Beyond EM: A faster Bayesian linear regression algorithm without matrix inversions

•We propose a novel matrix inversion free algorithm for solving the Bayesian linear regression problem with Gaussian priors.•Compared with the conventional gradient based and EM algorithms, our proposed one runs significantly faster while achieving the similar precision performance.•An iterative met...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) Vol. 378; pp. 435 - 440
Main Author: Tang, Ying
Format: Journal Article
Language:English
Published: Elsevier B.V 22.02.2020
Subjects:
ISSN:0925-2312, 1872-8286
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •We propose a novel matrix inversion free algorithm for solving the Bayesian linear regression problem with Gaussian priors.•Compared with the conventional gradient based and EM algorithms, our proposed one runs significantly faster while achieving the similar precision performance.•An iterative method from a perspective of latent matrices is proposed for optimal search without breaking the symmetric positive definite manifold constraint. The Bayesian linear regression is a useful tool for many scientific communities. This paper presents a novel algorithm for solving the Bayesian linear regression problem with Gaussian priors, which shares the same spirit as the gradient based methods. In addition, the standard scheme for this task, the Expectation Maximization (EM) algorithm, involves matrix inversions but our proposed algorithm is free of. Numerical experiments demonstrate that the proposed algorithm performs as well as the gradient based and EM algorithms in term of precision, but runs significantly faster than the gradient based and EM algorithms. Due to its matrix-inversion-free nature, the algorithm of this paper is a viable alternative to the competing methods available in the literature.
AbstractList •We propose a novel matrix inversion free algorithm for solving the Bayesian linear regression problem with Gaussian priors.•Compared with the conventional gradient based and EM algorithms, our proposed one runs significantly faster while achieving the similar precision performance.•An iterative method from a perspective of latent matrices is proposed for optimal search without breaking the symmetric positive definite manifold constraint. The Bayesian linear regression is a useful tool for many scientific communities. This paper presents a novel algorithm for solving the Bayesian linear regression problem with Gaussian priors, which shares the same spirit as the gradient based methods. In addition, the standard scheme for this task, the Expectation Maximization (EM) algorithm, involves matrix inversions but our proposed algorithm is free of. Numerical experiments demonstrate that the proposed algorithm performs as well as the gradient based and EM algorithms in term of precision, but runs significantly faster than the gradient based and EM algorithms. Due to its matrix-inversion-free nature, the algorithm of this paper is a viable alternative to the competing methods available in the literature.
Author Tang, Ying
Author_xml – sequence: 1
  givenname: Ying
  orcidid: 0000-0002-6063-4481
  surname: Tang
  fullname: Tang, Ying
  email: mathtygo@gmail.com
  organization: College of Cyber Security, Chengdu University of Technology, Chengdu 610059, PR China
BookMark eNqFkMtOwzAQRS1UJNrCH7DwDyT4kThJF0htVR5SERKCdeTak-IqsZHtFvr3JCorFrCZkUZzrmbOBI2ss4DQNSUpJVTc7FILe-W6lBFa9aOUCHqGxrQsWFKyUozQmFQsTxin7AJNQtgRQgvKqjF6WcDRWY1XTzM8x40METxeyCMEIy1ujQXpsYethxCMs1i2W-dNfO_wZ1_dPuJORm--sLEH8MNKuETnjWwDXP30KXq7W70uH5L18_3jcr5OFCciJlkjNSlJqYEQ0QhBeUF5k_OGaSoyWoqN0DlXG6ZBVrzJZA6Sa1koxoBqpvgUZadc5V0IHpr6w5tO-mNNST14qXf1yUs9eBmmvZcem_3ClIky9pdHL037H3x7gqF_7GDA10EZsAq08aBirZ35O-AbHRuEug
CitedBy_id crossref_primary_10_1007_s10723_021_09561_3
crossref_primary_10_1016_j_ecoleng_2022_106742
crossref_primary_10_1134_S1054661820030074
crossref_primary_10_3390_genes14081579
Cites_doi 10.1109/MSP.2012.2205597
10.1109/JSAC.2013.130214
10.1137/S1052623496303470
10.1214/13-BA852
10.1109/TBME.2014.2351376
10.1109/TITS.2015.2453116
10.1016/j.automatica.2013.03.030
10.1109/TIP.2008.2007354
10.1109/TIT.1985.1057115
10.1109/TAC.2016.2582642
10.1111/j.0006-341X.2004.00184.x
10.1109/TAC.2015.2426291
10.1007/s11222-006-8769-1
ContentType Journal Article
Copyright 2019
Copyright_xml – notice: 2019
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2019.10.061
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 440
ExternalDocumentID 10_1016_j_neucom_2019_10_061
S0925231219314997
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-4fad0808de006f6613713f53f2d164186b6d53cb2dea93f4a5ea3da7c22e1d2c3
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000506202200038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 07:12:59 EST 2025
Tue Nov 18 20:40:24 EST 2025
Fri Feb 23 02:49:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Matrix-inversion-free
Bayesian linear regression
Gaussian prior
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-4fad0808de006f6613713f53f2d164186b6d53cb2dea93f4a5ea3da7c22e1d2c3
ORCID 0000-0002-6063-4481
PageCount 6
ParticipantIDs crossref_primary_10_1016_j_neucom_2019_10_061
crossref_citationtrail_10_1016_j_neucom_2019_10_061
elsevier_sciencedirect_doi_10_1016_j_neucom_2019_10_061
PublicationCentury 2000
PublicationDate 2020-02-22
PublicationDateYYYYMMDD 2020-02-22
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-22
  day: 22
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Babacan, Molina, Katsaggelos (bib0002) 2009; 18
Boashash (bib0008) 2015
Golub, Van Loan (bib0020) 2012; 3
Pan, Yuan, Gonçalves, Stan (bib0013) 2016; 61
Chen, Ljung (bib0017) 2013; 49
Ter Braak (bib0015) 2006; 16
Nieto-Barajas, Contreras-Cristán (bib0009) 2014; 9
Lv, Duan, Kang, Li, Wang (bib0012) 2015; 16
Yin, Gesbert, Filippou, Liu (bib0004) 2013; 31
Kamper, Jansen, Goldwater (bib0006) 2015
Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Senior, Vanhoucke, Nguyen, Sainath (bib0005) 2012; 29
Levin, Weiss, Durand, Freeman (bib0003) 2009
Carli, Chen, Ljung (bib0014) 2017; 62
McLachlan, Krishnan (bib0019) 2007; 382
Le Gall (bib0021) 2014
Neelon, Dunson (bib0001) 2004; 60
Dürichen, Pimentel, Clifton, Schweikard, Clifton (bib0010) 2015; 62
Lagarias, Reeds, Wright, Wright (bib0016) 1998; 9
Dell’Acqua, Bellotti, Berta, De Gloria (bib0011) 2015; 16
Giles (bib0018) 2008
Tretter (bib0007) 1985; 31
Lagarias (10.1016/j.neucom.2019.10.061_bib0016) 1998; 9
Chen (10.1016/j.neucom.2019.10.061_bib0017) 2013; 49
Nieto-Barajas (10.1016/j.neucom.2019.10.061_bib0009) 2014; 9
Lv (10.1016/j.neucom.2019.10.061_bib0012) 2015; 16
Babacan (10.1016/j.neucom.2019.10.061_bib0002) 2009; 18
Tretter (10.1016/j.neucom.2019.10.061_bib0007) 1985; 31
Hinton (10.1016/j.neucom.2019.10.061_bib0005) 2012; 29
Carli (10.1016/j.neucom.2019.10.061_bib0014) 2017; 62
Neelon (10.1016/j.neucom.2019.10.061_bib0001) 2004; 60
Levin (10.1016/j.neucom.2019.10.061_bib0003) 2009
Le Gall (10.1016/j.neucom.2019.10.061_bib0021) 2014
Boashash (10.1016/j.neucom.2019.10.061_bib0008) 2015
Giles (10.1016/j.neucom.2019.10.061_bib0018) 2008
Dell’Acqua (10.1016/j.neucom.2019.10.061_bib0011) 2015; 16
Ter Braak (10.1016/j.neucom.2019.10.061_bib0015) 2006; 16
Dürichen (10.1016/j.neucom.2019.10.061_bib0010) 2015; 62
Pan (10.1016/j.neucom.2019.10.061_bib0013) 2016; 61
Golub (10.1016/j.neucom.2019.10.061_bib0020) 2012; 3
Yin (10.1016/j.neucom.2019.10.061_bib0004) 2013; 31
Kamper (10.1016/j.neucom.2019.10.061_bib0006) 2015
McLachlan (10.1016/j.neucom.2019.10.061_bib0019) 2007; 382
References_xml – volume: 31
  start-page: 264
  year: 2013
  end-page: 273
  ident: bib0004
  article-title: A coordinated approach to channel estimation in large-scale multiple-antenna systems
  publication-title: IEEE J. Sel. Areas Commun.
– volume: 9
  start-page: 112
  year: 1998
  end-page: 147
  ident: bib0016
  article-title: Convergence properties of the Nelder–Mead simplex method in low dimensions
  publication-title: SIAM J. Optim.
– volume: 61
  start-page: 182
  year: 2016
  end-page: 187
  ident: bib0013
  article-title: A sparse Bayesian approach to the identification of nonlinear state-space systems
  publication-title: IEEE Trans. Autom. Contr.
– start-page: 35
  year: 2008
  end-page: 44
  ident: bib0018
  article-title: Collected Matrix Derivative Results for Forward and Reverse Mode Algorithmic Differentiation
  publication-title: Proceedings of the Advances in Automatic Differentiation
– start-page: 1964
  year: 2009
  end-page: 1971
  ident: bib0003
  article-title: Understanding and evaluating blind deconvolution algorithms
  publication-title: Proceedings of the CVPR 2009
– volume: 9
  start-page: 147
  year: 2014
  end-page: 170
  ident: bib0009
  article-title: A Bayesian nonparametric approach for time series clustering
  publication-title: Bayesian Anal.
– volume: 16
  start-page: 239
  year: 2006
  end-page: 249
  ident: bib0015
  article-title: A markov chain monte carlo version of the genetic algorithm differential evolution: easy Bayesian computing for real parameter spaces
  publication-title: Stat. Comput.
– start-page: 296
  year: 2014
  end-page: 303
  ident: bib0021
  article-title: Powers of tensors and fast matrix multiplication
  publication-title: Proceedings of the Thirty-ninth International Symposium on Symbolic and Algebraic Computation
– volume: 31
  start-page: 832
  year: 1985
  end-page: 835
  ident: bib0007
  article-title: Estimating the frequency of a noisy sinusoid by linear regression (corresp.)
  publication-title: IEEE Trans. Inf. Theory
– volume: 16
  start-page: 865
  year: 2015
  end-page: 873
  ident: bib0012
  article-title: Traffic flow prediction with big data: a deep learning approach
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 29
  start-page: 82
  year: 2012
  end-page: 97
  ident: bib0005
  article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
  publication-title: IEEE Signal Process Mag.
– volume: 3
  year: 2012
  ident: bib0020
  article-title: Matrix Computations
– volume: 18
  start-page: 12
  year: 2009
  end-page: 26
  ident: bib0002
  article-title: Variational Bayesian blind deconvolution using a total variation prior
  publication-title: IEEE Trans. Image Process.
– volume: 16
  start-page: 3393
  year: 2015
  end-page: 3402
  ident: bib0011
  article-title: Time-aware multivariate nearest neighbor regression methods for traffic flow prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 62
  start-page: 1471
  year: 2017
  end-page: 1477
  ident: bib0014
  article-title: Maximum entropy kernels for system identification
  publication-title: IEEE Trans. Autom. Contr.
– volume: 49
  start-page: 2213
  year: 2013
  end-page: 2220
  ident: bib0017
  article-title: Implementation of algorithms for tuning parameters in regularized least squares problems in system identification
  publication-title: Automatica
– volume: 60
  start-page: 398
  year: 2004
  end-page: 406
  ident: bib0001
  article-title: Bayesian isotonic regression and trend analysis
  publication-title: Biometrics
– year: 2015
  ident: bib0006
  article-title: Fully unsupervised small-vocabulary speech recognition using a segmental Bayesian model
  publication-title: Proceedings of the Sixteenth Annual Conference of the International Speech Communication Association
– year: 2015
  ident: bib0008
  article-title: Time-frequency Signal Analysis and Processing: A Comprehensive Reference
– volume: 62
  start-page: 314
  year: 2015
  end-page: 322
  ident: bib0010
  article-title: Multitask gaussian processes for multivariate physiological time-series analysis
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 382
  year: 2007
  ident: bib0019
  article-title: The EM Algorithm and Extensions
– volume: 29
  start-page: 82
  issue: 6
  year: 2012
  ident: 10.1016/j.neucom.2019.10.061_bib0005
  article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
  publication-title: IEEE Signal Process Mag.
  doi: 10.1109/MSP.2012.2205597
– start-page: 296
  year: 2014
  ident: 10.1016/j.neucom.2019.10.061_bib0021
  article-title: Powers of tensors and fast matrix multiplication
– volume: 31
  start-page: 264
  issue: 2
  year: 2013
  ident: 10.1016/j.neucom.2019.10.061_bib0004
  article-title: A coordinated approach to channel estimation in large-scale multiple-antenna systems
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2013.130214
– year: 2015
  ident: 10.1016/j.neucom.2019.10.061_bib0006
  article-title: Fully unsupervised small-vocabulary speech recognition using a segmental Bayesian model
– volume: 16
  start-page: 865
  issue: 2
  year: 2015
  ident: 10.1016/j.neucom.2019.10.061_bib0012
  article-title: Traffic flow prediction with big data: a deep learning approach
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 9
  start-page: 112
  issue: 1
  year: 1998
  ident: 10.1016/j.neucom.2019.10.061_bib0016
  article-title: Convergence properties of the Nelder–Mead simplex method in low dimensions
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623496303470
– volume: 9
  start-page: 147
  issue: 1
  year: 2014
  ident: 10.1016/j.neucom.2019.10.061_bib0009
  article-title: A Bayesian nonparametric approach for time series clustering
  publication-title: Bayesian Anal.
  doi: 10.1214/13-BA852
– volume: 382
  year: 2007
  ident: 10.1016/j.neucom.2019.10.061_bib0019
– volume: 3
  year: 2012
  ident: 10.1016/j.neucom.2019.10.061_bib0020
– start-page: 1964
  year: 2009
  ident: 10.1016/j.neucom.2019.10.061_bib0003
  article-title: Understanding and evaluating blind deconvolution algorithms
– volume: 62
  start-page: 314
  issue: 1
  year: 2015
  ident: 10.1016/j.neucom.2019.10.061_bib0010
  article-title: Multitask gaussian processes for multivariate physiological time-series analysis
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2351376
– year: 2015
  ident: 10.1016/j.neucom.2019.10.061_bib0008
– volume: 16
  start-page: 3393
  issue: 6
  year: 2015
  ident: 10.1016/j.neucom.2019.10.061_bib0011
  article-title: Time-aware multivariate nearest neighbor regression methods for traffic flow prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2015.2453116
– volume: 49
  start-page: 2213
  issue: 7
  year: 2013
  ident: 10.1016/j.neucom.2019.10.061_bib0017
  article-title: Implementation of algorithms for tuning parameters in regularized least squares problems in system identification
  publication-title: Automatica
  doi: 10.1016/j.automatica.2013.03.030
– volume: 18
  start-page: 12
  issue: 1
  year: 2009
  ident: 10.1016/j.neucom.2019.10.061_bib0002
  article-title: Variational Bayesian blind deconvolution using a total variation prior
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2008.2007354
– volume: 31
  start-page: 832
  issue: 6
  year: 1985
  ident: 10.1016/j.neucom.2019.10.061_bib0007
  article-title: Estimating the frequency of a noisy sinusoid by linear regression (corresp.)
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1985.1057115
– volume: 62
  start-page: 1471
  issue: 3
  year: 2017
  ident: 10.1016/j.neucom.2019.10.061_bib0014
  article-title: Maximum entropy kernels for system identification
  publication-title: IEEE Trans. Autom. Contr.
  doi: 10.1109/TAC.2016.2582642
– volume: 60
  start-page: 398
  issue: 2
  year: 2004
  ident: 10.1016/j.neucom.2019.10.061_bib0001
  article-title: Bayesian isotonic regression and trend analysis
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2004.00184.x
– start-page: 35
  year: 2008
  ident: 10.1016/j.neucom.2019.10.061_bib0018
  article-title: Collected Matrix Derivative Results for Forward and Reverse Mode Algorithmic Differentiation
– volume: 61
  start-page: 182
  issue: 1
  year: 2016
  ident: 10.1016/j.neucom.2019.10.061_bib0013
  article-title: A sparse Bayesian approach to the identification of nonlinear state-space systems
  publication-title: IEEE Trans. Autom. Contr.
  doi: 10.1109/TAC.2015.2426291
– volume: 16
  start-page: 239
  issue: 3
  year: 2006
  ident: 10.1016/j.neucom.2019.10.061_bib0015
  article-title: A markov chain monte carlo version of the genetic algorithm differential evolution: easy Bayesian computing for real parameter spaces
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-006-8769-1
SSID ssj0017129
Score 2.3047366
Snippet •We propose a novel matrix inversion free algorithm for solving the Bayesian linear regression problem with Gaussian priors.•Compared with the conventional...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 435
SubjectTerms Bayesian linear regression
Gaussian prior
Matrix-inversion-free
Title Beyond EM: A faster Bayesian linear regression algorithm without matrix inversions
URI https://dx.doi.org/10.1016/j.neucom.2019.10.061
Volume 378
WOSCitedRecordID wos000506202200038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Na9swFBdbu8Mu7boP-rEOHXYLKrFkR9ZuoWR0g5axpZCdjCJLXUrjFict2X_fJz3ZCcvotsIuJggpFvpJT7_3_D4IeW_gEnSyq5hTxrIUOCvT0JGNQcE1yjhpMxeKTcizs3w0Ul9itc1ZKCcgqypfLNTNf4Ua2gBsHzr7D3C3fwoN8BtAhyfADs-_Aj7GpAxOMejc6VnIg6h_2hAv6Wmlrju1vUAP2Kqjry6u68n8xzQYZb2f8tTn7V90JtUdWtNmqxQ2pPMwoRhENDP0p_4Vpd9arVlhGO3Q35urMVoWQI30kdpLPXQ95AXthjxjQAqxn0WpmUse4tFXxarA0jxRMKaYlCTesSmmaFoT32hJuDyq7K335QFyoo687x3ma_8lMfY3PxU_E-CgoOcp-ZRscpkpkG2b_U-D0ef2a5JMOOZcjFNvQiiDn9_6u35PUVZox_AF2Yr6Au0jzjvkia1eku2mFgeNovkV-Yqw08HpB9qnCDptQKcIOl2CTlvQaQSdIuh0Cfprcv5xMDw-YbFeBjOg-M1Z6nQJCkBeWhClDoiXkIlwmXC8BKU4yXvjXpkJM-al1Uq4VGdWi1JLw7lNSm7EG7JRXVd2l9AesEg4rl0ltE219UntUgOaMpxfYUzS3SOiWaLCxGTyvqbJVdF4DV4WuLCFX1jfCgu7R1g76gaTqfyhv2xWv4iEEIleARvmwZH7jx55QJ4vz8JbsjGvb-0heWbu5pNZ_S7urHtoWYc2
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+EM%3A+A+faster+Bayesian+linear+regression+algorithm+without+matrix+inversions&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Tang%2C+Ying&rft.date=2020-02-22&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=378&rft.spage=435&rft.epage=440&rft_id=info:doi/10.1016%2Fj.neucom.2019.10.061&rft.externalDocID=S0925231219314997
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon