DEVDAN: Deep evolving denoising autoencoder
The Denoising Autoencoder (DAE) enhances the flexibility of data stream method in exploiting unlabeled samples. Nonetheless, the feasibility of DAE for data stream analytic deserves in-depth study because it characterizes a fixed network capacity which cannot adapt to rapidly changing environments....
Uložené v:
| Vydané v: | Neurocomputing (Amsterdam) Ročník 390; s. 297 - 314 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
21.05.2020
|
| Predmet: | |
| ISSN: | 0925-2312, 1872-8286 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The Denoising Autoencoder (DAE) enhances the flexibility of data stream method in exploiting unlabeled samples. Nonetheless, the feasibility of DAE for data stream analytic deserves in-depth study because it characterizes a fixed network capacity which cannot adapt to rapidly changing environments. Deep evolving denoising autoencoder (DEVDAN), is proposed in this paper. It features an open structure in the generative phase and the discriminative phase where the hidden units can be automatically added and discarded on the fly. The generative phase refines the predictive performance of discriminative model exploiting unlabeled data. Furthermore, DEVDAN is free of the problem-specific threshold and works fully in the single-pass learning fashion. We show that DEVDAN can find competitive network architecture compared with state-of-the-art methods on the classification task using ten prominent datasets simulated under the prequential test-then-train protocol. |
|---|---|
| AbstractList | The Denoising Autoencoder (DAE) enhances the flexibility of data stream method in exploiting unlabeled samples. Nonetheless, the feasibility of DAE for data stream analytic deserves in-depth study because it characterizes a fixed network capacity which cannot adapt to rapidly changing environments. Deep evolving denoising autoencoder (DEVDAN), is proposed in this paper. It features an open structure in the generative phase and the discriminative phase where the hidden units can be automatically added and discarded on the fly. The generative phase refines the predictive performance of discriminative model exploiting unlabeled data. Furthermore, DEVDAN is free of the problem-specific threshold and works fully in the single-pass learning fashion. We show that DEVDAN can find competitive network architecture compared with state-of-the-art methods on the classification task using ten prominent datasets simulated under the prequential test-then-train protocol. |
| Author | Ashfahani, Andri Ong, Yew-Soon Lughofer, Edwin Pratama, Mahardhika |
| Author_xml | – sequence: 1 givenname: Andri orcidid: 0000-0002-7126-4412 surname: Ashfahani fullname: Ashfahani, Andri organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore – sequence: 2 givenname: Mahardhika orcidid: 0000-0001-6531-5087 surname: Pratama fullname: Pratama, Mahardhika email: mpratama@ntu.edu.sg organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore – sequence: 3 givenname: Edwin surname: Lughofer fullname: Lughofer, Edwin organization: Johannes Kepler University Linz, Austria – sequence: 4 givenname: Yew-Soon orcidid: 0000-0002-4480-169X surname: Ong fullname: Ong, Yew-Soon organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore |
| BookMark | eNqFj01LAzEURYNUsK3-Axfdy4wvSScz04VQ2voBRTfqNmTevJGUNinJdMB_3yl15UJX774L58IZsYHzjhi75ZBy4Op-kzo6oN-lAniZQt636oINeZGLpBCFGrAhlCJLhOTiio1i3ADwnItyyO6Wq8_l_HU2WRLtJ9T5bWfd16Qm5208JXNoPTn0NYVrdtmYbaSbnztmH4-r98Vzsn57elnM1wlKUG2SQUHTrASBUjVFbkzWYG0aI0tCQlEWHCUhVEpVEinD_qdK1RVlBgUZKcdsdt7F4GMM1Gi0rWmtd20wdqs56JO23uiztj5pa8j7VvXw9Be8D3Znwvd_2MMZo16ssxR0RNt7U20DYatrb_8eOAJneXba |
| CitedBy_id | crossref_primary_10_1016_j_ipm_2023_103532 crossref_primary_10_3390_app13010287 crossref_primary_10_1016_j_ins_2021_11_047 crossref_primary_10_1002_cpe_8034 crossref_primary_10_3390_s22041522 crossref_primary_10_1016_j_expthermflusci_2024_111195 crossref_primary_10_1016_j_ins_2021_09_031 crossref_primary_10_1016_j_ins_2021_05_018 crossref_primary_10_1016_j_neucom_2021_04_112 crossref_primary_10_1007_s00500_021_05995_9 crossref_primary_10_1049_2023_5566781 crossref_primary_10_3390_app13116515 crossref_primary_10_1007_s00521_023_08459_3 crossref_primary_10_1109_TNNLS_2023_3331506 crossref_primary_10_1155_2023_6048087 crossref_primary_10_1016_j_ins_2023_119411 crossref_primary_10_1080_15366367_2023_2246112 crossref_primary_10_1007_s00521_021_05912_z crossref_primary_10_1007_s00521_021_05890_2 crossref_primary_10_1016_j_engappai_2024_109105 crossref_primary_10_1016_j_ins_2021_11_038 crossref_primary_10_3390_rs13091761 crossref_primary_10_1016_j_asoc_2023_110053 crossref_primary_10_1007_s00542_022_05252_5 crossref_primary_10_1007_s10489_020_01869_z crossref_primary_10_1016_j_neucom_2023_126352 crossref_primary_10_1007_s00521_021_06324_9 crossref_primary_10_3390_data6060055 crossref_primary_10_1007_s00521_020_05350_3 crossref_primary_10_1007_s00521_020_05503_4 crossref_primary_10_3390_rs14030682 crossref_primary_10_1016_j_scriptamat_2024_116315 crossref_primary_10_3390_s20143903 crossref_primary_10_1007_s10489_020_02058_8 crossref_primary_10_1145_3494832 crossref_primary_10_1109_TFUZZ_2022_3179148 crossref_primary_10_3390_app131910994 crossref_primary_10_1145_3427476 crossref_primary_10_1007_s12530_020_09350_5 crossref_primary_10_1109_JSTARS_2025_3568715 crossref_primary_10_1016_j_ins_2021_06_075 crossref_primary_10_1007_s00521_021_05787_0 crossref_primary_10_1007_s12530_021_09398_x crossref_primary_10_1177_21582440231182060 crossref_primary_10_1016_j_asoc_2021_107255 crossref_primary_10_1007_s13534_024_00425_9 crossref_primary_10_1016_j_flowmeasinst_2021_102009 crossref_primary_10_3389_frai_2023_1048010 crossref_primary_10_1109_TAI_2021_3067574 crossref_primary_10_1109_TAI_2024_3363116 crossref_primary_10_1007_s00521_020_05201_1 crossref_primary_10_1109_ACCESS_2021_3086529 crossref_primary_10_1109_TNNLS_2022_3163362 crossref_primary_10_3390_s21154968 crossref_primary_10_1007_s10489_020_02150_z crossref_primary_10_1016_j_cmpb_2024_108478 crossref_primary_10_1016_j_comcom_2021_03_004 crossref_primary_10_1007_s10489_023_04694_2 crossref_primary_10_1016_j_inffus_2023_101945 crossref_primary_10_1109_JIOT_2024_3392329 crossref_primary_10_1007_s10772_021_09851_x crossref_primary_10_1109_TETCI_2024_3358377 crossref_primary_10_3390_info16030222 crossref_primary_10_1016_j_ins_2024_121762 crossref_primary_10_3390_app14219758 crossref_primary_10_1002_qj_5009 crossref_primary_10_1109_TPWRS_2022_3204176 crossref_primary_10_3390_app15126455 crossref_primary_10_1016_j_knosys_2022_110172 crossref_primary_10_1016_j_ins_2024_120799 |
| Cites_doi | 10.1109/TCYB.2017.2734043 10.1016/j.enbuild.2015.11.071 10.3233/IDA-2006-10103 10.1007/s10994-012-5320-9 10.1038/ncomms5308 10.1109/TFUZZ.2018.2796099 10.24963/ijcai.2018/369 10.1073/pnas.1611835114 10.1016/S0168-1699(99)00046-0 10.1145/2523813 10.1016/j.neucom.2017.08.043 10.1109/TNN.2011.2160459 10.1109/TPAMI.2013.50 10.1137/1.9781611975673.75 10.1007/978-3-030-05645-2_10 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. |
| Copyright_xml | – notice: 2019 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2019.07.106 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 314 |
| ExternalDocumentID | 10_1016_j_neucom_2019_07_106 S0925231219314535 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c306t-508e45902c36f87aa5fcdafa39ecec2981c3ec0b66b3ce5c81ceb6dbe5ac2ea33 |
| ISICitedReferencesCount | 86 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000531728800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Tue Nov 18 22:00:30 EST 2025 Sat Nov 29 07:16:04 EST 2025 Fri Feb 23 02:47:40 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Denoising autoencoder Incremental learning Data streams |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-508e45902c36f87aa5fcdafa39ecec2981c3ec0b66b3ce5c81ceb6dbe5ac2ea33 |
| ORCID | 0000-0002-4480-169X 0000-0002-7126-4412 0000-0001-6531-5087 |
| PageCount | 18 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_neucom_2019_07_106 crossref_primary_10_1016_j_neucom_2019_07_106 elsevier_sciencedirect_doi_10_1016_j_neucom_2019_07_106 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-05-21 |
| PublicationDateYYYYMMDD | 2020-05-21 |
| PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Murphy (bib0034) 2012 Street, Kim (bib0019) 2001 Gama (bib0005) 2010 Bifet, Holmes, Kirkby, Pfahringer (bib0020) 2010; 11 A. Ashfahani, M. Pratama, E. Lughofer, Q. Cai, H. Sheng, An Online RFID Localization in the Manufacturing Shopfloor, Springer International Publishing, pp. 287–309. doi Stolfo, Fan, Lee, Prodromidis, Chan (bib0023) 2000 J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A.A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran, R. Hadsell, Overcoming Catastrophic Forgetting in Neural Networks, 2016. Cite arxiv Pratama, Pedrycz, Lughofer (bib0025) 2018; 26 D. Sahoo, Q.D. Pham, J. Lu, S.C. Hoi, Online Deep Learning: Learning Deep Neural Networks on the Fly, arXiv preprint arXiv Goodfellow, Bengio, Courville (bib0038) 2016 M. Mohammadi, A.I. Al-Fuqaha, S. Sorour, M. Guizani, Deep Learning for iot Big Data and Streaming Analytics: A Survey, CoRR abs/1712.04301(2017). Gama, Žliobaite, Bifet, Pechenizkiy, Bouchachia (bib0032) 2014; 46 Denil, Shakibi, Dinh, Ranzato, de Freitas (bib0003) 2013; 2 Srivastava, Masci, Kazerounian, Gomez, Schmidhuber (bib0016) 2013; 26 Wang, Li (bib0036) 2017; 47 A. Ashfahani, M. Pratama, Autonomous Deep Learning: Continual Learning Approach for Dynamic Environments, Society for Industrial and Applied Mathematics, pp. 666–674. Candanedo, Feldheim (bib0021) 2016; 112 J. Yoon, E. Yang, J. Lee, S. J. Hwang, Lifelong Learning with Dynamically Expandable Networks (2018). Bengio, Lamblin, Popovici, Larochelle (bib0037) 2006 G. Hinton, O. Vinyals, J. Dean, Distilling the Knowledge in a Neural Network, ArXiv e-prints arXiv Blackard, Dean (bib0018) 1999; 24 Jia, Shelhamer, Donahue, Karayev, Long, Girshick, Guadarrama, Darrell (bib0039) 2014 Bengio, Courville, Vincent (bib0006) 2013; 35 abs/1711.03705 (2017). Hinton, Zemel (bib0033) 1993 Woolson (bib0040) 2007 (2015). Alvares, Salzmann (bib0002) 2016 Pretorius, Kroon, Kamper (bib0007) 2018; 80 Jung, Goetz, Tewari (bib0026) 2017 Vincent, Larochelle, Bengio, Manzagol (bib0011) 2008 Baldi, Sadowski, Whiteson (bib0024) 2014; 5 . Elwell, Polikar (bib0029) 2011; 22 A.A. Rusu, N.C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu, R. Pascanu, R. Hadsell, Progressive Neural Networks, CoRR abs/1606.04671 (2016). Oza Nikunj, Russell Stuart (bib0027) 2001 Y. LeCun, C. Cortes, MNIST Handwritten Digit Database(2010). Zeng, Zhang, Song, Liu, Li, Dobaie (bib0008) 2018; 273 Zhou, Sohn, Lee (bib0010) 2012; 22 M. Pratama, E. Dimla, E. Lughofer, W. Pedrycz, T. Tjahjowidodo, Online Tool Condition Monitoring Based on Parsimonious Ensemble+, CoRR abs/1711.01843 (2017). Gama, Sebastião, Rodrigues (bib0031) 2013; 90 Lopez-Paz, Ranzato (bib0015) 2017; 30 Gama, Fernandes, Rocha (bib0035) 2006; 10 Goodfellow (10.1016/j.neucom.2019.07.106_bib0038) 2016 Jia (10.1016/j.neucom.2019.07.106_bib0039) 2014 Jung (10.1016/j.neucom.2019.07.106_bib0026) 2017 Murphy (10.1016/j.neucom.2019.07.106_bib0034) 2012 Elwell (10.1016/j.neucom.2019.07.106_bib0029) 2011; 22 Gama (10.1016/j.neucom.2019.07.106_bib0031) 2013; 90 Srivastava (10.1016/j.neucom.2019.07.106_sbref0010) 2013; 26 10.1016/j.neucom.2019.07.106_bib0014 Stolfo (10.1016/j.neucom.2019.07.106_bib0023) 2000 10.1016/j.neucom.2019.07.106_bib0017 Baldi (10.1016/j.neucom.2019.07.106_bib0024) 2014; 5 Bengio (10.1016/j.neucom.2019.07.106_bib0006) 2013; 35 10.1016/j.neucom.2019.07.106_bib0013 10.1016/j.neucom.2019.07.106_bib0012 Woolson (10.1016/j.neucom.2019.07.106_bib0040) 2007 Pretorius (10.1016/j.neucom.2019.07.106_sbref0005) 2018; 80 10.1016/j.neucom.2019.07.106_bib0030 Denil (10.1016/j.neucom.2019.07.106_bib0003) 2013; 2 Wang (10.1016/j.neucom.2019.07.106_bib0036) 2017; 47 Zhou (10.1016/j.neucom.2019.07.106_bib0010) 2012; 22 Vincent (10.1016/j.neucom.2019.07.106_bib0011) 2008 Bifet (10.1016/j.neucom.2019.07.106_sbref0013) 2010; 11 Gama (10.1016/j.neucom.2019.07.106_bib0035) 2006; 10 Pratama (10.1016/j.neucom.2019.07.106_bib0025) 2018; 26 Street (10.1016/j.neucom.2019.07.106_bib0019) 2001 Gama (10.1016/j.neucom.2019.07.106_bib0032) 2014; 46 Bengio (10.1016/j.neucom.2019.07.106_bib0037) 2006 Zeng (10.1016/j.neucom.2019.07.106_bib0008) 2018; 273 10.1016/j.neucom.2019.07.106_bib0009 10.1016/j.neucom.2019.07.106_bib0004 10.1016/j.neucom.2019.07.106_bib0028 10.1016/j.neucom.2019.07.106_bib0022 Oza Nikunj (10.1016/j.neucom.2019.07.106_bib0027) 2001 Alvares (10.1016/j.neucom.2019.07.106_bib0002) 2016 Blackard (10.1016/j.neucom.2019.07.106_bib0018) 1999; 24 Hinton (10.1016/j.neucom.2019.07.106_bib0033) 1993 10.1016/j.neucom.2019.07.106_bib0001 Gama (10.1016/j.neucom.2019.07.106_bib0005) 2010 Candanedo (10.1016/j.neucom.2019.07.106_bib0021) 2016; 112 Lopez-Paz (10.1016/j.neucom.2019.07.106_sbref0009) 2017; 30 |
| References_xml | – start-page: 675 year: 2014 end-page: 678 ident: bib0039 article-title: Caffe: Convolutional architecture for fast feature embedding publication-title: Proceedings of the 22nd ACM international conference on Multimedia – start-page: 130 year: 2000 end-page: 144 ident: bib0023 article-title: Cost-based modeling for fraud and intrusion detection: Results from the jam project publication-title: Proceedings of the 2000 DARPA Information Survivability Conference and Exposition – volume: 24 start-page: 131 year: 1999 end-page: 151 ident: bib0018 article-title: Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables publication-title: Comput. Electron. Agric. – reference: G. Hinton, O. Vinyals, J. Dean, Distilling the Knowledge in a Neural Network, ArXiv e-prints arXiv: – start-page: 1096 year: 2008 end-page: 1103 ident: bib0011 article-title: Extracting and composing robust features with denoising autoencoders publication-title: Proceedings of the 25th International Conference on Machine Learning, ICML ’08 – volume: 80 start-page: 4141 year: 2018 end-page: 4150 ident: bib0007 article-title: Learning dynamics of linear denoising autoencoders publication-title: Proceedings of the 35th International Conference on Machine Learning – reference: M. Pratama, E. Dimla, E. Lughofer, W. Pedrycz, T. Tjahjowidodo, Online Tool Condition Monitoring Based on Parsimonious Ensemble+, CoRR abs/1711.01843 (2017). – volume: 26 start-page: 2552 year: 2018 end-page: 2567 ident: bib0025 article-title: Evolving ensemble fuzzy classifier publication-title: IEEE Trans. Fuzzy Syst. – start-page: 3 year: 1993 end-page: 10 ident: bib0033 article-title: Autoencoders, minimum description length and Helmholtz free energy publication-title: Proceedings of the 6th International Conference on Neural Information Processing Systems, NIPS’93 – volume: 22 start-page: 1453 year: 2012 end-page: 1461 ident: bib0010 article-title: Online incremental feature learning with denoising autoencoders publication-title: J. Mach. Learn. Res. – volume: 273 start-page: 643 year: 2018 end-page: 649 ident: bib0008 article-title: Facial expression recognition via learning deep sparse autoencoders publication-title: Neurocomputing – reference: A. Ashfahani, M. Pratama, E. Lughofer, Q. Cai, H. Sheng, An Online RFID Localization in the Manufacturing Shopfloor, Springer International Publishing, pp. 287–309. doi: – year: 2012 ident: bib0034 article-title: Machine Learning: A Probabilistic Perspective – volume: 46 start-page: 44:1 year: 2014 end-page: 44:37 ident: bib0032 article-title: A survey on concept drift adaptation publication-title: ACM Comput. Surv. – start-page: 2270 year: 2016 end-page: 2278 ident: bib0002 article-title: Learning the number of neurons in deep networks publication-title: Advances in Neural Information Processing Systems 29 – reference: M. Mohammadi, A.I. Al-Fuqaha, S. Sorour, M. Guizani, Deep Learning for iot Big Data and Streaming Analytics: A Survey, CoRR abs/1712.04301(2017). – reference: abs/1711.03705 (2017). – reference: (2015). – reference: A. Ashfahani, M. Pratama, Autonomous Deep Learning: Continual Learning Approach for Dynamic Environments, Society for Industrial and Applied Mathematics, pp. 666–674. – volume: 2 start-page: 2148 year: 2013 end-page: 2156 ident: bib0003 article-title: Predicting parameters in deep learning publication-title: Proceedings of the 26th International Conference on Neural Information Processing Systems, NIPS’13 – volume: 47 start-page: 3466 year: 2017 end-page: 3479 ident: bib0036 article-title: Stochastic configuration networks: Fundamentals and algorithms publication-title: IEEE Trans. Cybern. – volume: 112 start-page: 28 year: 2016 end-page: 39 ident: bib0021 article-title: Accurate occupancy detection of an office room from light, temperature, humidity and CO2 measurements using statistical learning models publication-title: Energy Build. – year: 2016 ident: bib0038 article-title: Deep Learning – start-page: 105 year: 2001 end-page: 112 ident: bib0027 article-title: Online bagging and boosting. Jaakkola Tommi and richardson thomas, editors publication-title: Proceedings of Eighth International Workshop on Artificial Intelligence and Statistics – volume: 10 start-page: 23 year: 2006 end-page: 45 ident: bib0035 article-title: Decision trees for mining data streams publication-title: Intell. Data Anal. – volume: 22 start-page: 1517 year: 2011 end-page: 1531 ident: bib0029 article-title: Incremental learning of concept drift in nonstationary environments publication-title: Trans. Neural Netw. – start-page: 1 year: 2007 end-page: 3 ident: bib0040 article-title: Wilcoxon Signed-rank Test publication-title: Wiley Encyclopedia of Clinical Trials – volume: 11 start-page: 1601 year: 2010 end-page: 1604 ident: bib0020 article-title: Moa: massive online analysis publication-title: J. Mach. Learn. Res. – reference: Y. LeCun, C. Cortes, MNIST Handwritten Digit Database(2010). – reference: . – volume: 26 start-page: 2310 year: 2013 end-page: 2318 ident: bib0016 article-title: Compete to compute publication-title: Advances in Neural Information Processing Systems – reference: J. Yoon, E. Yang, J. Lee, S. J. Hwang, Lifelong Learning with Dynamically Expandable Networks (2018). – volume: 5 start-page: 4308 year: 2014 ident: bib0024 article-title: Searching for exotic particles in high-energy physics with deep learning. publication-title: Nat. Commun. – reference: A.A. Rusu, N.C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu, R. Pascanu, R. Hadsell, Progressive Neural Networks, CoRR abs/1606.04671 (2016). – reference: D. Sahoo, Q.D. Pham, J. Lu, S.C. Hoi, Online Deep Learning: Learning Deep Neural Networks on the Fly, arXiv preprint arXiv: – volume: 30 start-page: 6467 year: 2017 end-page: 6476 ident: bib0015 article-title: Gradient episodic memory for continual learning publication-title: Advances in Neural Information Processing Systems – volume: 90 start-page: 317 year: 2013 end-page: 346 ident: bib0031 article-title: On evaluating stream learning algorithms publication-title: Mach. Learn. – reference: J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A.A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran, R. Hadsell, Overcoming Catastrophic Forgetting in Neural Networks, 2016. Cite arxiv: – volume: 35 start-page: 1798 year: 2013 end-page: 1828 ident: bib0006 article-title: Representation learning: a review and new perspectives publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 919 year: 2017 end-page: 928 ident: bib0026 article-title: Online multiclass boosting publication-title: Proceedings of Advances in Neural Information Processing Systems – year: 2010 ident: bib0005 article-title: Knowledge Discovery from Data Streams – start-page: 377 year: 2001 end-page: 382 ident: bib0019 article-title: A streaming ensemble algorithm (sea) for large-scale classification publication-title: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’01 – start-page: 153 year: 2006 end-page: 160 ident: bib0037 article-title: Greedy layer-wise training of deep networks publication-title: Proceedings of the 19th International Conference on Neural Information Processing Systems, NIPS’06 – start-page: 2270 year: 2016 ident: 10.1016/j.neucom.2019.07.106_bib0002 article-title: Learning the number of neurons in deep networks – volume: 47 start-page: 3466 issue: 10 year: 2017 ident: 10.1016/j.neucom.2019.07.106_bib0036 article-title: Stochastic configuration networks: Fundamentals and algorithms publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2734043 – volume: 11 start-page: 1601 year: 2010 ident: 10.1016/j.neucom.2019.07.106_sbref0013 article-title: Moa: massive online analysis publication-title: J. Mach. Learn. Res. – year: 2016 ident: 10.1016/j.neucom.2019.07.106_bib0038 – start-page: 1096 year: 2008 ident: 10.1016/j.neucom.2019.07.106_bib0011 article-title: Extracting and composing robust features with denoising autoencoders – start-page: 153 year: 2006 ident: 10.1016/j.neucom.2019.07.106_bib0037 article-title: Greedy layer-wise training of deep networks – start-page: 675 year: 2014 ident: 10.1016/j.neucom.2019.07.106_bib0039 article-title: Caffe: Convolutional architecture for fast feature embedding – volume: 112 start-page: 28 year: 2016 ident: 10.1016/j.neucom.2019.07.106_bib0021 article-title: Accurate occupancy detection of an office room from light, temperature, humidity and CO2 measurements using statistical learning models publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.11.071 – volume: 10 start-page: 23 issue: 1 year: 2006 ident: 10.1016/j.neucom.2019.07.106_bib0035 article-title: Decision trees for mining data streams publication-title: Intell. Data Anal. doi: 10.3233/IDA-2006-10103 – volume: 90 start-page: 317 issue: 3 year: 2013 ident: 10.1016/j.neucom.2019.07.106_bib0031 article-title: On evaluating stream learning algorithms publication-title: Mach. Learn. doi: 10.1007/s10994-012-5320-9 – ident: 10.1016/j.neucom.2019.07.106_bib0001 – year: 2010 ident: 10.1016/j.neucom.2019.07.106_bib0005 – ident: 10.1016/j.neucom.2019.07.106_bib0017 – volume: 5 start-page: 4308 year: 2014 ident: 10.1016/j.neucom.2019.07.106_bib0024 article-title: Searching for exotic particles in high-energy physics with deep learning. publication-title: Nat. Commun. doi: 10.1038/ncomms5308 – start-page: 105 year: 2001 ident: 10.1016/j.neucom.2019.07.106_bib0027 article-title: Online bagging and boosting. Jaakkola Tommi and richardson thomas, editors – volume: 26 start-page: 2552 issue: 5 year: 2018 ident: 10.1016/j.neucom.2019.07.106_bib0025 article-title: Evolving ensemble fuzzy classifier publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2018.2796099 – ident: 10.1016/j.neucom.2019.07.106_bib0012 doi: 10.24963/ijcai.2018/369 – volume: 26 start-page: 2310 year: 2013 ident: 10.1016/j.neucom.2019.07.106_sbref0010 article-title: Compete to compute – start-page: 130 year: 2000 ident: 10.1016/j.neucom.2019.07.106_bib0023 article-title: Cost-based modeling for fraud and intrusion detection: Results from the jam project – volume: 22 start-page: 1453 year: 2012 ident: 10.1016/j.neucom.2019.07.106_bib0010 article-title: Online incremental feature learning with denoising autoencoders publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.neucom.2019.07.106_bib0030 doi: 10.1073/pnas.1611835114 – ident: 10.1016/j.neucom.2019.07.106_bib0009 – volume: 24 start-page: 131 year: 1999 ident: 10.1016/j.neucom.2019.07.106_bib0018 article-title: Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables publication-title: Comput. Electron. Agric. doi: 10.1016/S0168-1699(99)00046-0 – volume: 46 start-page: 44:1 issue: 4 year: 2014 ident: 10.1016/j.neucom.2019.07.106_bib0032 article-title: A survey on concept drift adaptation publication-title: ACM Comput. Surv. doi: 10.1145/2523813 – ident: 10.1016/j.neucom.2019.07.106_bib0013 – ident: 10.1016/j.neucom.2019.07.106_bib0028 – volume: 2 start-page: 2148 year: 2013 ident: 10.1016/j.neucom.2019.07.106_bib0003 article-title: Predicting parameters in deep learning – start-page: 377 year: 2001 ident: 10.1016/j.neucom.2019.07.106_bib0019 article-title: A streaming ensemble algorithm (sea) for large-scale classification – start-page: 1 year: 2007 ident: 10.1016/j.neucom.2019.07.106_bib0040 article-title: Wilcoxon Signed-rank Test publication-title: Wiley Encyclopedia of Clinical Trials – volume: 273 start-page: 643 year: 2018 ident: 10.1016/j.neucom.2019.07.106_bib0008 article-title: Facial expression recognition via learning deep sparse autoencoders publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.08.043 – start-page: 3 year: 1993 ident: 10.1016/j.neucom.2019.07.106_bib0033 article-title: Autoencoders, minimum description length and Helmholtz free energy – year: 2012 ident: 10.1016/j.neucom.2019.07.106_bib0034 – volume: 80 start-page: 4141 year: 2018 ident: 10.1016/j.neucom.2019.07.106_sbref0005 article-title: Learning dynamics of linear denoising autoencoders – volume: 22 start-page: 1517 issue: 10 year: 2011 ident: 10.1016/j.neucom.2019.07.106_bib0029 article-title: Incremental learning of concept drift in nonstationary environments publication-title: Trans. Neural Netw. doi: 10.1109/TNN.2011.2160459 – ident: 10.1016/j.neucom.2019.07.106_bib0004 – volume: 35 start-page: 1798 issue: 8 year: 2013 ident: 10.1016/j.neucom.2019.07.106_bib0006 article-title: Representation learning: a review and new perspectives publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.50 – ident: 10.1016/j.neucom.2019.07.106_bib0014 doi: 10.1137/1.9781611975673.75 – volume: 30 start-page: 6467 year: 2017 ident: 10.1016/j.neucom.2019.07.106_sbref0009 article-title: Gradient episodic memory for continual learning – start-page: 919 year: 2017 ident: 10.1016/j.neucom.2019.07.106_bib0026 article-title: Online multiclass boosting – ident: 10.1016/j.neucom.2019.07.106_bib0022 doi: 10.1007/978-3-030-05645-2_10 |
| SSID | ssj0017129 |
| Score | 2.5885143 |
| Snippet | The Denoising Autoencoder (DAE) enhances the flexibility of data stream method in exploiting unlabeled samples. Nonetheless, the feasibility of DAE for data... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 297 |
| SubjectTerms | Data streams Denoising autoencoder Incremental learning |
| Title | DEVDAN: Deep evolving denoising autoencoder |
| URI | https://dx.doi.org/10.1016/j.neucom.2019.07.106 |
| Volume | 390 |
| WOSCitedRecordID | wos000531728800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKxgMvML7EGEN54G0ySuwkTvZW0U4DTQVpA5WnyLEva8qWVFuz7c_nHDtpRRFfEi9Ra8WN6_vp7ny53x0hb9CkyyQtIlqkmtFQR5rKQgdUBRKNtZRQJC1R-ERMJsl0mn4aDBYdF-bmQlRVcneXLv6rqHEMhW2os38h7v5HcQA_o9DximLH6x8JfjT-MhpOzEl_BLA4ANQ_bdAAFUxdtpEB2SxrU79Su8zceVfBqUFr1nZ5cPGD4aUpo6ANZlbxgutZIWe2E1SbDln22hXBJC-lZQAZMtes_NYr_ZPmfFYXjlyjb8sekx-tsvkKt_S0dhhxUQjWvkBnqyjEJj3GxhgZ3sVdnjRYDZsI1nLX11Uwty1DOyVqM3adPeaWZLqh6m3UYf62gsbk_aAjk5oyrIH_Q2Xt1lafmqWYlaC_GoQRj-6RbSaiFPXg9vD9ePqhf_MkAmbrM7qld3TLNidw81k_d2fWXJSzHfLQnS28ocXEYzKA6gl51PXt8Jwaf0oOLEQOPQMQrwOI1wPEWwPIM_L5aHz27pi6phlU4elvSdHhhtDU5FE8LhIhZVQoLQvJU1CgWJoEioPy8zjOuYJI4XfIY51DJBUDyflzslXVFbwgXqBDXzGfA3qZocxFakjSsRAyCgP0JP1dwrv_nilXUd40NrnIutTBeWZ3LDM7lvkCR-NdQvtZC1tR5Tf3i25bM-cVWm8vQyT8cubLf565Rx6sQP6KbC2vGtgn99XNsry-eu0g8x1XCYY6 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DEVDAN%3A+Deep+evolving+denoising+autoencoder&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Ashfahani%2C+Andri&rft.au=Pratama%2C+Mahardhika&rft.au=Lughofer%2C+Edwin&rft.au=Ong%2C+Yew-Soon&rft.date=2020-05-21&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=390&rft.spage=297&rft.epage=314&rft_id=info:doi/10.1016%2Fj.neucom.2019.07.106&rft.externalDocID=S0925231219314535 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |