Hardware-based spiking neural network architecture using simplified backpropagation algorithm and homeostasis functionality

Bio-inspired hardware-based spiking neural networks (SNNs) has been suggested as a promising computing system with low power consumption and parallel operation. We propose the supervised on-chip training method approximating the backpropagation algorithm and the pulse scheme applicable to the hardwa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) Jg. 428; S. 153 - 165
Hauptverfasser: Kim, Jangsaeng, Kwon, Dongseok, Woo, Sung Yun, Kang, Won-Mook, Lee, Soochang, Oh, Seongbin, Kim, Chul-Heung, Bae, Jong-Ho, Park, Byung-Gook, Lee, Jong-Ho
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 07.03.2021
Schlagworte:
ISSN:0925-2312, 1872-8286
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Bio-inspired hardware-based spiking neural networks (SNNs) has been suggested as a promising computing system with low power consumption and parallel operation. We propose the supervised on-chip training method approximating the backpropagation algorithm and the pulse scheme applicable to the hardware-based SNNs with the low memory dependency. The performance evaluation through the MNIST data set classification shows that the proposed system achieves a similar recognition rate compared to that of the software-based network. In addition, we also propose novel homeostasis functionality using bias synapse to achieve high performances. The homeostasis functionality well regulates the firing rate of the neurons and improves the recognition rate. The TFT-type flash memory cells are used as synaptic devices. A fully connected two-layer neural network with non-leaky integrate-and-fire (I&F) neurons is used in the simulation. We then investigate the effect of the variation of the hardware-based network on the recognition rate. The simulation results show that the proposed system is resistant to weight variation because on-chip training is adopted.
AbstractList Bio-inspired hardware-based spiking neural networks (SNNs) has been suggested as a promising computing system with low power consumption and parallel operation. We propose the supervised on-chip training method approximating the backpropagation algorithm and the pulse scheme applicable to the hardware-based SNNs with the low memory dependency. The performance evaluation through the MNIST data set classification shows that the proposed system achieves a similar recognition rate compared to that of the software-based network. In addition, we also propose novel homeostasis functionality using bias synapse to achieve high performances. The homeostasis functionality well regulates the firing rate of the neurons and improves the recognition rate. The TFT-type flash memory cells are used as synaptic devices. A fully connected two-layer neural network with non-leaky integrate-and-fire (I&F) neurons is used in the simulation. We then investigate the effect of the variation of the hardware-based network on the recognition rate. The simulation results show that the proposed system is resistant to weight variation because on-chip training is adopted.
Author Park, Byung-Gook
Kwon, Dongseok
Lee, Soochang
Woo, Sung Yun
Bae, Jong-Ho
Lee, Jong-Ho
Kim, Jangsaeng
Oh, Seongbin
Kang, Won-Mook
Kim, Chul-Heung
Author_xml – sequence: 1
  givenname: Jangsaeng
  surname: Kim
  fullname: Kim, Jangsaeng
  organization: Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
– sequence: 2
  givenname: Dongseok
  surname: Kwon
  fullname: Kwon, Dongseok
  organization: Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
– sequence: 3
  givenname: Sung Yun
  surname: Woo
  fullname: Woo, Sung Yun
  organization: Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
– sequence: 4
  givenname: Won-Mook
  surname: Kang
  fullname: Kang, Won-Mook
  organization: Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
– sequence: 5
  givenname: Soochang
  surname: Lee
  fullname: Lee, Soochang
  organization: Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
– sequence: 6
  givenname: Seongbin
  surname: Oh
  fullname: Oh, Seongbin
  organization: Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
– sequence: 7
  givenname: Chul-Heung
  surname: Kim
  fullname: Kim, Chul-Heung
  organization: Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
– sequence: 8
  givenname: Jong-Ho
  surname: Bae
  fullname: Bae, Jong-Ho
  organization: Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA 94720, USA
– sequence: 9
  givenname: Byung-Gook
  surname: Park
  fullname: Park, Byung-Gook
  organization: Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
– sequence: 10
  givenname: Jong-Ho
  surname: Lee
  fullname: Lee, Jong-Ho
  email: jhl@snu.ac.kr
  organization: Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
BookMark eNqFkEFrGzEQhUVwIHaSf5DD_oF1JW0kr3IIlNAmhUAv7VmMtSN77N3VIsk1pn--ct1TD-1p4PG-x7y3YLMxjMjYg-BLwYX-sFuOeHBhWEouiySWRbxic9GuZN3KVs_YnBupatkIecMWKe04FyshzZz9fIPYHSFivYaEXZUm2tO4qUpghL6cfAxxX0F0W8ro8iFidUhnR6Jh6slTgdbg9lMME2wgUxgr6DchUt4OFYxdtQ0DhpQhUar8YXRnC_SUT3fs2kOf8P7PvWXfP3_69vJWv399_fLy8b12Dde5VlI-cq9Fp1Xb8tJQGwNGeTDI-Vo1Dl1nuPLKeNmgbEzbodLaKN3iqvFtc8ueLrkuhpQieuso__40R6DeCm7PM9qdvcxozzNaIWwRC_z4FzxFGiCe_oc9XzAsxX4QRpsc4eiwo1hmtF2gfwf8AqLzlJ4
CitedBy_id crossref_primary_10_1038_s41467_024_53321_2
crossref_primary_10_1109_LED_2024_3401399
crossref_primary_10_1016_j_ast_2022_108005
crossref_primary_10_1002_advs_202308460
crossref_primary_10_1109_LED_2024_3459615
crossref_primary_10_61435_ijred_2025_60434
crossref_primary_10_3367_UFNe_2021_05_038978
crossref_primary_10_1155_2022_1125084
crossref_primary_10_1002_advs_202407870
crossref_primary_10_3367_UFNr_2021_05_038978
crossref_primary_10_1088_1361_6528_ac7651
crossref_primary_10_1109_TNNLS_2023_3327906
crossref_primary_10_1016_j_neucom_2023_126682
crossref_primary_10_1109_LED_2023_3301271
crossref_primary_10_2478_amns_2023_2_00095
crossref_primary_10_1002_aisy_202300763
crossref_primary_10_1109_LED_2024_3406033
Cites_doi 10.1007/s00521-018-3659-y
10.1038/323533a0
10.1109/JPROC.2018.2790840
10.1016/j.neucom.2008.05.016
10.1109/TED.2018.2879821
10.1016/j.neunet.2018.08.012
10.1016/j.neunet.2012.02.022
10.1109/TED.2018.2817266
10.1038/nature14539
10.1016/j.sse.2019.107741
10.1088/0957-4484/24/38/382001
10.1016/j.neunet.2018.12.002
10.1166/jnn.2019.17025
10.1109/LED.2018.2809661
10.1109/JPROC.2015.2444094
10.1109/5.726791
10.1109/TNNLS.2017.2726060
10.1109/TNANO.2013.2250995
10.1016/j.neucom.2018.11.014
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2020.11.016
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 165
ExternalDocumentID 10_1016_j_neucom_2020_11_016
S0925231220317938
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-52240f61d65880020699a95fa9e00b53cecd905f59f23e2398de5669568e73f83
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000611057000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Tue Nov 18 22:00:30 EST 2025
Sat Nov 29 07:09:49 EST 2025
Fri Feb 23 02:48:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Homeostasis
Hardware-based neural networks
On-chip training
Spiking Neural Networks (SNNs)
Synaptic devices
Supervised learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-52240f61d65880020699a95fa9e00b53cecd905f59f23e2398de5669568e73f83
PageCount 13
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2020_11_016
crossref_primary_10_1016_j_neucom_2020_11_016
elsevier_sciencedirect_doi_10_1016_j_neucom_2020_11_016
PublicationCentury 2000
PublicationDate 2021-03-07
PublicationDateYYYYMMDD 2021-03-07
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-07
  day: 07
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Rueckauer, Lungu, Hu, Pfeiffer, Liu (b0090) 2017; 11
Rovere, Ning, Bartolozzi, Indiveri (b0165) 2014
Zhang, Wu, Yao, Zhang, Gao, Deng, Qian (b0195) 2018; 108
Lee, Kim, Oh, Park, Lee (b0080) 2019; 19
Comsa, Potempa, Versari, Fischbacher, Gesmundo, Alakuijala (b0115) 2019; 1907
Querlioz, Zhao, Dollfus, Klein, Bichler, Gamrat (b0210) 2013
W. Schiffmann, M. Joost, and R. Werner, “Optimization of the backpropagation algorithm for training multilayer perceptrons,” University of Koblenz: Institute of Physics, pp. 1-36, 1994. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.53.6869&rep=rep1&type=pdf.
Lecun, Bottou, Bengio, Haffner (b0185) 1998; 86
Tavanaei, Ghodrati, Kheradpisheh, Masquelier, Maida (b0205) 2019; 111
Tavanaei, Maida (b0100) 2019; 330
Burr, Shelby, Sebastian, Kim, Kim, Sidler, Virwani, Ishii, Narayanan, Fumarola, Sanches, Boybat, Le Gallo, Moon, Woo, Hwang, Leblebici (b0055) 2017; 2
Querlioz, Bichler, Dollfus, Gamrat (b0060) 2013; 12
Rubino, Payvand, Indiveri (b0150) 2019
Diehl, Neil, Binas, Cook, Liu, Pfeiffer (b0085) 2015
Yu (b0130) 2018; 106
O’Connor, Welling (b0200) 2016; 1602
Kuzum, Yu, Philip Wong (b0005) 2013; 24
Yu, Gao, Fang, Yu, Kang, Wong (b0045) 2012
Woo, Choi, Kim, Kang, Kim, Seo, Bae, Park, Lee (b0155) 2020; 165
Kwon, Lim, Bae, Lee, Kim, Kim, Park, Lee (b0135) 2019; 66
Sidler, Pantazi, Wozniak, Leblebici, Eleftheriou (b0050) 2017
Bartolozzi, Indiveri (b0160) 2009; 72
Bichler, Querlioz, Thorpe, Bourgoin, Gamrat (b0065) 2012; 32
Sakemi, Morino, Morie, Aihara (b0105) 2020; 2001
Lim, Bae, Eum, Lee, Kim, Kwon, Park, Lee (b0175) 2019; 31
Pfeiffer, Pfeil (b0095) 2018; 12
He, Zhang, Ren, Sun (b0190) 2015
Zheng, Mazumder (b0145) 2018
Kim, Hwang, Park, Yun, Lee, Park (b0125) 2018; 39
Kheradpisheh, Masquelier (b0110) 2019; 1910
Kang, Kim, Lee, Woo, Bae, Park, Lee (b0140) 2019
Ambrogio, Ciocchini, Laudato, Milo, Pirovano, Fantini, Ielmini (b0075) 2016; 10
Indiveri, Liu (b0010) 2015; 103
Rumelhart, Hinton, Williams (b0015) 1986; 323
Diehl, Cook (b0070) 2015; 9
Kim, Lee, Woo, Kang, Lim, Bae, Kim, Lee (b0170) 2018; 65
Masquelier, Thorpe (b0035) 2010
Mostafa (b0120) 2017; 29
LeCun, Bengio, Hinton (b0020) 2015; 521
Suri, Bichler, Querlioz, Cueto, Perniola, Sousa, Vuillaume, Gamrat, DeSalvo (b0040) 2011
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” Advances in Neural Information Processing Systems (NIPS), pp. 1097-1105, 2012. http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.
Kim, Lim, Woo, Kang, Seo, Lee, Lee, Kwon, Oh, Noh, Kim, Kim, Bae, Lee (b0030) 2018; 30
Rubino (10.1016/j.neucom.2020.11.016_b0150) 2019
Bichler (10.1016/j.neucom.2020.11.016_b0065) 2012; 32
Tavanaei (10.1016/j.neucom.2020.11.016_b0205) 2019; 111
Kim (10.1016/j.neucom.2020.11.016_b0170) 2018; 65
Woo (10.1016/j.neucom.2020.11.016_b0155) 2020; 165
Ambrogio (10.1016/j.neucom.2020.11.016_b0075) 2016; 10
Rovere (10.1016/j.neucom.2020.11.016_b0165) 2014
Querlioz (10.1016/j.neucom.2020.11.016_b0060) 2013; 12
Rueckauer (10.1016/j.neucom.2020.11.016_b0090) 2017; 11
He (10.1016/j.neucom.2020.11.016_b0190) 2015
Yu (10.1016/j.neucom.2020.11.016_b0130) 2018; 106
Rumelhart (10.1016/j.neucom.2020.11.016_b0015) 1986; 323
Sakemi (10.1016/j.neucom.2020.11.016_b0105) 2020; 2001
Kheradpisheh (10.1016/j.neucom.2020.11.016_b0110) 2019; 1910
Kwon (10.1016/j.neucom.2020.11.016_b0135) 2019; 66
Lee (10.1016/j.neucom.2020.11.016_b0080) 2019; 19
Kim (10.1016/j.neucom.2020.11.016_b0125) 2018; 39
Diehl (10.1016/j.neucom.2020.11.016_b0085) 2015
Zheng (10.1016/j.neucom.2020.11.016_b0145) 2018
Comsa (10.1016/j.neucom.2020.11.016_b0115) 2019; 1907
Kim (10.1016/j.neucom.2020.11.016_b0030) 2018; 30
LeCun (10.1016/j.neucom.2020.11.016_b0020) 2015; 521
Kuzum (10.1016/j.neucom.2020.11.016_b0005) 2013; 24
Burr (10.1016/j.neucom.2020.11.016_b0055) 2017; 2
Diehl (10.1016/j.neucom.2020.11.016_b0070) 2015; 9
10.1016/j.neucom.2020.11.016_b0025
Yu (10.1016/j.neucom.2020.11.016_b0045) 2012
Indiveri (10.1016/j.neucom.2020.11.016_b0010) 2015; 103
Sidler (10.1016/j.neucom.2020.11.016_b0050) 2017
Tavanaei (10.1016/j.neucom.2020.11.016_b0100) 2019; 330
Masquelier (10.1016/j.neucom.2020.11.016_b0035) 2010
Zhang (10.1016/j.neucom.2020.11.016_b0195) 2018; 108
Suri (10.1016/j.neucom.2020.11.016_b0040) 2011
Pfeiffer (10.1016/j.neucom.2020.11.016_b0095) 2018; 12
Kang (10.1016/j.neucom.2020.11.016_b0140) 2019
Lecun (10.1016/j.neucom.2020.11.016_b0185) 1998; 86
Mostafa (10.1016/j.neucom.2020.11.016_b0120) 2017; 29
O’Connor (10.1016/j.neucom.2020.11.016_b0200) 2016; 1602
10.1016/j.neucom.2020.11.016_b0180
Querlioz (10.1016/j.neucom.2020.11.016_b0210) 2013
Lim (10.1016/j.neucom.2020.11.016_b0175) 2019; 31
Bartolozzi (10.1016/j.neucom.2020.11.016_b0160) 2009; 72
References_xml – volume: 32
  start-page: 339
  year: 2012
  end-page: 348
  ident: b0065
  article-title: Extraction of temporally correlated features from dynamic vision sensors with spike-timing-dependent plasticity
  publication-title: Neural Networks
– volume: 2001
  start-page: 1
  year: 2020
  end-page: 24
  ident: b0105
  article-title: A supervised learning algorithm for multilayer spiking neural networks based on temporal coding toward energy-efficient VLSI processor design
  publication-title: arXiv preprint, arXiv
– volume: 1910
  start-page: 1
  year: 2019
  end-page: 18
  ident: b0110
  article-title: S4NN: temporal backpropagation for spiking neural networks with one spike per neuron
  publication-title: arXiv preprint, arXiv
– reference: A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” Advances in Neural Information Processing Systems (NIPS), pp. 1097-1105, 2012. http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.
– start-page: 1
  year: 2010
  end-page: 8
  ident: b0035
  article-title: Learning to recognize objects using waves of spikes and Spike Timing-Dependent Plasticity
  publication-title: Int. Joint Conf. Neural Networks (IJCNN)
– volume: 330
  start-page: 39
  year: 2019
  end-page: 47
  ident: b0100
  article-title: BP-STDP: approximating backpropagation using spike timing dependent plasticity
  publication-title: Neurocomputing
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: b0185
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– volume: 165
  start-page: 1
  year: 2020
  end-page: 6
  ident: b0155
  article-title: Implementation of homeostasis functionality in neuron circuit using double-gate device for spiking neural network
  publication-title: Solid-State Electron.
– volume: 39
  start-page: 630
  year: 2018
  end-page: 633
  ident: b0125
  article-title: Spiking neural network using synaptic transistors and neuron circuits for pattern recognition with noisy images
  publication-title: IEEE Electron Device Lett.
– volume: 66
  start-page: 395
  year: 2019
  end-page: 401
  ident: b0135
  article-title: Adaptive weight quantization method for nonlinear synaptic devices
  publication-title: IEEE Trans. Electron Devices
– volume: 111
  start-page: 47
  year: 2019
  end-page: 63
  ident: b0205
  article-title: Deep learning in spiking neural networks
  publication-title: Neural Networks
– volume: 2
  start-page: 89
  year: 2017
  end-page: 124
  ident: b0055
  article-title: Neuromorphic computing using non-volatile memory
  publication-title: Adv. Phys.: X
– volume: 12
  start-page: 1
  year: 2018
  end-page: 18
  ident: b0095
  article-title: Deep learning with spiking neurons: opportunities and challenges
  publication-title: Front. Neurosci.
– volume: 10
  start-page: 1
  year: 2016
  end-page: 12
  ident: b0075
  article-title: Unsupervised learning by spike timing dependent plasticity in phase change memory (PCM) synapses
  publication-title: Front. Neurosci.
– start-page: 1
  year: 2014
  end-page: 4
  ident: b0165
  article-title: Ultra low leakage synaptic scaling circuits for implementing homeostatic plasticity in neuromorphic architectures
  publication-title: IEEE International Symposium on Circuits and Systems (ISCAS)
– volume: 103
  start-page: 1379
  year: 2015
  end-page: 1397
  ident: b0010
  article-title: Memory and information processing in neuromorphic systems
  publication-title: Proc. IEEE
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: b0015
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– volume: 12
  start-page: 288
  year: 2013
  end-page: 295
  ident: b0060
  article-title: Immunity to device variations in a spiking neural network with memristive nanodevices
  publication-title: IEEE Trans. Nanotechnol.
– start-page: 1026
  year: 2015
  end-page: 1034
  ident: b0190
  article-title: Delving deep into rectifiers: surpassing human-level performance on imagenet classification
  publication-title: The IEEE International Conference on Computer Vision (ICCV)
– start-page: 79
  year: 2011
  end-page: 82
  ident: b0040
  article-title: Phase change memory as synapse for ultra-dense neuromorphic systems: application to complex visual pattern extraction
  publication-title: IEDM Tech. Dig.
– start-page: 281
  year: 2017
  end-page: 288
  ident: b0050
  article-title: Unsupervised learning using phase-change synapses and complementary patterns
  publication-title: Int. Conf. Artif. Neural Networks (ICANN)
– start-page: 1
  year: 2015
  end-page: 8
  ident: b0085
  article-title: Fast-classifying, high-accuracy spiking deep networks though weight and threshold balancing
  publication-title: Int. Joint Conf. Neural Networks (IJCNN)
– volume: 1602
  start-page: 1
  year: 2016
  end-page: 16
  ident: b0200
  article-title: “Deep spiking networks”, arXiv preprint
  publication-title: arXiv
– volume: 1907
  start-page: 1
  year: 2019
  end-page: 20
  ident: b0115
  article-title: Temporal coding in spiking neural network with alpha synaptic function
  publication-title: arXiv preprint, arXiv
– volume: 106
  start-page: 260
  year: 2018
  end-page: 285
  ident: b0130
  article-title: Neuro-inspired computing with emerging nonvolatile memory
  publication-title: Proc. IEEE
– volume: 11
  start-page: 1
  year: 2017
  end-page: 12
  ident: b0090
  article-title: Conversion of continuous-valued deep networks to efficient event-driven networks for image classification
  publication-title: Front. Neurosci.
– volume: 29
  start-page: 1
  year: 2017
  end-page: 9
  ident: b0120
  article-title: Supervised learning based on temporal coding in spiking neural networks
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– start-page: 239
  year: 2012
  end-page: 242
  ident: b0045
  article-title: A neuromorphic visual system using RRAM synaptic devices with Sub-pJ energy and tolerance to variability: experimental characterization and large-scale modeling
  publication-title: IEDM Tech. Dig.
– volume: 9
  start-page: 1
  year: 2015
  end-page: 9
  ident: b0070
  article-title: Unsupervised learning of digit recognition using spike-timing-dependent plasticity
  publication-title: Front. Comput. Neurosci
– start-page: 1
  year: 2018
  end-page: 5
  ident: b0145
  article-title: A low-power hardware architecture for on-line supervised learning in multi-layer spiking neural networks
  publication-title: IEEE International Symposium on Circuits and Systems (ISCAS)
– volume: 31
  start-page: 8101
  year: 2019
  end-page: 8116
  ident: b0175
  article-title: Adaptive learning rule for hardware-based deep neural networks using electronic synapse devices
  publication-title: Neural Comput. Appl.
– volume: 108
  start-page: 217
  year: 2018
  end-page: 223
  ident: b0195
  article-title: Sign backpropagation: an on-chip learning algorithm for analog RRAM neuromorphic computing systems
  publication-title: Neural Networks
– volume: 65
  start-page: 1774
  year: 2018
  end-page: 1780
  ident: b0170
  article-title: Demonstration of unsupervised learning with spike-timing-dependent plasticity using a TFT-type NOR flash memory array
  publication-title: IEEE Trans. Electron Devices (TED)
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b0020
  article-title: Deep learning
  publication-title: Nature
– volume: 19
  start-page: 6050
  year: 2019
  end-page: 6054
  ident: b0080
  article-title: Unsupervised online learning with multiple postsynaptic neurons based on spike-timing-dependent plasticity using a thin-film transistor-type NOR flash memory array
  publication-title: J. Nanosci. Nanotechnol.
– start-page: 203
  year: 2013
  end-page: 210
  ident: b0210
  article-title: Bioinspired networks with nanoscale memristive devices that combine the unsupervised and supervised learning approacahes
  publication-title: 2012 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)
– volume: 24
  start-page: 382001
  year: 2013
  ident: b0005
  article-title: Synaptic electronics: materials, devices and applications
  publication-title: Nanotechnology
– start-page: 1
  year: 2019
  end-page: 4
  ident: b0150
  article-title: Ultra-low power silicon neuron circuit for extreme-edge neuromorphic intelligence
  publication-title: IEEE International Conference on Electronics, Circuits and Systems (ICECS)
– start-page: 1
  year: 2019
  end-page: 7
  ident: b0140
  article-title: A spiking neural network with a global self-controller for unsupervised learning based on spike-timing-dependent plasticity using flash memory synaptic devices
  publication-title: Int. Joint Conf. Neural Networks (IJCNN)
– volume: 72
  start-page: 726
  year: 2009
  end-page: 731
  ident: b0160
  article-title: Global scaling of synaptic efficacy: homeostasis in silicon synapses
  publication-title: Neurocomputing
– volume: 30
  start-page: 1
  year: 2018
  end-page: 33
  ident: b0030
  article-title: Emerging memory technologies for neuromorphic computing
  publication-title: Nanotechnology
– reference: W. Schiffmann, M. Joost, and R. Werner, “Optimization of the backpropagation algorithm for training multilayer perceptrons,” University of Koblenz: Institute of Physics, pp. 1-36, 1994. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.53.6869&rep=rep1&type=pdf.
– volume: 31
  start-page: 8101
  issue: 11
  year: 2019
  ident: 10.1016/j.neucom.2020.11.016_b0175
  article-title: Adaptive learning rule for hardware-based deep neural networks using electronic synapse devices
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3659-y
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 10.1016/j.neucom.2020.11.016_b0015
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 9
  start-page: 1
  issue: 99
  year: 2015
  ident: 10.1016/j.neucom.2020.11.016_b0070
  article-title: Unsupervised learning of digit recognition using spike-timing-dependent plasticity
  publication-title: Front. Comput. Neurosci
– volume: 2
  start-page: 89
  issue: 1
  year: 2017
  ident: 10.1016/j.neucom.2020.11.016_b0055
  article-title: Neuromorphic computing using non-volatile memory
  publication-title: Adv. Phys.: X
– volume: 106
  start-page: 260
  issue: 2
  year: 2018
  ident: 10.1016/j.neucom.2020.11.016_b0130
  article-title: Neuro-inspired computing with emerging nonvolatile memory
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2018.2790840
– start-page: 1
  year: 2019
  ident: 10.1016/j.neucom.2020.11.016_b0150
  article-title: Ultra-low power silicon neuron circuit for extreme-edge neuromorphic intelligence
– start-page: 1
  year: 2015
  ident: 10.1016/j.neucom.2020.11.016_b0085
  article-title: Fast-classifying, high-accuracy spiking deep networks though weight and threshold balancing
  publication-title: Int. Joint Conf. Neural Networks (IJCNN)
– volume: 72
  start-page: 726
  issue: 4–6
  year: 2009
  ident: 10.1016/j.neucom.2020.11.016_b0160
  article-title: Global scaling of synaptic efficacy: homeostasis in silicon synapses
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.05.016
– volume: 10
  start-page: 1
  issue: 56
  year: 2016
  ident: 10.1016/j.neucom.2020.11.016_b0075
  article-title: Unsupervised learning by spike timing dependent plasticity in phase change memory (PCM) synapses
  publication-title: Front. Neurosci.
– volume: 66
  start-page: 395
  issue: 1
  year: 2019
  ident: 10.1016/j.neucom.2020.11.016_b0135
  article-title: Adaptive weight quantization method for nonlinear synaptic devices
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2018.2879821
– volume: 108
  start-page: 217
  year: 2018
  ident: 10.1016/j.neucom.2020.11.016_b0195
  article-title: Sign backpropagation: an on-chip learning algorithm for analog RRAM neuromorphic computing systems
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2018.08.012
– volume: 32
  start-page: 339
  year: 2012
  ident: 10.1016/j.neucom.2020.11.016_b0065
  article-title: Extraction of temporally correlated features from dynamic vision sensors with spike-timing-dependent plasticity
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2012.02.022
– volume: 65
  start-page: 1774
  issue: 5
  year: 2018
  ident: 10.1016/j.neucom.2020.11.016_b0170
  article-title: Demonstration of unsupervised learning with spike-timing-dependent plasticity using a TFT-type NOR flash memory array
  publication-title: IEEE Trans. Electron Devices (TED)
  doi: 10.1109/TED.2018.2817266
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.neucom.2020.11.016_b0020
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 2001
  start-page: 1
  issue: 05348
  year: 2020
  ident: 10.1016/j.neucom.2020.11.016_b0105
  article-title: A supervised learning algorithm for multilayer spiking neural networks based on temporal coding toward energy-efficient VLSI processor design
  publication-title: arXiv preprint, arXiv
– volume: 165
  start-page: 1
  year: 2020
  ident: 10.1016/j.neucom.2020.11.016_b0155
  article-title: Implementation of homeostasis functionality in neuron circuit using double-gate device for spiking neural network
  publication-title: Solid-State Electron.
  doi: 10.1016/j.sse.2019.107741
– ident: 10.1016/j.neucom.2020.11.016_b0180
– volume: 24
  start-page: 382001
  issue: 38
  year: 2013
  ident: 10.1016/j.neucom.2020.11.016_b0005
  article-title: Synaptic electronics: materials, devices and applications
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/38/382001
– start-page: 281
  year: 2017
  ident: 10.1016/j.neucom.2020.11.016_b0050
  article-title: Unsupervised learning using phase-change synapses and complementary patterns
  publication-title: Int. Conf. Artif. Neural Networks (ICANN)
– volume: 1602
  start-page: 1
  issue: 08323
  year: 2016
  ident: 10.1016/j.neucom.2020.11.016_b0200
  article-title: “Deep spiking networks”, arXiv preprint
  publication-title: arXiv
– start-page: 239
  year: 2012
  ident: 10.1016/j.neucom.2020.11.016_b0045
  article-title: A neuromorphic visual system using RRAM synaptic devices with Sub-pJ energy and tolerance to variability: experimental characterization and large-scale modeling
  publication-title: IEDM Tech. Dig.
– volume: 111
  start-page: 47
  year: 2019
  ident: 10.1016/j.neucom.2020.11.016_b0205
  article-title: Deep learning in spiking neural networks
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2018.12.002
– volume: 30
  start-page: 1
  issue: 3
  year: 2018
  ident: 10.1016/j.neucom.2020.11.016_b0030
  article-title: Emerging memory technologies for neuromorphic computing
  publication-title: Nanotechnology
– volume: 12
  start-page: 1
  issue: 774
  year: 2018
  ident: 10.1016/j.neucom.2020.11.016_b0095
  article-title: Deep learning with spiking neurons: opportunities and challenges
  publication-title: Front. Neurosci.
– volume: 11
  start-page: 1
  issue: 682
  year: 2017
  ident: 10.1016/j.neucom.2020.11.016_b0090
  article-title: Conversion of continuous-valued deep networks to efficient event-driven networks for image classification
  publication-title: Front. Neurosci.
– start-page: 1
  year: 2010
  ident: 10.1016/j.neucom.2020.11.016_b0035
  article-title: Learning to recognize objects using waves of spikes and Spike Timing-Dependent Plasticity
  publication-title: Int. Joint Conf. Neural Networks (IJCNN)
– volume: 1907
  start-page: 1
  issue: 13223
  year: 2019
  ident: 10.1016/j.neucom.2020.11.016_b0115
  article-title: Temporal coding in spiking neural network with alpha synaptic function
  publication-title: arXiv preprint, arXiv
– volume: 1910
  start-page: 1
  issue: 09495
  year: 2019
  ident: 10.1016/j.neucom.2020.11.016_b0110
  article-title: S4NN: temporal backpropagation for spiking neural networks with one spike per neuron
  publication-title: arXiv preprint, arXiv
– start-page: 1
  year: 2014
  ident: 10.1016/j.neucom.2020.11.016_b0165
  article-title: Ultra low leakage synaptic scaling circuits for implementing homeostatic plasticity in neuromorphic architectures
– volume: 19
  start-page: 6050
  issue: 10
  year: 2019
  ident: 10.1016/j.neucom.2020.11.016_b0080
  article-title: Unsupervised online learning with multiple postsynaptic neurons based on spike-timing-dependent plasticity using a thin-film transistor-type NOR flash memory array
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2019.17025
– ident: 10.1016/j.neucom.2020.11.016_b0025
– start-page: 1026
  year: 2015
  ident: 10.1016/j.neucom.2020.11.016_b0190
  article-title: Delving deep into rectifiers: surpassing human-level performance on imagenet classification
– start-page: 79
  year: 2011
  ident: 10.1016/j.neucom.2020.11.016_b0040
  article-title: Phase change memory as synapse for ultra-dense neuromorphic systems: application to complex visual pattern extraction
  publication-title: IEDM Tech. Dig.
– volume: 39
  start-page: 630
  issue: 4
  year: 2018
  ident: 10.1016/j.neucom.2020.11.016_b0125
  article-title: Spiking neural network using synaptic transistors and neuron circuits for pattern recognition with noisy images
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2018.2809661
– start-page: 1
  year: 2019
  ident: 10.1016/j.neucom.2020.11.016_b0140
  article-title: A spiking neural network with a global self-controller for unsupervised learning based on spike-timing-dependent plasticity using flash memory synaptic devices
  publication-title: Int. Joint Conf. Neural Networks (IJCNN)
– volume: 103
  start-page: 1379
  issue: 8
  year: 2015
  ident: 10.1016/j.neucom.2020.11.016_b0010
  article-title: Memory and information processing in neuromorphic systems
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2444094
– start-page: 1
  year: 2018
  ident: 10.1016/j.neucom.2020.11.016_b0145
  article-title: A low-power hardware architecture for on-line supervised learning in multi-layer spiking neural networks
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.neucom.2020.11.016_b0185
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 29
  start-page: 1
  issue: 7
  year: 2017
  ident: 10.1016/j.neucom.2020.11.016_b0120
  article-title: Supervised learning based on temporal coding in spiking neural networks
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2017.2726060
– volume: 12
  start-page: 288
  issue: 3
  year: 2013
  ident: 10.1016/j.neucom.2020.11.016_b0060
  article-title: Immunity to device variations in a spiking neural network with memristive nanodevices
  publication-title: IEEE Trans. Nanotechnol.
  doi: 10.1109/TNANO.2013.2250995
– volume: 330
  start-page: 39
  issue: 22
  year: 2019
  ident: 10.1016/j.neucom.2020.11.016_b0100
  article-title: BP-STDP: approximating backpropagation using spike timing dependent plasticity
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.11.014
– start-page: 203
  year: 2013
  ident: 10.1016/j.neucom.2020.11.016_b0210
  article-title: Bioinspired networks with nanoscale memristive devices that combine the unsupervised and supervised learning approacahes
SSID ssj0017129
Score 2.429
Snippet Bio-inspired hardware-based spiking neural networks (SNNs) has been suggested as a promising computing system with low power consumption and parallel...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 153
SubjectTerms Hardware-based neural networks
Homeostasis
On-chip training
Spiking Neural Networks (SNNs)
Supervised learning
Synaptic devices
Title Hardware-based spiking neural network architecture using simplified backpropagation algorithm and homeostasis functionality
URI https://dx.doi.org/10.1016/j.neucom.2020.11.016
Volume 428
WOSCitedRecordID wos000611057000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6FlAMXdkQpoDlwi1x5m9pzjEoRVKJCoqjhZI0949ZtakeJ01bif_H7eM9vbCcNYpO4WNEkdkb5vrxt3sLYm1RGWsgAEfBzJ9R54KRa5k6ce7HyXRUro5thE9HRUTyZyE-Dwfe2FuZqGpVlfHMjZ_8ValgDsLF09i_g7h4KC_AaQIcrwA7XPwIez-Kv1dw4qKD0aDErMBo-wsaVAEdJad-jtQOEZRMwWBSYXZ43NqnKLkC0grAhfqjpaTUv6jOap3FWXZoKrErsZYJ6kcKJRb12Qtx0_ciamRE2GjG-xKYMGhnYZ3jTMOdDVZ4ulLFaFNevKRvgbQVvmKorJzqpKsolgkd-XfYZBDbqfVKVzsfWbbCxDJ-SuaI-wLZRZEORSl84YIaS0DYkp-PIbyrgVwV5aMvMSRR71ITYanWPJlJsKAyKXZzvAgiYPQSbQi2y63q3-nM3Gv8zbgV34oMoBMEW32FbfiRkPGRb4w8Hk8Pu_CryfOryaLfeFm02mYWb3_Vzo2jF0Dl-yO5bD4WPiVmP2MCUj9mDdvoHt8rgCfu2TjRuicaJaNwSja8SjTdE4z3R-C2i8Y5oHIjGV4jG14j2lH15d3C8_96xozycDHzS2hFoOeZ7ngaDt3FR9qRUUuRKGtdNRZCZTEtX5ELmfmCwJ6U24GhgLauJgjwOnrFhWZXmOeNKpZh3KEwaiDDUWgbSBZs_lJmGNeNus6D9LZPM9rnHcSvTpE1oPE8IgQQRABc4gcVt5nR3zajPy28-H7UwJdZWJRs0AWb98s4X_3znDrvX_2lesmE9X5pX7G52VReL-WtLwR-H_cJh
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hardware-based+spiking+neural+network+architecture+using+simplified+backpropagation+algorithm+and+homeostasis+functionality&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Kim%2C+Jangsaeng&rft.au=Kwon%2C+Dongseok&rft.au=Woo%2C+Sung+Yun&rft.au=Kang%2C+Won-Mook&rft.date=2021-03-07&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=428&rft.spage=153&rft.epage=165&rft_id=info:doi/10.1016%2Fj.neucom.2020.11.016&rft.externalDocID=S0925231220317938
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon