SED: Searching Enhanced Decoder with switchable skip connection for semantic segmentation
Neural architecture search (NAS) has shown excellent performance. However, existing semantic segmentation models rely heavily on pre-training on Image-Net or COCO and mainly focus on the designing of decoders. Directly training the encoder–decoder architecture search models from scratch to SOTA for...
Gespeichert in:
| Veröffentlicht in: | Pattern recognition Jg. 149; S. 110196 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.05.2024
|
| Schlagworte: | |
| ISSN: | 0031-3203, 1873-5142 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Neural architecture search (NAS) has shown excellent performance. However, existing semantic segmentation models rely heavily on pre-training on Image-Net or COCO and mainly focus on the designing of decoders. Directly training the encoder–decoder architecture search models from scratch to SOTA for semantic segmentation requires even thousands GPU days, which greatly limits the application of NAS. To address this issue, we propose a novel neural architecture Search framework for Enhanced Decoder (SED). Utilizing the pre-trained hand-designing backbone and the searching space composed of light-weight cells, SED searches for a decoder which can perform high-quality segmentation. Furthermore, we attach switchable skip connection operations to search space, expanding the diversity of possible network structure. The parameters of backbone and operations selected in searching phrase are copied to retraining process. As a result, searching, pruning and retraining can be done in just 1 day. The experimental results show that the SED proposed in this paper only needs 1/4 of the parameters and calculation in contrast to hand-designing decoder, and obtains higher segmentation accuracy on Cityscapes. Transferring the same decoder architecture to other datasets, such as: Pascal VOC 2012, Camvid, ADE20K proves the robustness of SED.
•For the task of image semantic segmentation, we propose a gradient-based, pre-trainable neural network architecture search framework SED. In this paper we simultaneously considering decoder and skip connection search. Our method maximizes the advantages of NAS and pre- trained backbone.•SED can compress the retraining iterations to several thousands. The whole searching, pruning, retraining process can be compressed into 1 day. Furthermore, after searching on Cityscapes, the searched network architecture can achieve 80.2% mIoU. |
|---|---|
| AbstractList | Neural architecture search (NAS) has shown excellent performance. However, existing semantic segmentation models rely heavily on pre-training on Image-Net or COCO and mainly focus on the designing of decoders. Directly training the encoder–decoder architecture search models from scratch to SOTA for semantic segmentation requires even thousands GPU days, which greatly limits the application of NAS. To address this issue, we propose a novel neural architecture Search framework for Enhanced Decoder (SED). Utilizing the pre-trained hand-designing backbone and the searching space composed of light-weight cells, SED searches for a decoder which can perform high-quality segmentation. Furthermore, we attach switchable skip connection operations to search space, expanding the diversity of possible network structure. The parameters of backbone and operations selected in searching phrase are copied to retraining process. As a result, searching, pruning and retraining can be done in just 1 day. The experimental results show that the SED proposed in this paper only needs 1/4 of the parameters and calculation in contrast to hand-designing decoder, and obtains higher segmentation accuracy on Cityscapes. Transferring the same decoder architecture to other datasets, such as: Pascal VOC 2012, Camvid, ADE20K proves the robustness of SED.
•For the task of image semantic segmentation, we propose a gradient-based, pre-trainable neural network architecture search framework SED. In this paper we simultaneously considering decoder and skip connection search. Our method maximizes the advantages of NAS and pre- trained backbone.•SED can compress the retraining iterations to several thousands. The whole searching, pruning, retraining process can be compressed into 1 day. Furthermore, after searching on Cityscapes, the searched network architecture can achieve 80.2% mIoU. |
| ArticleNumber | 110196 |
| Author | Zhang, Xian Quan, Zhibin Li, Qiang Zhu, Dejun Yang, Wankou |
| Author_xml | – sequence: 1 givenname: Xian surname: Zhang fullname: Zhang, Xian organization: School of Automation, Southeast University, Nanjing 210096, China – sequence: 2 givenname: Zhibin surname: Quan fullname: Quan, Zhibin organization: School of Automation, Southeast University, Nanjing 210096, China – sequence: 3 givenname: Qiang surname: Li fullname: Li, Qiang email: liqiang3@sensetime.com organization: SenseTime Research, China – sequence: 4 givenname: Dejun surname: Zhu fullname: Zhu, Dejun organization: State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China – sequence: 5 givenname: Wankou surname: Yang fullname: Yang, Wankou email: wkyang@seu.edu.cn organization: School of Automation, Southeast University, Nanjing 210096, China |
| BookMark | eNqFkE1LAzEQhoNUsK3-Aw_5A1uTTfajPQjS1g8oeKgePIVsMummtklJFsV_b5b15EEvM8PMvC8zzwSNnHeA0DUlM0poebOfnWSn_G6Wk5zNaOrNyzM0pnXFsoLyfITGhDCasZywCzSJcU8IrdJgjN6269UCb0EG1Vq3w2vXSqdA4xUoryHgT9u1OKaoWtkcAMd3e8LKOweqs95h4wOOcJSusyoVuyO4TvaTS3Ru5CHC1U-eotf79cvyMds8Pzwt7zaZYqTsMt6woiI115KB1lVNGsMIB1OquVGyrgrDS8p10aQdnpcVz5WWcyg0kQCVYWyKFoOvCj7GAEYoO1zQBWkPghLRQxJ7MUASPSQxQEpi_kt8CvYow9d_sttBBumxDwtBRGWh52ZD4iK0t38bfAPpA4Z2 |
| CitedBy_id | crossref_primary_10_1016_j_engappai_2025_110045 crossref_primary_10_1002_mp_18041 crossref_primary_10_1016_j_patcog_2024_110545 crossref_primary_10_1007_s40747_024_01520_1 crossref_primary_10_1016_j_eswa_2024_125964 crossref_primary_10_3390_rs17060952 crossref_primary_10_1007_s00530_024_01605_4 crossref_primary_10_1016_j_asej_2025_103683 crossref_primary_10_1016_j_neucom_2025_129593 crossref_primary_10_3390_rs16173266 crossref_primary_10_1016_j_eswa_2025_126563 |
| Cites_doi | 10.1109/ICCV.2019.00200 10.1609/aaai.v31i1.11231 10.1109/ICCV.2019.00690 10.1109/CVPR.2016.90 10.1109/ICCV.2019.00533 10.1109/CVPR42600.2020.00939 10.1109/CVPR.2017.549 10.1109/CVPR.2017.106 10.1109/CVPR.2017.660 10.1016/j.patcog.2022.108652 10.1109/CVPR.2017.195 10.1109/CVPR.2018.00747 10.1109/TPAMI.2017.2699184 10.1016/j.patcog.2020.107622 10.1109/CVPR52688.2022.01553 10.1109/CVPR.2016.350 10.1016/j.patcog.2022.109020 10.1109/ICCV.2019.00685 10.1109/CVPR.2019.00064 10.1109/CVPR.2015.7298965 10.1109/CVPR.2019.00584 10.1109/ICCV48922.2021.00717 10.1007/978-3-030-01219-9_25 10.1609/aaai.v32i1.11709 10.1109/TPAMI.2016.2644615 10.1007/978-3-030-01261-8_20 10.1109/CVPR.2017.544 10.1109/ICCV.2015.123 10.1109/CVPR.2019.01191 10.1109/CVPR.2018.00907 10.1109/TIP.2003.819861 10.1007/s11263-014-0733-5 10.1007/978-3-540-88682-2_5 10.1016/j.patcog.2021.108290 10.1109/CVPR.2017.634 10.1109/CVPR.2018.00813 10.1109/CVPR.2017.243 10.1109/ICCV.2019.00069 10.1109/CVPR.2019.00017 10.1109/CVPRW56347.2022.00309 10.1016/j.patcog.2022.109193 10.1109/ICCV48922.2021.00714 10.1109/CVPR42600.2020.00858 10.1109/ICCV.2019.00926 10.1016/j.patcog.2022.109215 10.1109/CVPR.2019.00975 10.1007/978-3-030-01234-2_49 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.patcog.2023.110196 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-5142 |
| ExternalDocumentID | 10_1016_j_patcog_2023_110196 S0031320323008932 |
| GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c306t-4b357084da3edd780bf304ef6c9fca875f4614d5b084426742cda9e5d0aee7f33 |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001149608600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-3203 |
| IngestDate | Sat Nov 29 07:25:48 EST 2025 Tue Nov 18 21:14:54 EST 2025 Sat Mar 02 16:00:59 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Semantic segmentation NAS Encoder-decoder model |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-4b357084da3edd780bf304ef6c9fca875f4614d5b084426742cda9e5d0aee7f33 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_patcog_2023_110196 crossref_primary_10_1016_j_patcog_2023_110196 elsevier_sciencedirect_doi_10_1016_j_patcog_2023_110196 |
| PublicationCentury | 2000 |
| PublicationDate | May 2024 2024-05-00 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: May 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Pattern recognition |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Jain, Singh, Orlov, Huang, Li, Walton, Shi (b5) 2021 L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam, Encoder-decoder with atrous separable convolution for semantic image segmentation, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 801–818. Luo, Tian, Qin, Chen, Liu (b20) 2018; 31 Simonyan, Zisserman (b63) 2014 Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga (b50) 2019; 32 Wang, Bovik, Sheikh, Simoncelli (b33) 2004; 13 Yang, Yang, Cui (b28) 2022; 128 S. Xie, R. Girshick, P. Dollár, Z. Tu, K. He, Aggregated residual transformations for deep neural networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1492–1500. Bao, Dong, Piao, Wei (b10) 2021 H. Zhang, H. Zhang, C. Wang, J. Xie, Co-occurrent Features in Semantic Segmentation, in: The IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2019. G. Lin, A. Milan, C. Shen, I. Reid, Refinenet: Multi-path refinement networks for high-resolution semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1925–1934. Zhang, Li, Quan, Yang (b31) 2023; 133 K. He, X. Chen, S. Xie, Y. Li, P. Dollár, R. Girshick, Masked autoencoders are scalable vision learners, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 16000–16009. H. Zhang, C. Wu, Z. Zhang, Y. Zhu, H. Lin, Z. Zhang, Y. Sun, T. He, J. Mueller, R. Manmatha, et al., Resnest: Split-attention networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 2736–2746. H. Zhang, K. Dana, J. Shi, Z. Zhang, X. Wang, A. Tyagi, A. Agrawal, Context encoding for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7151–7160. Wang, Zhang, Cui, Yin, Zhang (b27) 2023; 136 Chen, Collins, Zhu, Papandreou, Zoph, Schroff, Adam, Shlens (b21) 2018; 31 Y. Zhang, Z. Qiu, J. Liu, T. Yao, D. Liu, T. Mei, Customizable architecture search for semantic segmentation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 11641–11650. B. Zoph, V. Vasudevan, J. Shlens, Q.V. Le, Learning transferable architectures for scalable image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8697–8710. Li, Gong, Zhu (b29) 2023; 136 Zhou, Wu, Zhang, Kang, Ge, Latecki (b60) 2022; 122 H. Li, P. Xiong, H. Fan, J. Sun, DFANet: Deep Feature Aggregation for Real-Time Semantic Segmentation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2019. C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, N. Sang, Bisenet: Bilateral segmentation network for real-time semantic segmentation, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 325–341. Baker, Gupta, Naik, Raskar (b18) 2016 Zhao, Wang, Yang, Cai (b66) 2019; 32 M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, B. Schiele, The cityscapes dataset for semantic urban scene understanding, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 3213–3223. Liu, Simonyan, Yang (b19) 2018 Badrinarayanan, Kendall, Cipolla (b62) 2017; 39 Kingma, Ba (b49) 2014 Y. Li, L. Song, Y. Chen, Z. Li, X. Zhang, X. Wang, J. Sun, Learning dynamic routing for semantic segmentation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 8553–8562. S. Choi, J.T. Kim, J. Choo, Cars can’t fly up in the sky: Improving urban-scene segmentation via height-driven attention networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 9373–9383. G.J. Brostow, J. Shotton, J. Fauqueur, R. Cipolla, Segmentation and Recognition Using Structure from Motion Point Clouds, in: ECCV (1), 2008, pp. 44–57. F. Chollet, Xception: Deep learning with depthwise separable convolutions, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1251–1258. Z. Jin, T. Gong, D. Yu, Q. Chu, J. Wang, C. Wang, J. Shao, Mining contextual information beyond image for semantic segmentation, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 7231–7241. Chen, Papandreou, Kokkinos, Murphy, Yuille (b7) 2017; 40 J. Fu, J. Liu, Y. Wang, Y. Li, Y. Bao, J. Tang, H. Lu, Adaptive context network for scene parsing, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 6748–6757. H. Zhao, X. Qi, X. Shen, J. Shi, J. Jia, Icnet for real-time semantic segmentation on high-resolution images, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 405–420. R. Strudel, R. Garcia, I. Laptev, C. Schmid, Segmenter: Transformer for semantic segmentation, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 7262–7272. Chen, Papandreou, Schroff, Adam (b13) 2017 H. Cai, T. Chen, W. Zhang, Y. Yu, J. Wang, Efficient architecture search by network transformation, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32, No. 1, 2018. X. Ding, Y. Guo, G. Ding, J. Han, Acnet: Strengthening the kernel skeletons for powerful cnn via asymmetric convolution blocks, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 1911–1920. Yu, Koltun (b35) 2015 C. Szegedy, S. Ioffe, V. Vanhoucke, A. Alemi, Inception-v4, inception-resnet and the impact of residual connections on learning, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 31, No. 1, 2017. Ronneberger, Fischer, Brox (b4) 2015 T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyramid networks for object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2117–2125. Ramachandran, Parmar, Vaswani, Bello, Levskaya, Shlens (b34) 2019; 32 K. Sun, B. Xiao, D. Liu, J. Wang, Deep high-resolution representation learning for human pose estimation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 5693–5703. X. Wang, R. Girshick, A. Gupta, K. He, Non-Local Neural Networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2018. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778. C. Liu, L.-C. Chen, F. Schroff, H. Adam, W. Hua, A.L. Yuille, L. Fei-Fei, Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2019. G. Lin, A. Milan, C. Shen, I. Reid, RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2017. K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1026–1034. Everingham, Eslami, Van Gool, Williams, Winn, Zisserman (b45) 2015; 111 Z. Huang, X. Wang, L. Huang, C. Huang, Y. Wei, W. Liu, CCNet: Criss-Cross Attention for Semantic Segmentation, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, ICCV, 2019. H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid scene parsing network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2881–2890. B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, A. Torralba, Scene parsing through ade20k dataset, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 633–641. Zoph, Le (b23) 2016 Yuan, Huang, Guo, Zhang, Chen, Wang (b37) 2021 J. Long, E. Shelhamer, T. Darrell, Fully Convolutional Networks for Semantic Segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2015. X. Li, Z. Zhong, J. Wu, Y. Yang, Z. Lin, H. Liu, Expectation-Maximization Attention Networks for Semantic Segmentation, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, ICCV, 2019. Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár, Zitnick (b57) 2014 G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708. Lian, Pang, Han, Pan (b61) 2021; 110 Yuan, Chen, Wang (b55) 2020 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b36) 2017; 30 T. Takikawa, D. Acuna, V. Jampani, S. Fidler, Gated-scnn: Gated shape cnns for semantic segmentation, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 5229–5238. F. Zhang, Y. Chen, Z. Li, Z. Hong, J. Liu, F. Ma, J. Han, E. Ding, Acfnet: Attentional class feature network for semantic segmentation, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 6798–6807. Liu (10.1016/j.patcog.2023.110196_b19) 2018 10.1016/j.patcog.2023.110196_b1 10.1016/j.patcog.2023.110196_b2 10.1016/j.patcog.2023.110196_b3 10.1016/j.patcog.2023.110196_b39 10.1016/j.patcog.2023.110196_b8 10.1016/j.patcog.2023.110196_b9 10.1016/j.patcog.2023.110196_b6 Kingma (10.1016/j.patcog.2023.110196_b49) 2014 10.1016/j.patcog.2023.110196_b44 10.1016/j.patcog.2023.110196_b43 10.1016/j.patcog.2023.110196_b42 10.1016/j.patcog.2023.110196_b48 Yang (10.1016/j.patcog.2023.110196_b28) 2022; 128 10.1016/j.patcog.2023.110196_b47 10.1016/j.patcog.2023.110196_b46 10.1016/j.patcog.2023.110196_b41 Wang (10.1016/j.patcog.2023.110196_b27) 2023; 136 10.1016/j.patcog.2023.110196_b40 Yu (10.1016/j.patcog.2023.110196_b35) 2015 Ramachandran (10.1016/j.patcog.2023.110196_b34) 2019; 32 Bao (10.1016/j.patcog.2023.110196_b10) 2021 Badrinarayanan (10.1016/j.patcog.2023.110196_b62) 2017; 39 10.1016/j.patcog.2023.110196_b12 10.1016/j.patcog.2023.110196_b56 10.1016/j.patcog.2023.110196_b11 Li (10.1016/j.patcog.2023.110196_b29) 2023; 136 10.1016/j.patcog.2023.110196_b54 10.1016/j.patcog.2023.110196_b53 10.1016/j.patcog.2023.110196_b16 10.1016/j.patcog.2023.110196_b15 10.1016/j.patcog.2023.110196_b59 10.1016/j.patcog.2023.110196_b14 10.1016/j.patcog.2023.110196_b58 Lin (10.1016/j.patcog.2023.110196_b57) 2014 10.1016/j.patcog.2023.110196_b52 10.1016/j.patcog.2023.110196_b51 Zoph (10.1016/j.patcog.2023.110196_b23) 2016 Chen (10.1016/j.patcog.2023.110196_b13) 2017 Baker (10.1016/j.patcog.2023.110196_b18) 2016 10.1016/j.patcog.2023.110196_b17 Chen (10.1016/j.patcog.2023.110196_b7) 2017; 40 Everingham (10.1016/j.patcog.2023.110196_b45) 2015; 111 10.1016/j.patcog.2023.110196_b67 10.1016/j.patcog.2023.110196_b22 10.1016/j.patcog.2023.110196_b65 Paszke (10.1016/j.patcog.2023.110196_b50) 2019; 32 10.1016/j.patcog.2023.110196_b64 10.1016/j.patcog.2023.110196_b26 10.1016/j.patcog.2023.110196_b25 Yuan (10.1016/j.patcog.2023.110196_b37) 2021 Simonyan (10.1016/j.patcog.2023.110196_b63) 2014 10.1016/j.patcog.2023.110196_b24 Lian (10.1016/j.patcog.2023.110196_b61) 2021; 110 Jain (10.1016/j.patcog.2023.110196_b5) 2021 Chen (10.1016/j.patcog.2023.110196_b21) 2018; 31 10.1016/j.patcog.2023.110196_b32 10.1016/j.patcog.2023.110196_b38 Yuan (10.1016/j.patcog.2023.110196_b55) 2020 Luo (10.1016/j.patcog.2023.110196_b20) 2018; 31 Zhang (10.1016/j.patcog.2023.110196_b31) 2023; 133 Wang (10.1016/j.patcog.2023.110196_b33) 2004; 13 Zhao (10.1016/j.patcog.2023.110196_b66) 2019; 32 10.1016/j.patcog.2023.110196_b30 Vaswani (10.1016/j.patcog.2023.110196_b36) 2017; 30 Ronneberger (10.1016/j.patcog.2023.110196_b4) 2015 Zhou (10.1016/j.patcog.2023.110196_b60) 2022; 122 |
| References_xml | – year: 2016 ident: b18 article-title: Designing neural network architectures using reinforcement learning – reference: T. Takikawa, D. Acuna, V. Jampani, S. Fidler, Gated-scnn: Gated shape cnns for semantic segmentation, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 5229–5238. – volume: 30 year: 2017 ident: b36 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – volume: 31 year: 2018 ident: b21 article-title: Searching for efficient multi-scale architectures for dense image prediction publication-title: Adv. Neural Inf. Process. Syst. – year: 2014 ident: b49 article-title: Adam: A method for stochastic optimization – volume: 128 year: 2022 ident: b28 article-title: Searching part-specific neural fabrics for human pose estimation publication-title: Pattern Recognit. – reference: G. Lin, A. Milan, C. Shen, I. Reid, Refinenet: Multi-path refinement networks for high-resolution semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1925–1934. – reference: Y. Zhang, Z. Qiu, J. Liu, T. Yao, D. Liu, T. Mei, Customizable architecture search for semantic segmentation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 11641–11650. – reference: K. Sun, B. Xiao, D. Liu, J. Wang, Deep high-resolution representation learning for human pose estimation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 5693–5703. – reference: K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1026–1034. – year: 2016 ident: b23 article-title: Neural architecture search with reinforcement learning – year: 2021 ident: b10 article-title: Beit: Bert pre-training of image transformers – reference: H. Zhang, C. Wu, Z. Zhang, Y. Zhu, H. Lin, Z. Zhang, Y. Sun, T. He, J. Mueller, R. Manmatha, et al., Resnest: Split-attention networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 2736–2746. – reference: F. Chollet, Xception: Deep learning with depthwise separable convolutions, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1251–1258. – reference: G.J. Brostow, J. Shotton, J. Fauqueur, R. Cipolla, Segmentation and Recognition Using Structure from Motion Point Clouds, in: ECCV (1), 2008, pp. 44–57. – reference: Z. Jin, T. Gong, D. Yu, Q. Chu, J. Wang, C. Wang, J. Shao, Mining contextual information beyond image for semantic segmentation, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 7231–7241. – reference: J. Fu, J. Liu, Y. Wang, Y. Li, Y. Bao, J. Tang, H. Lu, Adaptive context network for scene parsing, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 6748–6757. – reference: B. Zoph, V. Vasudevan, J. Shlens, Q.V. Le, Learning transferable architectures for scalable image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8697–8710. – volume: 32 year: 2019 ident: b34 article-title: Stand-alone self-attention in vision models publication-title: Adv. Neural Inf. Process. Syst. – reference: Z. Huang, X. Wang, L. Huang, C. Huang, Y. Wei, W. Liu, CCNet: Criss-Cross Attention for Semantic Segmentation, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, ICCV, 2019. – reference: Y. Li, L. Song, Y. Chen, Z. Li, X. Zhang, X. Wang, J. Sun, Learning dynamic routing for semantic segmentation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 8553–8562. – reference: H. Zhao, X. Qi, X. Shen, J. Shi, J. Jia, Icnet for real-time semantic segmentation on high-resolution images, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 405–420. – volume: 32 year: 2019 ident: b50 article-title: Pytorch: An imperative style, high-performance deep learning library publication-title: Adv. Neural Inf. Process. Syst. – volume: 133 year: 2023 ident: b31 article-title: Pyramid geometric consistency learning for semantic segmentation publication-title: Pattern Recognit. – volume: 110 year: 2021 ident: b61 article-title: Cascaded hierarchical atrous spatial pyramid pooling module for semantic segmentation publication-title: Pattern Recognit. – reference: G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708. – reference: H. Cai, T. Chen, W. Zhang, Y. Yu, J. Wang, Efficient architecture search by network transformation, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32, No. 1, 2018. – reference: H. Li, P. Xiong, H. Fan, J. Sun, DFANet: Deep Feature Aggregation for Real-Time Semantic Segmentation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2019. – reference: L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam, Encoder-decoder with atrous separable convolution for semantic image segmentation, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 801–818. – volume: 31 year: 2018 ident: b20 article-title: Neural architecture optimization publication-title: Adv. Neural Inf. Process. Syst. – reference: X. Li, Z. Zhong, J. Wu, Y. Yang, Z. Lin, H. Liu, Expectation-Maximization Attention Networks for Semantic Segmentation, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, ICCV, 2019. – reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778. – volume: 40 start-page: 834 year: 2017 end-page: 848 ident: b7 article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid scene parsing network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2881–2890. – volume: 32 year: 2019 ident: b66 article-title: Region mutual information loss for semantic segmentation publication-title: Adv. Neural Inf. Process. Syst. – volume: 136 year: 2023 ident: b27 article-title: FP-DARTS: Fast parallel differentiable neural architecture search for image classification publication-title: Pattern Recognit. – reference: K. He, X. Chen, S. Xie, Y. Li, P. Dollár, R. Girshick, Masked autoencoders are scalable vision learners, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 16000–16009. – year: 2018 ident: b19 article-title: Darts: Differentiable architecture search – reference: X. Ding, Y. Guo, G. Ding, J. Han, Acnet: Strengthening the kernel skeletons for powerful cnn via asymmetric convolution blocks, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 1911–1920. – reference: R. Strudel, R. Garcia, I. Laptev, C. Schmid, Segmenter: Transformer for semantic segmentation, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 7262–7272. – reference: C. Liu, L.-C. Chen, F. Schroff, H. Adam, W. Hua, A.L. Yuille, L. Fei-Fei, Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2019. – start-page: 173 year: 2020 end-page: 190 ident: b55 article-title: Object-contextual representations for semantic segmentation publication-title: European Conference on Computer Vision – reference: C. Szegedy, S. Ioffe, V. Vanhoucke, A. Alemi, Inception-v4, inception-resnet and the impact of residual connections on learning, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 31, No. 1, 2017. – volume: 122 year: 2022 ident: b60 article-title: Contextual ensemble network for semantic segmentation publication-title: Pattern Recognit. – reference: G. Lin, A. Milan, C. Shen, I. Reid, RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2017. – reference: J. Long, E. Shelhamer, T. Darrell, Fully Convolutional Networks for Semantic Segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2015. – reference: M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, B. Schiele, The cityscapes dataset for semantic urban scene understanding, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 3213–3223. – reference: S. Choi, J.T. Kim, J. Choo, Cars can’t fly up in the sky: Improving urban-scene segmentation via height-driven attention networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 9373–9383. – start-page: 1 year: 2021 end-page: 24 ident: b37 article-title: OCNet: Object context for semantic segmentation publication-title: Int. J. Comput. Vis. – reference: B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, A. Torralba, Scene parsing through ade20k dataset, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 633–641. – year: 2017 ident: b13 article-title: Rethinking atrous convolution for semantic image segmentation – start-page: 234 year: 2015 end-page: 241 ident: b4 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – reference: H. Zhang, H. Zhang, C. Wang, J. Xie, Co-occurrent Features in Semantic Segmentation, in: The IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2019. – reference: F. Zhang, Y. Chen, Z. Li, Z. Hong, J. Liu, F. Ma, J. Han, E. Ding, Acfnet: Attentional class feature network for semantic segmentation, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 6798–6807. – volume: 39 start-page: 2481 year: 2017 end-page: 2495 ident: b62 article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, N. Sang, Bisenet: Bilateral segmentation network for real-time semantic segmentation, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 325–341. – volume: 13 start-page: 600 year: 2004 end-page: 612 ident: b33 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. – year: 2014 ident: b63 article-title: Very deep convolutional networks for large-scale image recognition – year: 2021 ident: b5 article-title: Semask: Semantically masked transformers for semantic segmentation – year: 2015 ident: b35 article-title: Multi-scale context aggregation by dilated convolutions – reference: S. Xie, R. Girshick, P. Dollár, Z. Tu, K. He, Aggregated residual transformations for deep neural networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1492–1500. – volume: 111 start-page: 98 year: 2015 end-page: 136 ident: b45 article-title: The pascal visual object classes challenge: A retrospective publication-title: Int. J. Comput. Vis. – reference: H. Zhang, K. Dana, J. Shi, Z. Zhang, X. Wang, A. Tyagi, A. Agrawal, Context encoding for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7151–7160. – reference: T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyramid networks for object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2117–2125. – start-page: 740 year: 2014 end-page: 755 ident: b57 article-title: Microsoft coco: Common objects in context publication-title: European Conference on Computer Vision – volume: 136 year: 2023 ident: b29 article-title: Neural operator search publication-title: Pattern Recognit. – reference: X. Wang, R. Girshick, A. Gupta, K. He, Non-Local Neural Networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2018. – ident: 10.1016/j.patcog.2023.110196_b32 doi: 10.1109/ICCV.2019.00200 – ident: 10.1016/j.patcog.2023.110196_b43 doi: 10.1609/aaai.v31i1.11231 – ident: 10.1016/j.patcog.2023.110196_b54 doi: 10.1109/ICCV.2019.00690 – ident: 10.1016/j.patcog.2023.110196_b1 doi: 10.1109/CVPR.2016.90 – ident: 10.1016/j.patcog.2023.110196_b53 doi: 10.1109/ICCV.2019.00533 – ident: 10.1016/j.patcog.2023.110196_b52 doi: 10.1109/CVPR42600.2020.00939 – ident: 10.1016/j.patcog.2023.110196_b67 doi: 10.1109/CVPR.2017.549 – ident: 10.1016/j.patcog.2023.110196_b41 doi: 10.1109/CVPR.2017.106 – start-page: 740 year: 2014 ident: 10.1016/j.patcog.2023.110196_b57 article-title: Microsoft coco: Common objects in context – start-page: 234 year: 2015 ident: 10.1016/j.patcog.2023.110196_b4 article-title: U-net: Convolutional networks for biomedical image segmentation – ident: 10.1016/j.patcog.2023.110196_b6 doi: 10.1109/CVPR.2017.660 – volume: 128 issn: 0031-3203 year: 2022 ident: 10.1016/j.patcog.2023.110196_b28 article-title: Searching part-specific neural fabrics for human pose estimation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2022.108652 – volume: 32 year: 2019 ident: 10.1016/j.patcog.2023.110196_b34 article-title: Stand-alone self-attention in vision models publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.patcog.2023.110196_b15 doi: 10.1109/CVPR.2017.195 – year: 2014 ident: 10.1016/j.patcog.2023.110196_b49 – ident: 10.1016/j.patcog.2023.110196_b51 doi: 10.1109/CVPR.2018.00747 – volume: 40 start-page: 834 issue: 4 year: 2017 ident: 10.1016/j.patcog.2023.110196_b7 article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2699184 – volume: 110 year: 2021 ident: 10.1016/j.patcog.2023.110196_b61 article-title: Cascaded hierarchical atrous spatial pyramid pooling module for semantic segmentation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107622 – year: 2018 ident: 10.1016/j.patcog.2023.110196_b19 – ident: 10.1016/j.patcog.2023.110196_b11 doi: 10.1109/CVPR52688.2022.01553 – ident: 10.1016/j.patcog.2023.110196_b30 doi: 10.1109/CVPR.2016.350 – volume: 133 issn: 0031-3203 year: 2023 ident: 10.1016/j.patcog.2023.110196_b31 article-title: Pyramid geometric consistency learning for semantic segmentation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2022.109020 – ident: 10.1016/j.patcog.2023.110196_b56 doi: 10.1109/ICCV.2019.00685 – volume: 31 year: 2018 ident: 10.1016/j.patcog.2023.110196_b20 article-title: Neural architecture optimization publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.patcog.2023.110196_b59 doi: 10.1109/CVPR.2019.00064 – ident: 10.1016/j.patcog.2023.110196_b3 doi: 10.1109/CVPR.2015.7298965 – ident: 10.1016/j.patcog.2023.110196_b9 doi: 10.1109/CVPR.2019.00584 – ident: 10.1016/j.patcog.2023.110196_b8 doi: 10.1109/ICCV48922.2021.00717 – ident: 10.1016/j.patcog.2023.110196_b65 doi: 10.1007/978-3-030-01219-9_25 – ident: 10.1016/j.patcog.2023.110196_b26 doi: 10.1609/aaai.v32i1.11709 – year: 2014 ident: 10.1016/j.patcog.2023.110196_b63 – year: 2017 ident: 10.1016/j.patcog.2023.110196_b13 – volume: 39 start-page: 2481 issue: 12 year: 2017 ident: 10.1016/j.patcog.2023.110196_b62 article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – volume: 31 year: 2018 ident: 10.1016/j.patcog.2023.110196_b21 article-title: Searching for efficient multi-scale architectures for dense image prediction publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.patcog.2023.110196_b40 doi: 10.1007/978-3-030-01261-8_20 – ident: 10.1016/j.patcog.2023.110196_b47 doi: 10.1109/CVPR.2017.544 – year: 2021 ident: 10.1016/j.patcog.2023.110196_b10 – volume: 32 year: 2019 ident: 10.1016/j.patcog.2023.110196_b66 article-title: Region mutual information loss for semantic segmentation publication-title: Adv. Neural Inf. Process. Syst. – year: 2016 ident: 10.1016/j.patcog.2023.110196_b18 – start-page: 1 year: 2021 ident: 10.1016/j.patcog.2023.110196_b37 article-title: OCNet: Object context for semantic segmentation publication-title: Int. J. Comput. Vis. – ident: 10.1016/j.patcog.2023.110196_b48 doi: 10.1109/ICCV.2015.123 – ident: 10.1016/j.patcog.2023.110196_b22 doi: 10.1109/CVPR.2019.01191 – ident: 10.1016/j.patcog.2023.110196_b25 doi: 10.1109/CVPR.2018.00907 – year: 2016 ident: 10.1016/j.patcog.2023.110196_b23 – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 10.1016/j.patcog.2023.110196_b33 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – volume: 30 year: 2017 ident: 10.1016/j.patcog.2023.110196_b36 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – volume: 111 start-page: 98 issue: 1 year: 2015 ident: 10.1016/j.patcog.2023.110196_b45 article-title: The pascal visual object classes challenge: A retrospective publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-014-0733-5 – ident: 10.1016/j.patcog.2023.110196_b46 doi: 10.1007/978-3-540-88682-2_5 – volume: 122 year: 2022 ident: 10.1016/j.patcog.2023.110196_b60 article-title: Contextual ensemble network for semantic segmentation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.108290 – volume: 32 year: 2019 ident: 10.1016/j.patcog.2023.110196_b50 article-title: Pytorch: An imperative style, high-performance deep learning library publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.patcog.2023.110196_b44 doi: 10.1109/CVPR.2017.634 – year: 2015 ident: 10.1016/j.patcog.2023.110196_b35 – ident: 10.1016/j.patcog.2023.110196_b38 doi: 10.1109/CVPR.2018.00813 – start-page: 173 year: 2020 ident: 10.1016/j.patcog.2023.110196_b55 article-title: Object-contextual representations for semantic segmentation – ident: 10.1016/j.patcog.2023.110196_b2 doi: 10.1109/CVPR.2017.243 – ident: 10.1016/j.patcog.2023.110196_b16 doi: 10.1109/ICCV.2019.00069 – ident: 10.1016/j.patcog.2023.110196_b12 doi: 10.1109/CVPR.2019.00017 – ident: 10.1016/j.patcog.2023.110196_b42 doi: 10.1109/CVPRW56347.2022.00309 – volume: 136 issn: 0031-3203 year: 2023 ident: 10.1016/j.patcog.2023.110196_b27 article-title: FP-DARTS: Fast parallel differentiable neural architecture search for image classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2022.109193 – ident: 10.1016/j.patcog.2023.110196_b39 doi: 10.1109/ICCV48922.2021.00714 – ident: 10.1016/j.patcog.2023.110196_b24 doi: 10.1109/CVPR42600.2020.00858 – ident: 10.1016/j.patcog.2023.110196_b17 doi: 10.1109/ICCV.2019.00926 – volume: 136 issn: 0031-3203 year: 2023 ident: 10.1016/j.patcog.2023.110196_b29 article-title: Neural operator search publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2022.109215 – ident: 10.1016/j.patcog.2023.110196_b58 doi: 10.1109/CVPR.2017.549 – ident: 10.1016/j.patcog.2023.110196_b64 doi: 10.1109/CVPR.2019.00975 – ident: 10.1016/j.patcog.2023.110196_b14 doi: 10.1007/978-3-030-01234-2_49 – year: 2021 ident: 10.1016/j.patcog.2023.110196_b5 |
| SSID | ssj0017142 |
| Score | 2.501219 |
| Snippet | Neural architecture search (NAS) has shown excellent performance. However, existing semantic segmentation models rely heavily on pre-training on Image-Net or... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 110196 |
| SubjectTerms | Encoder-decoder model NAS Semantic segmentation |
| Title | SED: Searching Enhanced Decoder with switchable skip connection for semantic segmentation |
| URI | https://dx.doi.org/10.1016/j.patcog.2023.110196 |
| Volume | 149 |
| WOSCitedRecordID | wos001149608600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELbKwoFLHzzE0od84JpVEnvXMTdUtmqrCoGg1cIlchx7N0sxq31U_PyOY-dBqWg5cLGixHaizKfxePzNDEIHekBB82oZDDRlAeXK5oCMBkFMGOdSMJGVpRN-fGMnJ8loxE89rWhRlhNgxiR3d3z2rKKGeyBsGzr7BHHXk8INuAahQwtih_a_BH8-PLbbfMcjto6AoZm4Y_5jZQPY556WDq2clIFTi-tiZunnRsmaebhQN_DPCwkX4xsfn2TaluxpmZjTBsN4BlJznl87oUct7J2tnKv1alJkRcMDKskEZ9Bv3IxeOUU4XZm2TyKmDQOw0rMkCkgcknt61uUm9ZoSzI7I1bJ9oMSdP2Ham8FidDvu2QLvvab7_ZzZf6xlNcOwIq9NUzdLamdJ3SxraD1mfZ500PrRl-Hoa33qxCLqssv7r69CLUs-4MOv-bsp0zJPLl6jl35fgY8cHt6gF8psoVdVzQ7sVfg2ugR4HOIaHLgCB_bgwBYcuAEHtuDADTgwgANX4MBtcOyg75-GFx8_B768RiBhn7gMaEb6LExoLojKc5aEmSYhVXoguZYC9rGagu2W9zPoA3Yco7HMBVf9PBRKMU3ILuqYW6P2EM4jAc8iqiWHlVcmXMRUioxxCQsKD2UXkepPpdLnnrclUH6mj8mpi4J61MzlXvlHf1YJIfX2o7MLU0DWoyP3n_imt2izgf071FnOV-o92pC_lsVi_sHD6jcET5QR |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SED%3A+Searching+Enhanced+Decoder+with+switchable+skip+connection+for+semantic+segmentation&rft.jtitle=Pattern+recognition&rft.au=Zhang%2C+Xian&rft.au=Quan%2C+Zhibin&rft.au=Li%2C+Qiang&rft.au=Zhu%2C+Dejun&rft.date=2024-05-01&rft.issn=0031-3203&rft.volume=149&rft.spage=110196&rft_id=info:doi/10.1016%2Fj.patcog.2023.110196&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2023_110196 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |