Simplex Volume Maximization (SiVM): A matrix factorization algorithm with non-negative constrains and low computing demands for the interpretation of full spectral X-ray fluorescence imaging data

Technological progress allows for an ever-faster acquisition of hyperspectral data, challenging the users to keep up with interpreting the recorded data. Matrix factorization, the representation of data sets by bases (or loads) and coefficient (or score) images is long used to support the interpreta...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Microchemical journal Ročník 132; s. 179 - 184
Hlavní autoři: Alfeld, Matthias, Wahabzada, Mirwaes, Bauckhage, Christian, Kersting, Kristian, van der Snickt, Geert, Noble, Petria, Janssens, Koen, Wellenreuther, Gerd, Falkenberg, Gerald
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.05.2017
ISSN:0026-265X, 1095-9149
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Technological progress allows for an ever-faster acquisition of hyperspectral data, challenging the users to keep up with interpreting the recorded data. Matrix factorization, the representation of data sets by bases (or loads) and coefficient (or score) images is long used to support the interpretation of complex data sets. We propose in this publication Simplex Volume Maximization (SiVM) for the analysis of X-ray fluorescence (XRF) imaging data sets. SiVM selects archetypical data points that represents the data set and thus provides easily understandable bases, preserves the non-negative character of XRF data sets and has low demands concerning computing resources. We apply SiVM on an XRF data set of Hans Memling's Portrait of a man from the Lespinette family from the collection of the Mauritshuis (The Hague, NL) and discuss capabilities and shortcomings of SiVM. [Display omitted]
ISSN:0026-265X
1095-9149
DOI:10.1016/j.microc.2017.02.001