
  year: 2019
  ident: 10.1016/j.neucom.2022.06.084_b0130
  article-title: A survey of teaching–learning-based optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.06.076
– start-page: 29
  year: 2015
  ident: 10.1016/j.neucom.2022.06.084_b0745
– ident: 10.1016/j.neucom.2022.06.084_b0330
– ident: 10.1016/j.neucom.2022.06.084_b0510
  doi: 10.1007/978-3-319-01128-8_6
– volume: 77
  start-page: 5726
  issue: 6
  year: 2021
  ident: 10.1016/j.neucom.2022.06.084_b0735
  article-title: A novel mutation strategy selection mechanism for differential evolution based on local fitness landscape
  publication-title: J. Supercomp.
  doi: 10.1007/s11227-020-03482-w
– start-page: 963
  year: 2013
  ident: 10.1016/j.neucom.2022.06.084_b0410
  article-title: Ruggedness, funnels and gradients in fitness landscapes and the effect on PSO performance
– volume: 22
  start-page: 387
  issue: 2
  year: 2018
  ident: 10.1016/j.neucom.2022.06.084_b0110
  article-title: Particle swarm optimization algorithm: an overview
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-016-2474-6
– volume: 24
  start-page: 7383
  issue: 10
  year: 2020
  ident: 10.1016/j.neucom.2022.06.084_b0585
  article-title: Performance comparison of metaheuristic algorithms using a modified Gaussian fitness landscape generator
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-019-04363-y
– volume: 23
  start-page: 143
  issue: 1
  year: 2019
  ident: 10.1016/j.neucom.2022.06.084_b0870
  article-title: Robust optimization over time by learning problem space characteristics
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2843566
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.neucom.2022.06.084_b0160
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– start-page: 314
  year: 1976
  ident: 10.1016/j.neucom.2022.06.084_b0395
  article-title: Natural selection and random genetic drift in phenotypic evolution
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.1976.tb00911.x
– ident: 10.1016/j.neucom.2022.06.084_b0790
  doi: 10.1145/2001576.2001681
– start-page: 57
  year: 1997
  ident: 10.1016/j.neucom.2022.06.084_b0355
  article-title: Fitness distance correlation analysis: an instructive counterexample
  publication-title: ICGA
– volume: 19
  start-page: 2099
  issue: 12
  year: 2008
  ident: 10.1016/j.neucom.2022.06.084_b0035
  article-title: A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/TNN.2008.2004370
– volume: 174
  start-page: 34
  issue: 1
  year: 2006
  ident: 10.1016/j.neucom.2022.06.084_b0060
  article-title: Improved constrained learning algorithms by incorporating additional functional constraints into neural networks
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.cam.2005.07.016
– volume: 1
  start-page: 28
  issue: 4
  year: 2006
  ident: 10.1016/j.neucom.2022.06.084_b0085
  article-title: Ant colony optimization
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2006.329691
– volume: 8
  start-page: 524
  issue: 5
  year: 1994
  ident: 10.1016/j.neucom.2022.06.084_b0405
  article-title: Predicted fitness changes along an environmental gradient
  publication-title: Evol. Ecol.
  doi: 10.1007/BF01238256
– volume: 2018
  start-page: 1
  year: 2018
  ident: 10.1016/j.neucom.2022.06.084_b0630
  article-title: Landscape-based differential evolution for constrained optimization problems. IEEE congress on evolutionary computation (CEC)
  publication-title: IEEE
– volume: 8
  start-page: 1363
  issue: 11
  year: 2020
  ident: 10.1016/j.neucom.2022.06.084_b0515
  article-title: Fitness landscape analysis and Edge weighting-based optimization of vehicle routing problems
  publication-title: Processes
  doi: 10.3390/pr8111363
– start-page: 5262
  year: 2016
  ident: 10.1016/j.neucom.2022.06.084_b0805
  article-title: The R-Package FLACCO for exploratory landscape analysis with applications to multi-objective optimization problems
– volume: 89
  start-page: 478
  year: 2018
  ident: 10.1016/j.neucom.2022.06.084_b0645
  article-title: A smart artificial bee colony algorithm with distance-fitness-based neighbor search and its application
  publication-title: Future Gener. Comp. Syst.
  doi: 10.1016/j.future.2018.06.054
– start-page: 1
  year: 2008
  ident: 10.1016/j.neucom.2022.06.084_b0230
  article-title: Statistical measures of a fitness landscape for the vehicle routing problem
– volume: 30
  start-page: 688
  year: 2015
  ident: 10.1016/j.neucom.2022.06.084_b0380
  article-title: Climbing combinatorial fitness landscapes
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.01.047
– volume: 96
  year: 2020
  ident: 10.1016/j.neucom.2022.06.084_b0825
  article-title: A fitness landscape ruggedness multiobjective differential evolution algorithm with a reinforcement learning strategy
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106693
– volume: 42
  start-page: 21
  issue: 1
  year: 2014
  ident: 10.1016/j.neucom.2022.06.084_b0100
  article-title: A comprehensive survey: artificial bee colony (ABC) algorithm and applications
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-012-9328-0
– start-page: 1
  year: 2014
  ident: 10.1016/j.neucom.2022.06.084_b0600
  article-title: Particle swarm optimisation failure prediction based on fitness landscape characteristics
– start-page: 109
  year: 2013
  ident: 10.1016/j.neucom.2022.06.084_b0690
  article-title: Automatic algorithm selection for the quadratic assignment problem using fitness landscape analysis
– volume: 178
  start-page: 907
  issue: 3
  year: 2008
  ident: 10.1016/j.neucom.2022.06.084_b0045
  article-title: Modified constrained learning algorithms incorporating additional functional constraints into neural networks
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2007.09.008
– ident: 10.1016/j.neucom.2022.06.084_b0755
  doi: 10.15439/2017F470
– volume: 549
  start-page: 142
  year: 2021
  ident: 10.1016/j.neucom.2022.06.084_b0195
  article-title: Differential evolution with adaptive mutation strategy based on fitness landscape analysis
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.11.023
– ident: 10.1016/j.neucom.2022.06.084_b0605
  doi: 10.1007/978-3-319-99259-4_19
– volume: 8
  start-page: 456
  issue: 5
  year: 2004
  ident: 10.1016/j.neucom.2022.06.084_b0075
  article-title: A robust stochastic genetic algorithm (StGA) for global numerical optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.831258
– volume: 10
  start-page: 385
  issue: 4
  year: 1994
  ident: 10.1016/j.neucom.2022.06.084_b0425
  article-title: Sufficient conditions for deceptive and easy binary functions
  publication-title: Ann. Mathem. Artificial Int.
  doi: 10.1007/BF01531277
– volume: 17
  start-page: 433
  issue: 5–6
  year: 2008
  ident: 10.1016/j.neucom.2022.06.084_b0040
  article-title: A new constrained learning algorithm for function approximation by encoding a priori information into feedforward neural networks
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-007-0135-5
– volume: 116
  start-page: 463
  issue: 4
  year: 1980
  ident: 10.1016/j.neucom.2022.06.084_b0400
  article-title: Genetic variation and phenotypic evolution during allopatric speciation
  publication-title: Am. Nat.
  doi: 10.1086/283642
– volume: 11
  start-page: 341
  year: 1997
  ident: 10.1016/j.neucom.2022.06.084_b0115
  article-title: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008202821328
– year: 2014
  ident: 10.1016/j.neucom.2022.06.084_b0455
– volume: 168
  year: 2021
  ident: 10.1016/j.neucom.2022.06.084_b0665
  article-title: How to exploit fitness landscape properties of timetabling problem: A new operator for quantum evolutionary algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114211
– start-page: 343
  year: 2001
  ident: 10.1016/j.neucom.2022.06.084_b0255
– volume: 560
  start-page: 307
  year: 2021
  ident: 10.1016/j.neucom.2022.06.084_b0875
  article-title: A decision variable classification-based cooperative coevolutionary algorithm for dynamic multiobjective optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.01.021
– ident: 10.1016/j.neucom.2022.06.084_b0840
  doi: 10.1007/11844297_1
– start-page: 78
  year: 1995
  ident: 10.1016/j.neucom.2022.06.084_b0335
– start-page: 1477
  year: 2015
  ident: 10.1016/j.neucom.2022.06.084_b0800
  article-title: Multi-objective NM-landscapes
– volume: 41
  start-page: 3287
  issue: 11
  year: 2008
  ident: 10.1016/j.neucom.2022.06.084_b0025
  article-title: Feature extraction using constrained maximum variance mapping
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2008.05.014
– start-page: 1942
  year: 1995
  ident: 10.1016/j.neucom.2022.06.084_b0105
  article-title: Particle swarm optimization
– volume: 70
  start-page: 592
  issue: 1–3
  year: 2006
  ident: 10.1016/j.neucom.2022.06.084_b0055
  article-title: A novel full structure optimization algorithm for radial basis probabilistic neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2006.05.003
– volume: 18
  start-page: 25
  issue: 1
  year: 2012
  ident: 10.1016/j.neucom.2022.06.084_b0530
  article-title: Fitness landscape analysis for the no-wait flow-shop scheduling problem
  publication-title: J. Heuristics
  doi: 10.1007/s10732-010-9155-x
– volume: 67
  year: 2021
  ident: 10.1016/j.neucom.2022.06.084_b0740
  article-title: Population initialization techniques for evolutionary algorithms for single-objective constrained optimization problems: deterministic vs. stochastic techniques
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2021.100952
– start-page: 422
  year: 2017
  ident: 10.1016/j.neucom.2022.06.084_b0535
  article-title: A fitness landscape analysis of Pareto local search on bi-objective permutation flowshop scheduling problems
– ident: 10.1016/j.neucom.2022.06.084_b0375
  doi: 10.1007/978-3-540-71605-1_22
– ident: 10.1016/j.neucom.2022.06.084_b0820
  doi: 10.1007/978-3-030-12598-1_11
– volume: 1991
  start-page: 143
  year: 1991
  ident: 10.1016/j.neucom.2022.06.084_b0325
  article-title: The genetic algorithm and the structure of the fitness landscape
  publication-title: ICGA
– volume: 69
  start-page: 878
  issue: 7–9
  year: 2006
  ident: 10.1016/j.neucom.2022.06.084_b0030
  article-title: Nonnegative independent component analysis based on minimizing mutual information technique
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.06.008
– volume: 27
  start-page: 47
  issue: 1
  year: 2019
  ident: 10.1016/j.neucom.2022.06.084_b0505
  article-title: Landscape analysis of a class of NP-hard binary packing problems
  publication-title: Evol. Comput.
  doi: 10.1162/evco_a_00237
– ident: 10.1016/j.neucom.2022.06.084_b0695
  doi: 10.1145/2576768.2598320
– volume: 7
  start-page: 21032
  year: 2019
  ident: 10.1016/j.neucom.2022.06.084_b0540
  article-title: A fitness landscape analysis for the no-wait flow shop scheduling problem with factorial representation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2896355
– start-page: 63
  year: 2014
  ident: 10.1016/j.neucom.2022.06.084_b0300
– volume: 472
  start-page: 126
  year: 2019
  ident: 10.1016/j.neucom.2022.06.084_b0190
  article-title: Spatial-domain fitness landscape analysis for combinatorial optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.09.019
– volume: 25
  start-page: 1751
  issue: 3
  year: 2021
  ident: 10.1016/j.neucom.2022.06.084_b0660
  article-title: An improved evolution algorithm using population competition genetic algorithm and self-correction BP neural network based on fitness landscape
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-020-05250-7
– volume: 169
  start-page: 943
  issue: 3
  year: 2006
  ident: 10.1016/j.neucom.2022.06.084_b0780
  article-title: A study of stochastic local search algorithms for the biobjective QAP with correlated flow matrices
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2004.08.024
– start-page: 1
  year: 2015
  ident: 10.1016/j.neucom.2022.06.084_b0485
  article-title: The multi-funnel structure of TSP fitness landscapes: A visual exploration
– volume: 70
  start-page: 896
  issue: 4–6
  year: 2007
  ident: 10.1016/j.neucom.2022.06.084_b0145
  article-title: Shape recognition based on neural networks trained by differential evolution algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2006.10.026
– start-page: 862
  year: 2014
  ident: 10.1016/j.neucom.2022.06.084_b0270
  article-title: Local optima and weight distribution in the number partitioning problem
– start-page: 34
  year: 2018
  ident: 10.1016/j.neucom.2022.06.084_b0495
  article-title: How perturbation strength shapes the global structure of tsp fitness landscape
– volume: 418
  start-page: 383
  year: 2017
  ident: 10.1016/j.neucom.2022.06.084_b0625
  article-title: Landscape-based adaptive operator selection mechanism for differential evolution
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.08.028
– volume: 10
  start-page: 41
  issue: 6
  year: 2005
  ident: 10.1016/j.neucom.2022.06.084_b0835
  article-title: Correlation analysis of coupled fitness landscapes
  publication-title: Complexity
  doi: 10.1002/cplx.20092
– volume: 95
  start-page: 184
  year: 1995
  ident: 10.1016/j.neucom.2022.06.084_b0350
  article-title: Fitness distance correlation as a measure of problem difficulty for genetic algorithms
  publication-title: ICGA
– start-page: 884
  year: 2008
  ident: 10.1016/j.neucom.2022.06.084_b0430
  article-title: Solving deceptive problems using a genetic algorithm with reserve selection
– volume: 19
  start-page: 74
  issue: 1
  year: 2014
  ident: 10.1016/j.neucom.2022.06.084_b0475
  article-title: Exploratory landscape analysis of continuous space optimization problems using information content
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2302006
– volume: 73
  start-page: 1541
  issue: 10–12
  year: 2010
  ident: 10.1016/j.neucom.2022.06.084_b0015
  article-title: Maximum margin criterion with tensor representation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.11.036
– ident: 10.1016/j.neucom.2022.06.084_b0850
  doi: 10.1109/CEC.2014.6900272
– volume: 12
  start-page: 38
  issue: 2
  year: 2011
  ident: 10.1016/j.neucom.2022.06.084_b0180
  article-title: Benchmark fitness landscape analysis
  publication-title: Int. J. Simul. Syst. Sci. Technol.
– volume: 51
  start-page: 192
  year: 2017
  ident: 10.1016/j.neucom.2022.06.084_b0865
  article-title: Measures in the time and frequency domains for fitness landscape analysis of dynamic optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.11.041
– volume: 7
  start-page: 249
  year: 1997
  ident: 10.1016/j.neucom.2022.06.084_b0220
  article-title: When gravity fails: Local search topology
  publication-title: J. Artificial Intelligence Res.
  doi: 10.1613/jair.445
– start-page: 74
  year: 1987
  ident: 10.1016/j.neucom.2022.06.084_b0420
  article-title: Simple genetic algorithms and the minimal, deceptive problem
  publication-title: Genetic Algor. Simulated Anneal.
– start-page: 932
  year: 2016
  ident: 10.1016/j.neucom.2022.06.084_b0265
  article-title: Simple random sampling estimation of the number of local optima
– volume: 13
  start-page: 1083
  issue: 7
  year: 1999
  ident: 10.1016/j.neucom.2022.06.084_b0070
  article-title: Radial basis probabilistic neural networks: model and application
  publication-title: Int. J. Pattern Recognit Artif Intell.
  doi: 10.1142/S0218001499000604
– ident: 10.1016/j.neucom.2022.06.084_b0795
  doi: 10.1007/978-3-319-16549-3_72
– start-page: 690
  year: 2004
  ident: 10.1016/j.neucom.2022.06.084_b0445
  article-title: Fitness clouds and problem hardness in genetic programming
– volume: 282
  start-page: 214
  year: 2014
  ident: 10.1016/j.neucom.2022.06.084_b0855
  article-title: Analysis of fitness landscape modifications in evolutionary dynamic optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.05.053
– start-page: 284
  year: 2019
  ident: 10.1016/j.neucom.2022.06.084_b0675
  article-title: Mutation strategy selection based on fitness landscape analysis: a preliminary study
– start-page: 238
  year: 2011
  ident: 10.1016/j.neucom.2022.06.084_b0525
  article-title: On the neutrality of flowshop scheduling fitness landscapes
– volume: 112
  start-page: 1
  issue: 4
  year: 2019
  ident: 10.1016/j.neucom.2022.06.084_b0005
  article-title: Robust dimensionality reduction via feature space to feature space distance metric learning
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2019.01.001
– ident: 10.1016/j.neucom.2022.06.084_b0815
  doi: 10.1007/978-3-319-54157-0_23
– volume: 3
  start-page: 243
  year: 1995
  ident: 10.1016/j.neucom.2022.06.084_b0210
  article-title: Genetic algorithm difficulty and the modality of fitness landscapes
  publication-title: Found. Genetic Algor.
– volume: 24
  start-page: 53
  issue: 1
  year: 2022
  ident: 10.1016/j.neucom.2022.06.084_b0520
  article-title: Constrained fitness landscape analysis of capacitated vehicle routing problems
  publication-title: Entropy
  doi: 10.3390/e24010053
– ident: 10.1016/j.neucom.2022.06.084_b0770
  doi: 10.1016/j.ins.2022.05.106
– volume: 27
  start-page: 3
  issue: 1
  year: 2019
  ident: 10.1016/j.neucom.2022.06.084_b0670
  article-title: Automated algorithm selection: survey and perspectives
  publication-title: Evol. Comput.
  doi: 10.1162/evco_a_00242
– volume: 200
  start-page: 1004
  year: 2022
  ident: 10.1016/j.neucom.2022.06.084_b0880
  article-title: Fitness landscape analysis on binary dynamic optimization problems
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2022.01.299
– start-page: 269
  year: 2013
  ident: 10.1016/j.neucom.2022.06.084_b0185
– ident: 10.1016/j.neucom.2022.06.084_b0845
  doi: 10.1007/978-3-642-30665-5_5
– ident: 10.1016/j.neucom.2022.06.084_b0305
  doi: 10.1145/2739480.2754642
– volume: 69
  start-page: 884
  issue: 7–9
  year: 2006
  ident: 10.1016/j.neucom.2022.06.084_b0150
  article-title: Optimal selection of time lags for temporal blind source separation based on genetic algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.06.010
– ident: 10.1016/j.neucom.2022.06.084_b0500
  doi: 10.1007/978-3-319-13563-2_39
– volume: 22
  start-page: 7773
  issue: 23
  year: 2018
  ident: 10.1016/j.neucom.2022.06.084_b0640
  article-title: A self-feedback strategy differential evolution with fitness landscape analysis
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-018-3448-7
– volume: 3
  start-page: 47
  year: 1994
  ident: 10.1016/j.neucom.2022.06.084_b0250
  article-title: The evolution of evolvability in genetic programming
  publication-title: Adv. Genetic Programm.
– ident: 10.1016/j.neucom.2022.06.084_b0470
  doi: 10.1007/978-3-319-07494-8_9
– volume: 20
  start-page: 3889
  issue: 10
  year: 2016
  ident: 10.1016/j.neucom.2022.06.084_b0705
  article-title: Dynamic selection of evolutionary operators based on online learning and fitness landscape analysis
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-016-2126-x
– volume: 19
  start-page: 255
  issue: 2
  year: 2010
  ident: 10.1016/j.neucom.2022.06.084_b0140
  article-title: An improved approximation approach incorporating particle swarm optimization and a priori information into neural networks
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-009-0274-y
– volume: 805
  start-page: 62
  year: 2020
  ident: 10.1016/j.neucom.2022.06.084_b0730
  article-title: On the use of fitness landscape features in meta-learning based algorithm selection for the quadratic assignment problem
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2019.10.033
– start-page: 486
  year: 2013
  ident: 10.1016/j.neucom.2022.06.084_b0415
  article-title: Natural gradient, fitness modelling and model selection: A unifying perspective
– ident: 10.1016/j.neucom.2022.06.084_b0200
– volume: 458
  start-page: 514
  year: 2021
  ident: 10.1016/j.neucom.2022.06.084_b0365
  article-title: Fitness distance correlation and mixed search strategy for differential evolution
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.12.141
– volume: 2010
  start-page: 1
  year: 2010
  ident: 10.1016/j.neucom.2022.06.084_b0215
  article-title: A closer look down the basins of attraction. UK Workshop on Computational Intelligence (UKCI)
  publication-title: IEEE
– ident: 10.1016/j.neucom.2022.06.084_b0760
  doi: 10.1007/978-3-030-25147-5_7
– volume: 10
  start-page: 41
  issue: 6
  year: 2005
  ident: 10.1016/j.neucom.2022.06.084_b0320
  article-title: Correlation analysis of coupled fitness landscapes
  publication-title: Complexity
  doi: 10.1002/cplx.20092
– volume: 230
  start-page: 2319
  year: 2021
  ident: 10.1016/j.neucom.2022.06.084_b0775
  article-title: Multi-objective optimization techniques: a survey of the state-of-the-art and applications
  publication-title: Eur. Phys. J. Special Topics
  doi: 10.1140/epjs/s11734-021-00206-w
– volume: 15
  start-page: 783
  issue: 6
  year: 2010
  ident: 10.1016/j.neucom.2022.06.084_b0285
  article-title: Local optima networks of NK landscapes with neutrality
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2046175
– volume: 80
  start-page: 8091
  issue: 5
  year: 2021
  ident: 10.1016/j.neucom.2022.06.084_b0080
  article-title: A review on genetic algorithm: past, present, and future
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-020-10139-6
– volume: 39
  start-page: 4618
  issue: 4
  year: 2012
  ident: 10.1016/j.neucom.2022.06.084_b0090
  article-title: A survey: Ant Colony Optimization based recent research and implementation on several engineering domain
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.09.076
– volume: 38
  start-page: 604
  issue: 3
  year: 2008
  ident: 10.1016/j.neucom.2022.06.084_b0175
  article-title: Multidimensional knapsack problem: a fitness landscape analysis
  publication-title: IEEE Trans. Syst., Man, Cyber., Part B (Cybernetics)
  doi: 10.1109/TSMCB.2008.915539
– ident: 10.1016/j.neucom.2022.06.084_b0610
  doi: 10.1145/3377930.3390183
– start-page: 1
  year: 2018
  ident: 10.1016/j.neucom.2022.06.084_b0725
  article-title: A meta-learning algorithm selection approach for the quadratic assignment problem
– volume: 63
  start-page: 325
  issue: 5
  year: 1990
  ident: 10.1016/j.neucom.2022.06.084_b0225
  article-title: Correlated and uncorrelated fitness landscapes and how to tell the difference
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00202749
– start-page: 3
  year: 2003
  ident: 10.1016/j.neucom.2022.06.084_b0315
– volume: 448
  start-page: 163
  year: 2016
  ident: 10.1016/j.neucom.2022.06.084_b0390
  article-title: Lévy flights in neutral fitness landscapes
  publication-title: Phys. A
  doi: 10.1016/j.physa.2015.12.062
– start-page: 1
  year: 2012
  ident: 10.1016/j.neucom.2022.06.084_b0685
  article-title: Large scale optimization by differential evolution with landscape modality detection and a diversity archive
– start-page: 1421
  year: 2019
  ident: 10.1016/j.neucom.2022.06.084_b0290
  article-title: Visualising the landscape of multi-objective problems using local optima networks
– ident: 10.1016/j.neucom.2022.06.084_b0295
  doi: 10.1145/1143997.1144085
– start-page: 4104
  year: 2008
  ident: 10.1016/j.neucom.2022.06.084_b0785
  article-title: A priori landscape analysis in guiding interactive multi-objective metaheuristics
– volume: 13
  start-page: 213
  issue: 2
  year: 2005
  ident: 10.1016/j.neucom.2022.06.084_b0360
  article-title: A study of fitness distance correlation as a difficulty measure in genetic programming
  publication-title: Evol. Comput.
  doi: 10.1162/1063656054088549
– volume: 25
  start-page: 17
  issue: 1–2
  year: 2017
  ident: 10.1016/j.neucom.2022.06.084_b0620
  article-title: Local fitness landscape from paired comparison-based memetic search in interactive differential evolution and differential evolution
  publication-title: Int. J. Ad Hoc Ubiquitous Comput.
  doi: 10.1504/IJAHUC.2017.083479
– volume: 29
  start-page: 201
  year: 2012
  ident: 10.1016/j.neucom.2022.06.084_b0615
  article-title: On the identification of hysteretic systems. Part I: Fitness landscapes and evolutionary identification
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2012.01.004
– volume: 18
  start-page: 1473
  issue: 8
  year: 2004
  ident: 10.1016/j.neucom.2022.06.084_b0155
  article-title: Genetic optimization of radial basis probabilistic neural networks
  publication-title: Int. J. Pattern Recognit Artif Intell.
  doi: 10.1142/S0218001404003824
– volume: 117
  start-page: 321
  issue: 2–3
  year: 2001
  ident: 10.1016/j.neucom.2022.06.084_b0385
  article-title: Neutrality in fitness landscapes
  publication-title: Appl. Math. Comput.
– volume: 162
  year: 2020
  ident: 10.1016/j.neucom.2022.06.084_b0635
  article-title: Landscape-assisted multi-operator differential evolution for solving constrained optimization problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.113033
– volume: 527
  start-page: 253
  year: 2020
  ident: 10.1016/j.neucom.2022.06.084_b0655
  article-title: Quantum-inspired algorithm with fitness landscape approximation in reduced dimensional spaces for numerical function optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.03.035
– ident: 10.1016/j.neucom.2022.06.084_b0245
– volume: 150
  start-page: 53
  year: 2019
  ident: 10.1016/j.neucom.2022.06.084_b0480
  article-title: Generalized information content based on variability map for exploratory landscape analysis of global optimization problems
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2019.02.012
– start-page: 226
  year: 2012
  ident: 10.1016/j.neucom.2022.06.084_b0595
  article-title: A meta-learning prediction model of algorithm performance for continuous optimization problems
– volume: 31
  start-page: 1271
  issue: 7
  year: 2007
  ident: 10.1016/j.neucom.2022.06.084_b0050
  article-title: A mended hybrid learning algorithm for radial basis function neural networks to improve generalization capability
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2006.04.014
– start-page: 1
  year: 2012
  ident: 10.1016/j.neucom.2022.06.084_b0680
  article-title: Differential evolution with dynamic strategy and parameter selection by detecting landscape modality
– volume: 27
  start-page: 1
  year: 2016
  ident: 10.1016/j.neucom.2022.06.084_b0120
  article-title: Recent advances in differential evolution–an updated survey
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2016.01.004
– volume: 243
  start-page: 405
  issue: 2
  year: 2015
  ident: 10.1016/j.neucom.2022.06.084_b0580
  article-title: Multi-objectivization, fitness landscape transformation and search performance: a case of study on the hp model for protein structure prediction
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2014.06.009
– volume: 153
  start-page: 26
  year: 2017
  ident: 10.1016/j.neucom.2022.06.084_b0860
  article-title: Dynamic landscape models of coevolutionary games
  publication-title: BioSystems
  doi: 10.1016/j.biosystems.2017.02.002
– start-page: 1440
  year: 2009
  ident: 10.1016/j.neucom.2022.06.084_b0235
  article-title: Quantifying ruggedness of continuous landscapes using entropy
– start-page: 1
  year: 2010
  ident: 10.1016/j.neucom.2022.06.084_b0545
  article-title: Local optima networks of the quadratic assignment problem
– volume: 11
  start-page: e0165803
  issue: 11
  year: 2016
  ident: 10.1016/j.neucom.2022.06.084_b0135
  article-title: An improved ensemble of random vector functional link networks based on particle swarm optimization with double optimization strategy
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0165803
– volume: 10
  start-page: 1
  issue: 1
  year: 2002
  ident: 10.1016/j.neucom.2022.06.084_b0460
  article-title: Fitness landscapes and evolvability
  publication-title: Evol. Comput.
  doi: 10.1162/106365602317301754
– volume: 73
  start-page: 191
  issue: 1–3
  year: 2009
  ident: 10.1016/j.neucom.2022.06.084_b0020
  article-title: Supervised feature extraction based on orthogonal discriminant projection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.09.030
– volume: 90
  year: 2020
  ident: 10.1016/j.neucom.2022.06.084_b0555
  article-title: Understanding the problem space in single-objective numerical optimization using exploratory landscape analysis
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106138
– volume: 24
  start-page: 265
  issue: 3
  year: 2018
  ident: 10.1016/j.neucom.2022.06.084_b0490
  article-title: Mapping the global structure of TSP fitness landscapes
  publication-title: J. Heuristics
  doi: 10.1007/s10732-017-9334-0
– volume: 23
  start-page: 1151
  issue: 4
  year: 2019
  ident: 10.1016/j.neucom.2022.06.084_b0240
  article-title: Self-feedback differential evolution adapting to fitness landscape characteristics
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-017-2833-y
– volume: 12
  start-page: 303
  issue: 3
  year: 2004
  ident: 10.1016/j.neucom.2022.06.084_b0170
  article-title: Advanced fitness landscape analysis and the performance of memetic algorithms
  publication-title: Evol. Comput.
  doi: 10.1162/1063656041774956
– start-page: 183
  year: 2002
  ident: 10.1016/j.neucom.2022.06.084_b0205
– ident: 10.1016/j.neucom.2022.06.084_b0435
  doi: 10.1145/1143997.1144091
– volume: 50
  year: 2019
  ident: 10.1016/j.neucom.2022.06.084_b0765
  article-title: Multiobjective differential evolution enhanced with principle component analysis for constrained optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2019.100571
– volume: 4
  start-page: 337
  issue: 4
  year: 2000
  ident: 10.1016/j.neucom.2022.06.084_b0165
  article-title: Fitness landscape analysis and memetic algorithms for the quadratic assignment problem
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.887234
– start-page: 11
  year: 2015
  ident: 10.1016/j.neucom.2022.06.084_b0750
  article-title: Fitness landscape characterisation for constrained software architecture optimisation problems
– year: 2021
  ident: 10.1016/j.neucom.2022.06.084_b0590
  article-title: The influence of fitness landscape characteristics on particle swarm optimisers
  publication-title: Nat. Comput.
– volume: 9
  start-page: 1
  issue: 1
  year: 1999
  ident: 10.1016/j.neucom.2022.06.084_b0065
  article-title: Linear and nonlinear feedforward neural network classifiers: A comprehensive understanding
  publication-title: J. Intellig. Syst.
  doi: 10.1515/JISYS.1999.9.1.1
– volume: 43
  start-page: 303
  issue: 3
  year: 2011
  ident: 10.1016/j.neucom.2022.06.084_b0125
  article-title: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2010.12.015
– volume: 78
  issue: 6
  year: 2008
  ident: 10.1016/j.neucom.2022.06.084_b0280
  article-title: Complex-network analysis of combinatorial spaces: The N K landscape case
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.78.066114
– ident: 10.1016/j.neucom.2022.06.084_b0440
  doi: 10.1109/CEC.2003.1299585
– start-page: 599
  year: 2010
  ident: 10.1016/j.neucom.2022.06.084_b0570
  article-title: An introduction to fitness landscape analysis and cost models for local search
– volume: 33
  start-page: 1
  year: 2017
  ident: 10.1016/j.neucom.2022.06.084_b0830
  article-title: A survey of swarm intelligence for dynamic optimization: Algorithms and applications
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2016.12.005
– start-page: 175
  year: 2018
  ident: 10.1016/j.neucom.2022.06.084_b0720
  article-title: Selecting algorithms for the quadratic assignment problem with a multi-label meta-learning approach
– volume: 8
  start-page: 687
  issue: 1
  year: 2008
  ident: 10.1016/j.neucom.2022.06.084_b0095
  article-title: On the performance of artificial bee colony (ABC) algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2007.05.007
– volume: 8
  start-page: 31
  issue: 1
  year: 2000
  ident: 10.1016/j.neucom.2022.06.084_b0345
  article-title: Information characteristics and the structure of landscapes
  publication-title: Evol. Comput.
  doi: 10.1162/106365600568095
– volume: 4
  start-page: 335
  issue: 4
  year: 1996
  ident: 10.1016/j.neucom.2022.06.084_b0340
  article-title: A measure of landscapes
  publication-title: Evol. Comput.
  doi: 10.1162/evco.1996.4.4.335
– start-page: 1
  year: 2020
  ident: 10.1016/j.neucom.2022.06.084_b0650
  article-title: Covariance local search for memetic frameworks: A fitness landscape analysis approach
– ident: 10.1016/j.neucom.2022.06.084_b0370
  doi: 10.1145/1143997.1144152
– start-page: 108
  year: 2011
  ident: 10.1016/j.neucom.2022.06.084_b0450
  article-title: Fitness-probability cloud and a measure of problem hardness for evolutionary algorithms
– volume: 8
  start-page: 165
  issue: 4
  year: 2015
  ident: 10.1016/j.neucom.2022.06.084_b0550
  article-title: Quadratic assignment problem: a landscape analysis
  publication-title: Evol. Intel.
  doi: 10.1007/s12065-015-0132-z
– ident: 10.1016/j.neucom.2022.06.084_b0465
  doi: 10.1145/2001576.2001690
– volume: 237
  start-page: 167
  issue: 2
  year: 2008
  ident: 10.1016/j.neucom.2022.06.084_b0565
  article-title: Coupled map lattices as spatio-temporal fitness functions: Landscape measures and evolutionary optimization
  publication-title: Physica D
  doi: 10.1016/j.physd.2007.08.016
– volume: 21
  start-page: 625
  issue: 4
  year: 2013
  ident: 10.1016/j.neucom.2022.06.084_b0260
  article-title: An evaluation of methods for estimating the number of local optima in combinatorial optimization problems
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00100
– start-page: 503
  year: 2019
  ident: 10.1016/j.neucom.2022.06.084_b0715
  article-title: Combining fitness landscape analysis and adaptive operator selection in multi and many-objective optimization
– start-page: 371
  year: 2017
  ident: 10.1016/j.neucom.2022.06.084_b0700
– volume: 34
  start-page: 3143
  issue: 10
  year: 2007
  ident: 10.1016/j.neucom.2022.06.084_b0560
  article-title: A review of metrics on permutations for search landscape analysis
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2005.11.022
SSID ssj0017129
Score 2.5739048
Snippet •FLA has attracted attention of researchers for its research significance and application.•This paper attempts to give an overview of fitness landscape...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 129
SubjectTerms Algorithm selection
Fitness landscape
Heuristic algorithms
Landscape analysis
Survey
Title A survey of fitness landscape analysis for optimization
URI https://dx.doi.org/10.1016/j.neucom.2022.06.084
Volume 503
WOSCitedRecordID wos000843491800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS-NAFB5q9cGX3fWGe2UefJOIySSZ5DEsLioiQisUX7JzK0RsUtqmuP9-z1ySBiurLvgShpBpD3O-fDlz5lwQOgpjXYEFXkAKtj1sUHzlpUIqwLLgcQwmKfdNovAVvb5ORqP0ptf73eTCLB9oWSaPj-n0XVUN90DZOnX2DepufxRuwBiUDldQO1xfpfjseF7PlsqcnI-LhaEyk9CrQ52OWVOERIcXVsAXE5eI2bVSTcUOYfo9OE9CNtEFFaRGT-s5uKtqY_oq9_EzQQIti7GqjfUpzHPndbE68DAO2kHxp-56HWDDqs9Q6MoVtpYOY32KQeSBwWjpVVlGTWhgctW7lBudkg5p-k5y-_31bXGjNWq3Xob7k1LVOs5HC2Uqr9oOc0-KZg-0KFqSQMd3AKtvoM2ARmnSR5vZxdnosj1pon5g6zE60Zv0ShMDuP5fz5svHZNk-Al9cHsJnFkM7KCeKnfRx6ZPB3a0vYdohi0kcDXGDhK4hQRuIIEBErgLiX10--ts-PPccw0zPAE7v4UXkVSCzcY5GLmSwvhURGMajn3OAkWkgBGQuJLA00lMeBCqRDAeS6JCBusgyQHql1WpDhGOJYOZXBHOWBiJmEWhED5RzLY1Cj8j0qxDLlw1ed3U5CFvwgbvc7t6uV69XEdPJjDLa2dNbTWVF56nzRLnziK0ll4OqPjnzC__PfMr2l4B_hvqL2a1-o62xHJRzGc_HHz-At2rhPI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+survey+of+fitness+landscape+analysis+for+optimization&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Zou%2C+Feng&rft.au=Chen%2C+Debao&rft.au=Liu%2C+Hui&rft.au=Cao%2C+Siyu&rft.date=2022-09-07&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=503&rft.spage=129&rft.epage=139&rft_id=info:doi/10.1016%2Fj.neucom.2022.06.084&rft.externalDocID=S0925231222008153
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon