Preferential lithium extraction and simultaneous ternary cathode precursor synthesis from spent lithium-Ion batteries using a spray pyrolysis-based process

[Display omitted] •A spray pyrolysis-based process for spent NCM recycling has been proposed.•Selectively Li recovery and ternary oxide precursor are simultaneously achieved.•Battery-grade Li2CO3 can be directly prepared from the water-leaching solution.•The leaching residue is high-quality precurso...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Separation and purification technology Ročník 353; s. 128486
Hlavní autoři: Zhou, Yongchao, Li, Yan, Chen, Ziyu, Zeng, Haibin, Su, Wenhao, Zhao, Zhao, Du, Chengming, Li, Chengzong, Li, Tao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 19.01.2025
Témata:
ISSN:1383-5866
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract [Display omitted] •A spray pyrolysis-based process for spent NCM recycling has been proposed.•Selectively Li recovery and ternary oxide precursor are simultaneously achieved.•Battery-grade Li2CO3 can be directly prepared from the water-leaching solution.•The leaching residue is high-quality precursor for synthesis of single-crystal NCM.•Regenerated single-crystal NCM811 retains 80 % capacity after 300 cycles at 1C. Spent LiNixCoyMnzO2 (NCM) recycling ensures the sustainable development of lithium-ion batteries (LIBs) industry by returning valuable metals back to the supply chain. However, traditional recovery techniques for extracting metals from spent NCM necessitate tedious separation and purification operations. Herein, a spray pyrolysis-based process has been proposed for spent NCM recycling, which achieves the preferential lithium (Li) extraction and ternary cathode precursor synthesis simultaneously. Specifically, after a process sequence ofchlorination roasting, spray pyrolysis, water leaching, spent NCM cathode powder is transformed into a LiCl solution and ternary oxide, which can be directly used for the synthesis of battery-grade Li2CO3 and NCM cathode, respectively. The pyrolysis behavior of different metal chloride solution is systematically examined and related thermodynamical mechanism is discussed. Besides, the residual Cl in the pyrolyzed powder is found to have a great influence on recovery efficiency and a corresponding Cl elimination method is proposed. Under the optimized conditions, >88 % of Li can be preferentially leached out and the regenerated single-crystal NCM811 retains 80 % capacity after 300 stable cycles at 1C. This work offers a short and robust process for obtaining high-value-added products from spent NCM cathode.
AbstractList [Display omitted] •A spray pyrolysis-based process for spent NCM recycling has been proposed.•Selectively Li recovery and ternary oxide precursor are simultaneously achieved.•Battery-grade Li2CO3 can be directly prepared from the water-leaching solution.•The leaching residue is high-quality precursor for synthesis of single-crystal NCM.•Regenerated single-crystal NCM811 retains 80 % capacity after 300 cycles at 1C. Spent LiNixCoyMnzO2 (NCM) recycling ensures the sustainable development of lithium-ion batteries (LIBs) industry by returning valuable metals back to the supply chain. However, traditional recovery techniques for extracting metals from spent NCM necessitate tedious separation and purification operations. Herein, a spray pyrolysis-based process has been proposed for spent NCM recycling, which achieves the preferential lithium (Li) extraction and ternary cathode precursor synthesis simultaneously. Specifically, after a process sequence ofchlorination roasting, spray pyrolysis, water leaching, spent NCM cathode powder is transformed into a LiCl solution and ternary oxide, which can be directly used for the synthesis of battery-grade Li2CO3 and NCM cathode, respectively. The pyrolysis behavior of different metal chloride solution is systematically examined and related thermodynamical mechanism is discussed. Besides, the residual Cl in the pyrolyzed powder is found to have a great influence on recovery efficiency and a corresponding Cl elimination method is proposed. Under the optimized conditions, >88 % of Li can be preferentially leached out and the regenerated single-crystal NCM811 retains 80 % capacity after 300 stable cycles at 1C. This work offers a short and robust process for obtaining high-value-added products from spent NCM cathode.
ArticleNumber 128486
Author Chen, Ziyu
Zhou, Yongchao
Li, Tao
Su, Wenhao
Li, Yan
Li, Chengzong
Zeng, Haibin
Zhao, Zhao
Du, Chengming
Author_xml – sequence: 1
  givenname: Yongchao
  orcidid: 0000-0001-8337-7572
  surname: Zhou
  fullname: Zhou, Yongchao
– sequence: 2
  givenname: Yan
  surname: Li
  fullname: Li, Yan
– sequence: 3
  givenname: Ziyu
  orcidid: 0000-0003-1454-1265
  surname: Chen
  fullname: Chen, Ziyu
– sequence: 4
  givenname: Haibin
  surname: Zeng
  fullname: Zeng, Haibin
– sequence: 5
  givenname: Wenhao
  surname: Su
  fullname: Su, Wenhao
– sequence: 6
  givenname: Zhao
  surname: Zhao
  fullname: Zhao, Zhao
– sequence: 7
  givenname: Chengming
  surname: Du
  fullname: Du, Chengming
– sequence: 8
  givenname: Chengzong
  surname: Li
  fullname: Li, Chengzong
– sequence: 9
  givenname: Tao
  orcidid: 0000-0003-0283-4933
  surname: Li
  fullname: Li, Tao
  email: li-tao@usc.edu.cn
BookMark eNqFkL1OwzAURj0UiRZ4Awa_QIqdpKnDgIQqfipVggFmy7FvqKvUjnwdRJ6Fl8VVYWGA6S73HOk7MzJx3gEhl5zNOePV1W6O0PdDmOcsL-c8F6WoJmTKC1FkC1FVp2SGuGOML7nIp-TzOUALAVy0qqOdjVs77Cl8xKB0tN5R5QxFux-6qBz4AWmE4FQYqVZx6w3QPoAeAvpAcXRxC2iRtsHvKfbJ-qPM1snVqJhoC0gHtO6NqvQT1Ej7MfhuTGDWKASTlF4D4jk5aVWHcPF9z8jr_d3L6jHbPD2sV7ebTBesitmCq1wUednUtaoXwjBtINd1UfJy2YqiMTo3DAoNKj02rWk4W4qmVdAuF0yDLs5IefTq4BFTD9kHu08bJWfyEFXu5DGqPESVx6gJu_6FaRvVIVqKZ7v_4JsjDGnYu4UgUVtwGoxNPaM03v4t-AJSOaFI
CitedBy_id crossref_primary_10_1016_j_seppur_2024_130125
crossref_primary_10_1016_j_jece_2025_118724
crossref_primary_10_1016_j_pmatsci_2025_101557
crossref_primary_10_1016_j_est_2025_118099
crossref_primary_10_1016_j_fuel_2025_136198
crossref_primary_10_1016_j_mineng_2025_109493
crossref_primary_10_1021_acssuschemeng_5c06667
crossref_primary_10_1088_1402_4896_add2a8
crossref_primary_10_1016_j_jpowsour_2024_235939
crossref_primary_10_1016_j_seppur_2025_133977
crossref_primary_10_1016_j_seppur_2024_129726
Cites_doi 10.1021/acssuschemeng.3c01917
10.1039/D3GC00197K
10.1021/acssuschemeng.3c01238
10.1021/acssuschemeng.0c05676
10.1016/j.scitotenv.2022.161380
10.1016/j.wasman.2022.10.005
10.1016/j.seppur.2018.09.019
10.1016/j.seppur.2020.116869
10.1039/D1GC01639C
10.1016/j.jclepro.2019.07.051
10.1039/D2GC04620B
10.1016/j.jclepro.2023.140077
10.1016/j.jhazmat.2020.123491
10.1002/aenm.201802303
10.1021/acssuschemeng.3c03797
10.1016/j.etran.2022.100155
10.1016/j.cej.2023.146733
10.1016/j.jclepro.2023.139488
10.1002/smll.202006869
10.1039/D2NR00993E
10.1016/j.resconrec.2021.105784
10.1016/j.jpowsour.2016.12.095
10.1016/j.matlet.2015.06.075
10.1039/D2EE03257K
10.1016/j.resconrec.2023.107292
10.1016/j.scitotenv.2023.168543
10.1016/j.psep.2022.12.045
10.1039/D3GC01077E
10.1016/j.jallcom.2021.158775
10.1016/j.joule.2019.09.014
10.1016/j.cej.2023.142278
10.1016/j.wasman.2023.06.027
10.1016/j.jechem.2023.02.014
10.1016/j.jechem.2023.10.012
10.1002/anie.202218672
10.1016/j.wasman.2022.06.039
10.1021/acsenergylett.1c02602
10.1016/j.jpowsour.2023.233728
10.1016/j.seppur.2023.123972
10.1016/j.resconrec.2021.105840
10.1021/acsenergylett.3c02256
10.1002/anie.202300074
10.1016/j.joule.2023.01.004
10.1007/s12598-023-02377-y
10.1039/D2EE00162D
10.1016/j.cej.2022.139258
10.1016/j.cej.2022.135169
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.seppur.2024.128486
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_seppur_2024_128486
S1383586624022251
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABJNI
ABMAC
ABNUV
ABXRA
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFJKZ
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSM
SSZ
T5K
~G-
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FGOYB
HZ~
R2-
~HD
ID FETCH-LOGICAL-c306t-51a28324b99a958d0cde2c934147f83bdc2d0e3cea1a2bfdb1078bfaef750cec3
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001333220700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1383-5866
IngestDate Tue Nov 18 21:53:58 EST 2025
Sat Nov 29 01:49:46 EST 2025
Wed Dec 04 16:47:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Chlorination roasting
Spray pyrolysis
End-of-life LIBs
Cathode regeneration
Selective lithium recovery
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-51a28324b99a958d0cde2c934147f83bdc2d0e3cea1a2bfdb1078bfaef750cec3
ORCID 0000-0003-0283-4933
0000-0003-1454-1265
0000-0001-8337-7572
ParticipantIDs crossref_primary_10_1016_j_seppur_2024_128486
crossref_citationtrail_10_1016_j_seppur_2024_128486
elsevier_sciencedirect_doi_10_1016_j_seppur_2024_128486
PublicationCentury 2000
PublicationDate 2025-01-19
PublicationDateYYYYMMDD 2025-01-19
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-19
  day: 19
PublicationDecade 2020
PublicationTitle Separation and purification technology
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – sequence: 0
  name: Elsevier B.V
References Qu, Wei, Liu, Yao, Zhou, Li (b0060) 2022; 150
Yu, Liu, Feng, Jia, Zhang, Zhu, Tang, Wang, Gong (b0030) 2023; 476
Lin, Zhang, Fan, Chen, Wu, Li (b0095) 2023; 16
Fan, Kong, Jiang, Zhang, Cong, Shi, Liu, Zhang, Zhang, Huang (b0005) 2023; 463
Chen, Ma, Chen, Arsenault, Karlson, Simon, Wang (b0025) 2019; 3
Zha, Fei, Yang, Meng, Dong, Zhang, Li (b0160) 2023; 35
Wei, Wu, Li, Chen, Ding, Zhang (b0050) 2023; 866
Li, Chen, Bai, Li, Li (b0245) 2023; 81
Ma, Tang, Wanaldi, Zhou, Wang, Zhou, Yang (b0185) 2021; 402
Li, Li, Wang, Guo, Peng, Zeng (b0240) 2015; 159
Vieceli, Benjamasutin, Promphan, Hellström, Paulsson, Petranikova (b0115) 2023; 11
Makuza, Yu, Huang, Tian, Guo (b0190) 2021; 174
Roy, Zaiden, Do, Cao, Srinivasan (b0045) 2023; 7
Fan, Song, Lu, Shi, Yang, Zheng, Huang, Liu, Wang, Li (b0130) 2021; 863
Li, Zhou, Chen, Li (b0215) 2023; 25
Yang, Zhang, Yu, Liu, Li, Hao, Meng, Dong (b0075) 2023; 11
Xie, Wang, Sun, Fan, Zhao, Yao (b0170) 2023; 318
Gu, Gao, Chen, Qin, Han (b0175) 2023; 169
Liu, Chen, Li, Li (b0120) 2020; 245
Milian, Jamett, Cruz, Herrera-León, Chacana-Olivares (b0040) 2024; 910
Natarajan, Aravindan (b0020) 2018; 8
Ilyas, Ranjan Srivastava, Singh, Chi, Kim (b0210) 2022; 154
You, Qin, Wang, Rao, Luo, Peng, Zou, Li (b0085) 2023; 428
Zhang, Tang, Su, Xu, Shih (b0235) 2023; 11
Sarkar, Hossain, Sahajwalla (b0080) 2024; 200
Li, Lv, Huang, Yan, Li, Ning, Cao, Sun (b0140) 2021; 23
Huang, Xia, Chi, Yang, Huang, Chen, Tang, Wu, Chen, Zhang (b0035) 2022; 14
He, Jin, Zhang, Duan, Zhang, Teng, Liu, Liu (b0065) 2023; 25
Li, Luo, Zhang, Liu, Wang, Lin, Xu, Guo, Cheali, Xia (b0010) 2024; 89
Sattar, Ilyas, Bhatti, Ghaffar (b0125) 2019; 209
Baum, Bird, Yu, Ma (b0135) 2022; 7
Zhu, Li, Gong, Mo, Luo, Yan, Yang (b0180) 2023; 62
Yan, Jiang, Chen, Yuan, Min, Cao, Peng, Zhou (b0105) 2023; 43
Qin, Zhang, Luo, Zhang, Wang, Ni, Wang, Zhang, Liu, Zhou, Chen (b0150) 2023; 62
Zhu, Hu, Hu, Yang, Sun, Yang, Zou, Hou, Ji (b0200) 2024
Wang, Xu, Sun, Tu, Duan (b0110) 2023; 11
Yu, Guo, Shang, Zhang, Xu (b0055) 2022; 11
Mao, Ye, Zhang, Xie, Zeng, Davey, Guo, Qiao (b0015) 2022; 15
Zhang, Xu, Makuza, Zhu, Wang, Hong, Long, Deng, Zou, Hou, Ji (b0090) 2023; 452
Xu, Zhang, Ge, Zhang, Song, Tian, Deng, Zou, Hou, Ji (b0165) 2024; 434
Yang, Zhang, Cao, Jing, Chen, Wang (b0230) 2020; 8
Cornelio, Zanoletti, Bontempi (b0070) 2024; 46
Qu, Zhang, Zhao, Qiu, Chen, Zhou, Li, Gao, Wang, Yin (b0100) 2023; 25
Li, Li, Wang, Guo (b0225) 2017; 342
Yang, Yang, Cao, Wang, Liu, Sun, Zhao, Zhang, Sun (b0205) 2019; 236
Ilyas, Srivastava, Kim (b0145) 2023; 170
Zhang, Xu, Silvester, Banks, Deng, Zou, Hou, Ji (b0155) 2024; 589
Ma, Zhou, Tang, Liu, Gan, Yang (b0220) 2021; 175
Dang, Hou, Min, Wu, Xu, Shi (b0195) 2022; 435
Leng, Wang, Peng, Tang, Xu, Liu, Wang (b0250) 2021; 17
Milian (10.1016/j.seppur.2024.128486_b0040) 2024; 910
Ma (10.1016/j.seppur.2024.128486_b0220) 2021; 175
Zhang (10.1016/j.seppur.2024.128486_b0155) 2024; 589
Yan (10.1016/j.seppur.2024.128486_b0105) 2023; 43
Yang (10.1016/j.seppur.2024.128486_b0075) 2023; 11
Xie (10.1016/j.seppur.2024.128486_b0170) 2023; 318
Ma (10.1016/j.seppur.2024.128486_b0185) 2021; 402
Qu (10.1016/j.seppur.2024.128486_b0060) 2022; 150
Cornelio (10.1016/j.seppur.2024.128486_b0070) 2024; 46
Zhu (10.1016/j.seppur.2024.128486_b0200) 2024
Baum (10.1016/j.seppur.2024.128486_b0135) 2022; 7
Natarajan (10.1016/j.seppur.2024.128486_b0020) 2018; 8
Sarkar (10.1016/j.seppur.2024.128486_b0080) 2024; 200
Huang (10.1016/j.seppur.2024.128486_b0035) 2022; 14
Makuza (10.1016/j.seppur.2024.128486_b0190) 2021; 174
Leng (10.1016/j.seppur.2024.128486_b0250) 2021; 17
He (10.1016/j.seppur.2024.128486_b0065) 2023; 25
Zha (10.1016/j.seppur.2024.128486_b0160) 2023; 35
Fan (10.1016/j.seppur.2024.128486_b0130) 2021; 863
Mao (10.1016/j.seppur.2024.128486_b0015) 2022; 15
Gu (10.1016/j.seppur.2024.128486_b0175) 2023; 169
Fan (10.1016/j.seppur.2024.128486_b0005) 2023; 463
Vieceli (10.1016/j.seppur.2024.128486_b0115) 2023; 11
Wei (10.1016/j.seppur.2024.128486_b0050) 2023; 866
Qu (10.1016/j.seppur.2024.128486_b0100) 2023; 25
Xu (10.1016/j.seppur.2024.128486_b0165) 2024; 434
Yang (10.1016/j.seppur.2024.128486_b0205) 2019; 236
Yang (10.1016/j.seppur.2024.128486_b0230) 2020; 8
Zhu (10.1016/j.seppur.2024.128486_b0180) 2023; 62
Zhang (10.1016/j.seppur.2024.128486_b0090) 2023; 452
Wang (10.1016/j.seppur.2024.128486_b0110) 2023; 11
Li (10.1016/j.seppur.2024.128486_b0140) 2021; 23
Qin (10.1016/j.seppur.2024.128486_b0150) 2023; 62
Chen (10.1016/j.seppur.2024.128486_b0025) 2019; 3
Ilyas (10.1016/j.seppur.2024.128486_b0145) 2023; 170
Li (10.1016/j.seppur.2024.128486_b0240) 2015; 159
Yu (10.1016/j.seppur.2024.128486_b0030) 2023; 476
Liu (10.1016/j.seppur.2024.128486_b0120) 2020; 245
Roy (10.1016/j.seppur.2024.128486_b0045) 2023; 7
Zhang (10.1016/j.seppur.2024.128486_b0235) 2023; 11
Li (10.1016/j.seppur.2024.128486_b0225) 2017; 342
Lin (10.1016/j.seppur.2024.128486_b0095) 2023; 16
Yu (10.1016/j.seppur.2024.128486_b0055) 2022; 11
Li (10.1016/j.seppur.2024.128486_b0245) 2023; 81
Li (10.1016/j.seppur.2024.128486_b0010) 2024; 89
You (10.1016/j.seppur.2024.128486_b0085) 2023; 428
Ilyas (10.1016/j.seppur.2024.128486_b0210) 2022; 154
Li (10.1016/j.seppur.2024.128486_b0215) 2023; 25
Dang (10.1016/j.seppur.2024.128486_b0195) 2022; 435
Sattar (10.1016/j.seppur.2024.128486_b0125) 2019; 209
References_xml – volume: 863
  year: 2021
  ident: b0130
  article-title: Separation and recovery of valuable metals from spent lithium-ion batteries via concentrated sulfuric acid leaching and regeneration of LiNi
  publication-title: J. Alloys Compd.
– volume: 236
  year: 2019
  ident: b0205
  article-title: Direct preparation of efficient catalyst for oxygen evolution reaction and high-purity Li
  publication-title: J. Cleaner Prod.
– volume: 11
  start-page: 100155
  year: 2022
  ident: b0055
  article-title: A review on comprehensive recycling of spent power lithium-ion battery in China
  publication-title: eTransportation
– volume: 46
  year: 2024
  ident: b0070
  article-title: Recent progress in pyrometallurgy for the recovery of spent lithium-ion batteries: a review of state-of-the-art developments
  publication-title: Curr. Opin. Green Sust.
– volume: 11
  year: 2023
  ident: b0075
  article-title: Sodium sulfite roasting for preferential lithium extraction from cathode material of spent lithium-ion batteries
  publication-title: J. Environ. Chem. Eng.
– volume: 11
  start-page: 16124
  year: 2023
  end-page: 16132
  ident: b0235
  article-title: Design and optimization of an economically viable and highly efficient strategy for Li recycling from spent LiFePO
  publication-title: ACS Sustain. Chem. Eng.
– volume: 342
  start-page: 495
  year: 2017
  end-page: 503
  ident: b0225
  article-title: A short process for the efficient utilization of transition-metal chlorides in lithium-ion batteries: a case of Ni
  publication-title: J. Power Sources
– volume: 463
  year: 2023
  ident: b0005
  article-title: Development and challenges of deep eutectic solvents for cathode recycling of end-of-life lithium-ion batteries
  publication-title: Chem. Eng. J.
– volume: 17
  start-page: 2006869
  year: 2021
  ident: b0250
  article-title: Highly-dispersed submicrometer single-crystal nickel-rich layered cathode: spray synthesis and accelerated lithium-ion transport
  publication-title: Small
– volume: 14
  start-page: 9724
  year: 2022
  end-page: 9735
  ident: b0035
  article-title: Preparation of single-crystal ternary cathode materials recycling spent cathodes for high performance lithium-ion batteries
  publication-title: Nanoscale
– volume: 11
  start-page: 11199
  year: 2023
  end-page: 11206
  ident: b0110
  article-title: Separation and regeneration of LiNi
  publication-title: ACS Sustain. Chem. Eng.
– volume: 910
  year: 2024
  ident: b0040
  article-title: A comprehensive review of emerging technologies for recycling spent lithium-ion batteries
  publication-title: Sci. Total Environ.
– volume: 589
  year: 2024
  ident: b0155
  article-title: Direct regeneration of cathode materials in spent lithium-ion batteries toward closed-loop recycling and sustainability
  publication-title: J. Power Sources
– volume: 245
  year: 2020
  ident: b0120
  article-title: An integrated process for the separation and recovery of valuable metals from the spent LiNi
  publication-title: Sep. Purif. Technol.
– volume: 62
  start-page: e202300074
  year: 2023
  ident: b0180
  article-title: Recycling valuable metals from spent lithium-ion batteries using carbothermal shock method
  publication-title: Angew. Chem. Int. Ed.
– volume: 25
  start-page: 4022
  year: 2023
  end-page: 4028
  ident: b0215
  article-title: Spray pyrolysis technology-based closed-loop for regenerating single-crystal cathodes from spent lithium-ion batteries
  publication-title: Green Chem.
– volume: 159
  start-page: 39
  year: 2015
  end-page: 42
  ident: b0240
  article-title: Electrochemical properties of LiNi
  publication-title: Mater. Lett.
– volume: 200
  year: 2024
  ident: b0080
  article-title: Sustainable recovery and resynthesis of electroactive materials from spent Li-ion batteries to ensure material sustainability
  publication-title: Resour. Conserv. Recycl.
– volume: 3
  start-page: 2622
  year: 2019
  end-page: 2646
  ident: b0025
  article-title: Recycling end-of-life electric vehicle lithium-ion batteries
  publication-title: Joule
– volume: 154
  start-page: 175
  year: 2022
  end-page: 186
  ident: b0210
  article-title: Recovery of critical metals from spent Li-ion batteries: sequential leaching, precipitation, and cobalt–nickel separation using Cyphos IL104
  publication-title: Waste Manag.
– volume: 435
  year: 2022
  ident: b0195
  article-title: Electro-oxidation: a win–win strategy for the selective recovery of Li
  publication-title: Chem. Eng. J.
– volume: 402
  year: 2021
  ident: b0185
  article-title: A promising selective recovery process of valuable metals from spent lithium ion batteries via reduction roasting and ammonia leaching
  publication-title: J. Hazard. Mater.
– volume: 476
  year: 2023
  ident: b0030
  article-title: Recent progress on sustainable recycling of spent lithium-ion battery: Efficient and closed-loop regeneration strategies for high-capacity layered NCM cathode materials
  publication-title: Chem. Eng. J.
– volume: 89
  start-page: 144
  year: 2024
  end-page: 171
  ident: b0010
  article-title: Progress, challenges, and prospects of spent lithium-ion batteries recycling: a review
  publication-title: J. Energy Chem.
– volume: 452
  year: 2023
  ident: b0090
  article-title: Selective lithium extraction and regeneration of LiCoO
  publication-title: Chem. Eng. J.
– volume: 169
  start-page: 32
  year: 2023
  end-page: 42
  ident: b0175
  article-title: Closed-loop recycling of spent lithium-ion batteries based on selective sulfidation: an unconventional approach
  publication-title: Waste Manage.
– volume: 150
  start-page: 66
  year: 2022
  end-page: 74
  ident: b0060
  article-title: Efficient separation and recovery of lithium through volatilization in the recycling process of spent lithium-ion batteries
  publication-title: Waste Manag.
– volume: 7
  start-page: 450
  year: 2023
  end-page: 456
  ident: b0045
  article-title: Microbial recycling of lithium-ion batteries: challenges and outlook
  publication-title: Joule
– volume: 428
  year: 2023
  ident: b0085
  article-title: Recycling valuable metals from spent lithium-ion battery cathode materials based on microwave-assisted hydrogen reduction followed by grind-leaching and magnetic separation
  publication-title: J. Cleaner Prod.
– volume: 318
  year: 2023
  ident: b0170
  article-title: Sustainable and selective recovery of lithium from spent lithium-ion batteries based on hydrogen reduction: theoretical analysis and phase transformation
  publication-title: Sep. Purif. Technol.
– volume: 16
  start-page: 745
  year: 2023
  end-page: 791
  ident: b0095
  article-title: Carbon neutrality strategies for sustainable batteries: from structure, recycling, and properties to applications
  publication-title: Energy Environ. Sci.
– volume: 25
  start-page: 2992
  year: 2023
  end-page: 3015
  ident: b0100
  article-title: Salt-thermal methods for recycling and regenerating spent lithium-ion batteries: a review
  publication-title: Green Chem.
– volume: 434
  year: 2024
  ident: b0165
  article-title: Advances and perspectives towards spent LiFePO
  publication-title: J. Cleaner Prod.
– volume: 11
  start-page: 9662
  year: 2023
  end-page: 9673
  ident: b0115
  article-title: Recycling of lithium-ion batteries: effect of hydrogen peroxide and a dosing method on the leaching of LCO, NMC oxides, and industrial black mass
  publication-title: ACS Sustain. Chem. Eng.
– volume: 15
  start-page: 2732
  year: 2022
  end-page: 2752
  ident: b0015
  article-title: Toward practical lithium-ion battery recycling: adding value, tackling circularity and recycling-oriented design
  publication-title: Energy Environ. Sci.
– start-page: 569
  year: 2024
  end-page: 577
  ident: b0200
  article-title: Redox-mediated recycling of spent lithium-ion batteries coupled with low-energy consumption hydrogen production
  publication-title: ACS Energy Lett.
– volume: 62
  start-page: e202218672
  year: 2023
  ident: b0150
  article-title: A Universal molten salt method for direct upcycling of spent Ni-rich cathode towards single-crystalline li-rich cathode
  publication-title: Angew. Chem. Int. Ed.
– volume: 43
  start-page: 915
  year: 2023
  end-page: 941
  ident: b0105
  article-title: Engineering classification recycling of spent lithium-ion batteries through pretreatment: a comprehensive review from laboratory to scale-up application
  publication-title: Rare Metals
– volume: 81
  start-page: 404
  year: 2023
  end-page: 409
  ident: b0245
  article-title: Diluted low concentration electrolyte for interphase stabilization of high-voltage LiNi
  publication-title: J. Energy Chem.
– volume: 866
  year: 2023
  ident: b0050
  article-title: Spent lithium ion battery (LIB) recycle from electric vehicles: a mini-review
  publication-title: Sci. Total Environ.
– volume: 8
  start-page: 1802303
  year: 2018
  ident: b0020
  article-title: Burgeoning prospects of spent lithium-ion batteries in multifarious applications
  publication-title: Adv. Energy Mater.
– volume: 25
  start-page: 6561
  year: 2023
  end-page: 6580
  ident: b0065
  article-title: Combined pyro-hydrometallurgical technology for recovering valuable metal elements from spent lithium-ion batteries: a review of recent developments
  publication-title: Green Chem.
– volume: 170
  start-page: 584
  year: 2023
  end-page: 595
  ident: b0145
  article-title: Cradle-to-cradle recycling of spent NMC batteries with emphasis on novel Co
  publication-title: Process Saf. Environ. Prot.
– volume: 7
  start-page: 712
  year: 2022
  end-page: 719
  ident: b0135
  article-title: Lithium-ion battery recycling─overview of techniques and trends
  publication-title: ACS Energy Lett.
– volume: 23
  start-page: 6139
  year: 2021
  end-page: 6171
  ident: b0140
  article-title: Recycling of spent lithium-ion batteries in view of green chemistry
  publication-title: Green Chem.
– volume: 175
  year: 2021
  ident: b0220
  article-title: One-step selective recovery and cyclic utilization of valuable metals from spent lithium-ion batteries via low-temperature chlorination pyrolysis
  publication-title: Resour. Conserv. Recycl.
– volume: 209
  start-page: 725
  year: 2019
  end-page: 733
  ident: b0125
  article-title: Resource recovery of critically-rare metals by hydrometallurgical recycling of spent lithium ion batteries
  publication-title: Sep. Purif. Technol.
– volume: 35
  start-page: e00575
  year: 2023
  ident: b0160
  article-title: High separation efficiency of ternary cathode materials from spent lithium-ion batteries by ternary molten Li-salt method
  publication-title: Sustain. Mater. Techno.
– volume: 174
  year: 2021
  ident: b0190
  article-title: Dry grinding - carbonated ultrasound-assisted water leaching of carbothermally reduced lithium-ion battery black mass towards enhanced selective extraction of lithium and recovery of high-value metals
  publication-title: Resour. Conserv. Recycl.
– volume: 8
  start-page: 15732
  year: 2020
  end-page: 15739
  ident: b0230
  article-title: Sustainable and facile process for lithium recovery from spent LiNi
  publication-title: ACS Sustain. Chem. Eng.
– volume: 11
  start-page: 11199
  year: 2023
  ident: 10.1016/j.seppur.2024.128486_b0110
  article-title: Separation and regeneration of LiNi1/3Co1/3Mn1/3O2 materials from spent lithium-ion batteries: a facile process
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.3c01917
– volume: 25
  start-page: 4022
  year: 2023
  ident: 10.1016/j.seppur.2024.128486_b0215
  article-title: Spray pyrolysis technology-based closed-loop for regenerating single-crystal cathodes from spent lithium-ion batteries
  publication-title: Green Chem.
  doi: 10.1039/D3GC00197K
– volume: 11
  start-page: 9662
  year: 2023
  ident: 10.1016/j.seppur.2024.128486_b0115
  article-title: Recycling of lithium-ion batteries: effect of hydrogen peroxide and a dosing method on the leaching of LCO, NMC oxides, and industrial black mass
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.3c01238
– volume: 8
  start-page: 15732
  year: 2020
  ident: 10.1016/j.seppur.2024.128486_b0230
  article-title: Sustainable and facile process for lithium recovery from spent LiNixCoyMnzO2 cathode materials via selective sulfation with ammonium sulfate
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c05676
– volume: 866
  year: 2023
  ident: 10.1016/j.seppur.2024.128486_b0050
  article-title: Spent lithium ion battery (LIB) recycle from electric vehicles: a mini-review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.161380
– volume: 154
  start-page: 175
  year: 2022
  ident: 10.1016/j.seppur.2024.128486_b0210
  article-title: Recovery of critical metals from spent Li-ion batteries: sequential leaching, precipitation, and cobalt–nickel separation using Cyphos IL104
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2022.10.005
– volume: 46
  year: 2024
  ident: 10.1016/j.seppur.2024.128486_b0070
  article-title: Recent progress in pyrometallurgy for the recovery of spent lithium-ion batteries: a review of state-of-the-art developments
  publication-title: Curr. Opin. Green Sust.
– volume: 209
  start-page: 725
  year: 2019
  ident: 10.1016/j.seppur.2024.128486_b0125
  article-title: Resource recovery of critically-rare metals by hydrometallurgical recycling of spent lithium ion batteries
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2018.09.019
– volume: 245
  year: 2020
  ident: 10.1016/j.seppur.2024.128486_b0120
  article-title: An integrated process for the separation and recovery of valuable metals from the spent LiNi0.5Co0.2Mn0.3O2 cathode materials
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2020.116869
– volume: 23
  start-page: 6139
  year: 2021
  ident: 10.1016/j.seppur.2024.128486_b0140
  article-title: Recycling of spent lithium-ion batteries in view of green chemistry
  publication-title: Green Chem.
  doi: 10.1039/D1GC01639C
– volume: 236
  year: 2019
  ident: 10.1016/j.seppur.2024.128486_b0205
  article-title: Direct preparation of efficient catalyst for oxygen evolution reaction and high-purity Li2CO3 from spent LiNi0.5Mn0.3Co0.2O2 batteries
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2019.07.051
– volume: 25
  start-page: 2992
  year: 2023
  ident: 10.1016/j.seppur.2024.128486_b0100
  article-title: Salt-thermal methods for recycling and regenerating spent lithium-ion batteries: a review
  publication-title: Green Chem.
  doi: 10.1039/D2GC04620B
– volume: 434
  year: 2024
  ident: 10.1016/j.seppur.2024.128486_b0165
  article-title: Advances and perspectives towards spent LiFePO4 battery recycling
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2023.140077
– volume: 402
  year: 2021
  ident: 10.1016/j.seppur.2024.128486_b0185
  article-title: A promising selective recovery process of valuable metals from spent lithium ion batteries via reduction roasting and ammonia leaching
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.123491
– volume: 8
  start-page: 1802303
  year: 2018
  ident: 10.1016/j.seppur.2024.128486_b0020
  article-title: Burgeoning prospects of spent lithium-ion batteries in multifarious applications
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802303
– volume: 35
  start-page: e00575
  year: 2023
  ident: 10.1016/j.seppur.2024.128486_b0160
  article-title: High separation efficiency of ternary cathode materials from spent lithium-ion batteries by ternary molten Li-salt method
  publication-title: Sustain. Mater. Techno.
– volume: 11
  start-page: 16124
  year: 2023
  ident: 10.1016/j.seppur.2024.128486_b0235
  article-title: Design and optimization of an economically viable and highly efficient strategy for Li recycling from spent LiFePO4 batteries
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.3c03797
– volume: 11
  start-page: 100155
  year: 2022
  ident: 10.1016/j.seppur.2024.128486_b0055
  article-title: A review on comprehensive recycling of spent power lithium-ion battery in China
  publication-title: eTransportation
  doi: 10.1016/j.etran.2022.100155
– volume: 476
  year: 2023
  ident: 10.1016/j.seppur.2024.128486_b0030
  article-title: Recent progress on sustainable recycling of spent lithium-ion battery: Efficient and closed-loop regeneration strategies for high-capacity layered NCM cathode materials
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.146733
– volume: 428
  year: 2023
  ident: 10.1016/j.seppur.2024.128486_b0085
  article-title: Recycling valuable metals from spent lithium-ion battery cathode materials based on microwave-assisted hydrogen reduction followed by grind-leaching and magnetic separation
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2023.139488
– volume: 17
  start-page: 2006869
  year: 2021
  ident: 10.1016/j.seppur.2024.128486_b0250
  article-title: Highly-dispersed submicrometer single-crystal nickel-rich layered cathode: spray synthesis and accelerated lithium-ion transport
  publication-title: Small
  doi: 10.1002/smll.202006869
– volume: 14
  start-page: 9724
  year: 2022
  ident: 10.1016/j.seppur.2024.128486_b0035
  article-title: Preparation of single-crystal ternary cathode materials recycling spent cathodes for high performance lithium-ion batteries
  publication-title: Nanoscale
  doi: 10.1039/D2NR00993E
– volume: 174
  year: 2021
  ident: 10.1016/j.seppur.2024.128486_b0190
  article-title: Dry grinding - carbonated ultrasound-assisted water leaching of carbothermally reduced lithium-ion battery black mass towards enhanced selective extraction of lithium and recovery of high-value metals
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2021.105784
– volume: 342
  start-page: 495
  year: 2017
  ident: 10.1016/j.seppur.2024.128486_b0225
  article-title: A short process for the efficient utilization of transition-metal chlorides in lithium-ion batteries: a case of Ni0.8Co0.1Mn0.1O1.1 and LiNi0.8Co0.1Mn0.1O2
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.12.095
– volume: 159
  start-page: 39
  year: 2015
  ident: 10.1016/j.seppur.2024.128486_b0240
  article-title: Electrochemical properties of LiNi0.6Co0.2Mn0.2O2 as cathode material for Li-ion batteries prepared by ultrasonic spray pyrolysis
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2015.06.075
– volume: 16
  start-page: 745
  year: 2023
  ident: 10.1016/j.seppur.2024.128486_b0095
  article-title: Carbon neutrality strategies for sustainable batteries: from structure, recycling, and properties to applications
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE03257K
– volume: 200
  year: 2024
  ident: 10.1016/j.seppur.2024.128486_b0080
  article-title: Sustainable recovery and resynthesis of electroactive materials from spent Li-ion batteries to ensure material sustainability
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2023.107292
– volume: 910
  year: 2024
  ident: 10.1016/j.seppur.2024.128486_b0040
  article-title: A comprehensive review of emerging technologies for recycling spent lithium-ion batteries
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2023.168543
– volume: 170
  start-page: 584
  year: 2023
  ident: 10.1016/j.seppur.2024.128486_b0145
  article-title: Cradle-to-cradle recycling of spent NMC batteries with emphasis on novel Co2+/Ni2+ separation from HCl leached solution and synthesis of new ternary precursor
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2022.12.045
– volume: 25
  start-page: 6561
  year: 2023
  ident: 10.1016/j.seppur.2024.128486_b0065
  article-title: Combined pyro-hydrometallurgical technology for recovering valuable metal elements from spent lithium-ion batteries: a review of recent developments
  publication-title: Green Chem.
  doi: 10.1039/D3GC01077E
– volume: 863
  year: 2021
  ident: 10.1016/j.seppur.2024.128486_b0130
  article-title: Separation and recovery of valuable metals from spent lithium-ion batteries via concentrated sulfuric acid leaching and regeneration of LiNi1/3Co1/3Mn1/3O2
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2021.158775
– volume: 3
  start-page: 2622
  year: 2019
  ident: 10.1016/j.seppur.2024.128486_b0025
  article-title: Recycling end-of-life electric vehicle lithium-ion batteries
  publication-title: Joule
  doi: 10.1016/j.joule.2019.09.014
– volume: 463
  year: 2023
  ident: 10.1016/j.seppur.2024.128486_b0005
  article-title: Development and challenges of deep eutectic solvents for cathode recycling of end-of-life lithium-ion batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.142278
– volume: 169
  start-page: 32
  year: 2023
  ident: 10.1016/j.seppur.2024.128486_b0175
  article-title: Closed-loop recycling of spent lithium-ion batteries based on selective sulfidation: an unconventional approach
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2023.06.027
– volume: 81
  start-page: 404
  year: 2023
  ident: 10.1016/j.seppur.2024.128486_b0245
  article-title: Diluted low concentration electrolyte for interphase stabilization of high-voltage LiNi0.5Mn1.5O4 cathode
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2023.02.014
– volume: 89
  start-page: 144
  year: 2024
  ident: 10.1016/j.seppur.2024.128486_b0010
  article-title: Progress, challenges, and prospects of spent lithium-ion batteries recycling: a review
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2023.10.012
– volume: 62
  start-page: e202218672
  year: 2023
  ident: 10.1016/j.seppur.2024.128486_b0150
  article-title: A Universal molten salt method for direct upcycling of spent Ni-rich cathode towards single-crystalline li-rich cathode
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202218672
– volume: 150
  start-page: 66
  year: 2022
  ident: 10.1016/j.seppur.2024.128486_b0060
  article-title: Efficient separation and recovery of lithium through volatilization in the recycling process of spent lithium-ion batteries
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2022.06.039
– volume: 7
  start-page: 712
  year: 2022
  ident: 10.1016/j.seppur.2024.128486_b0135
  article-title: Lithium-ion battery recycling─overview of techniques and trends
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c02602
– volume: 589
  year: 2024
  ident: 10.1016/j.seppur.2024.128486_b0155
  article-title: Direct regeneration of cathode materials in spent lithium-ion batteries toward closed-loop recycling and sustainability
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2023.233728
– volume: 318
  year: 2023
  ident: 10.1016/j.seppur.2024.128486_b0170
  article-title: Sustainable and selective recovery of lithium from spent lithium-ion batteries based on hydrogen reduction: theoretical analysis and phase transformation
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2023.123972
– volume: 175
  year: 2021
  ident: 10.1016/j.seppur.2024.128486_b0220
  article-title: One-step selective recovery and cyclic utilization of valuable metals from spent lithium-ion batteries via low-temperature chlorination pyrolysis
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2021.105840
– start-page: 569
  year: 2024
  ident: 10.1016/j.seppur.2024.128486_b0200
  article-title: Redox-mediated recycling of spent lithium-ion batteries coupled with low-energy consumption hydrogen production
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.3c02256
– volume: 62
  start-page: e202300074
  year: 2023
  ident: 10.1016/j.seppur.2024.128486_b0180
  article-title: Recycling valuable metals from spent lithium-ion batteries using carbothermal shock method
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202300074
– volume: 7
  start-page: 450
  year: 2023
  ident: 10.1016/j.seppur.2024.128486_b0045
  article-title: Microbial recycling of lithium-ion batteries: challenges and outlook
  publication-title: Joule
  doi: 10.1016/j.joule.2023.01.004
– volume: 43
  start-page: 915
  year: 2023
  ident: 10.1016/j.seppur.2024.128486_b0105
  article-title: Engineering classification recycling of spent lithium-ion batteries through pretreatment: a comprehensive review from laboratory to scale-up application
  publication-title: Rare Metals
  doi: 10.1007/s12598-023-02377-y
– volume: 15
  start-page: 2732
  year: 2022
  ident: 10.1016/j.seppur.2024.128486_b0015
  article-title: Toward practical lithium-ion battery recycling: adding value, tackling circularity and recycling-oriented design
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE00162D
– volume: 11
  year: 2023
  ident: 10.1016/j.seppur.2024.128486_b0075
  article-title: Sodium sulfite roasting for preferential lithium extraction from cathode material of spent lithium-ion batteries
  publication-title: J. Environ. Chem. Eng.
– volume: 452
  year: 2023
  ident: 10.1016/j.seppur.2024.128486_b0090
  article-title: Selective lithium extraction and regeneration of LiCoO2 cathode materials from the spent lithium-ion battery
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.139258
– volume: 435
  year: 2022
  ident: 10.1016/j.seppur.2024.128486_b0195
  article-title: Electro-oxidation: a win–win strategy for the selective recovery of Li+ from spent lithium-ion batteries and the preparation of highly active catalysts
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.135169
SSID ssj0017182
Score 2.5137236
Snippet [Display omitted] •A spray pyrolysis-based process for spent NCM recycling has been proposed.•Selectively Li recovery and ternary oxide precursor are...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 128486
SubjectTerms Cathode regeneration
Chlorination roasting
End-of-life LIBs
Selective lithium recovery
Spray pyrolysis
Title Preferential lithium extraction and simultaneous ternary cathode precursor synthesis from spent lithium-Ion batteries using a spray pyrolysis-based process
URI https://dx.doi.org/10.1016/j.seppur.2024.128486
Volume 353
WOSCitedRecordID wos001333220700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1383-5866
  databaseCode: AIEXJ
  dateStart: 19970519
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017182
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZL0kN7KH3SNG2ZQ2-Lgtf2ru1jCClJDyGQFLa5GEmWu1tS23jtkP0tveWXdkaSvSZb-oJezCIk2d75PBqNZr5h7P0kn2liTcEPKaSUHE_yRAmPJ2RsSC8PPCVMsYno7Cyez5Pz0eiuy4W5uY6KIr69Tar_KmpsQ2FT6uxfiLufFBvwNwodryh2vP6R4M9d5ZCGfOFoZC-W7bcxquC6qwpOnvIlBRKKQlMArHEJ1usxMbiWGSVOkQ9-VRLNc4H2IVGWmCyUVUWBA25KfopzScPOiZvtcWt8DgL71GI9rtZ1abhOOK2SxERg0hGGlvCFtqzj7omqtqagJdvQbPn7rxZla1aLsviiFqLs44hMMMLnDcSPXLbJ1XLd9oO1VWgnYikd0bjzc_gUUsgH2nQ7Acfoa9xg82lsC7d0Cj2w9MNbi4P1U1Auf4UvdYA3CQ9oeb7PxW1W9wuammam4ydUerjD3vWjaYKac_fw9Hj-sT-rwtXdnKl3j9IlaJoowu17_dwAGhg1l0_YY7cbgUOLoqdspItn7NGAo_I5-z7EEzjhwwZPgNKDIZ7A4QkcnqDHE_R4AsITGDzBAE_Q4wkMnkCAwRPcwxM4PL1gnz4cXx6dcFfRgyvcmjZ8OhFUGiuUSSKSaZx5KtO-StCSCqM8DmSm_MzTgdICO8o8kxO0YGUudI6GrdIqeMl2irLQrxjMJnk-80QmfS8O_SySeSBVqNGgl57ypdpjQfc3p8rR3VPVleu0i2v8mlrhpCSc1Apnj_F-VGXpXn7TP-okmDqT1ZqiKYLulyNf__PIffZw8328YTtN3eq37IG6aZar-p1D5w_vOsvc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preferential+lithium+extraction+and+simultaneous+ternary+cathode+precursor+synthesis+from+spent+lithium-Ion+batteries+using+a+spray+pyrolysis-based+process&rft.jtitle=Separation+and+purification+technology&rft.au=Zhou%2C+Yongchao&rft.au=Li%2C+Yan&rft.au=Chen%2C+Ziyu&rft.au=Zeng%2C+Haibin&rft.date=2025-01-19&rft.pub=Elsevier+B.V&rft.issn=1383-5866&rft.volume=353&rft_id=info:doi/10.1016%2Fj.seppur.2024.128486&rft.externalDocID=S1383586624022251
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-5866&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-5866&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-5866&client=summon