Deep learning-based energy-efficient relay precoder design in MIMO-CRNs
This paper investigates the problem of energy efficient relay precoder design in multiple-input multiple-output cognitive relay networks (MIMO-CRNs). This is a non-convex fractional programming problem, which is traditionally solved using computationally expensive optimization methods. In this paper...
Uloženo v:
| Vydáno v: | Physical communication Ročník 50; s. 101486 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.02.2022
|
| Témata: | |
| ISSN: | 1874-4907, 1876-3219 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper investigates the problem of energy efficient relay precoder design in multiple-input multiple-output cognitive relay networks (MIMO-CRNs). This is a non-convex fractional programming problem, which is traditionally solved using computationally expensive optimization methods. In this paper, we propose a deep learning (DL) based approach to compute an approximate solution. Specifically, a deep neural network (DNN) is employed and trained using offline computed optimal solution. The proposed scheme consists of an offline data generation phase, an offline training phase, and an online deployment phase. The numerical results show that the proposed DNN provides comparable performance at significantly lower computational complexity as compared to the conventional optimization-based algorithm that makes the proposed approach suitable for real-time implementation. |
|---|---|
| ISSN: | 1874-4907 1876-3219 |
| DOI: | 10.1016/j.phycom.2021.101486 |