Non-signal components minimization for sparse signal recovery

Sparse signal recovery is a challenging task. This paper focuses on the technique of non-signal components minimization for recovering the latent sparsest signal behind observations from two viewpoints: minimizing the residual subject to the sparsity level and minimizing the sparsity subject to the...

Full description

Saved in:
Bibliographic Details
Published in:Signal processing Vol. 226; p. 109617
Main Authors: Xiang, Min, Zhang, Zhenyue
Format: Journal Article
Language:English
Published: Elsevier B.V 01.01.2025
Subjects:
ISSN:0165-1684
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Sparse signal recovery is a challenging task. This paper focuses on the technique of non-signal components minimization for recovering the latent sparsest signal behind observations from two viewpoints: minimizing the residual subject to the sparsity level and minimizing the sparsity subject to the residual constraint. A successive sparsity increment method is proposed to address these two closely related tasks. This method yields two algorithms: SINSM for residual minimization and SISP for sparsity minimization. Additionally, an improved accelerated proximal gradient algorithm is provided to solve each non-signal components minimization problem penalized by the residual. The convergence of the improved algorithm is guaranteed. Numerical experiments demonstrate the superior performance of SINSM and SISP on both synthetic and real-world data. •Theoretical equivalence of non-signal components minimization and signal pursuing.•Sparsity increment overcomes the weakness of frequently meeting local minima.•Improved accelerated PG solves the successive minimization problem and converges.•SINSM and SISP minimize residual or sparsity via incremental sparsity.•SINSM and SISP significantly outperform the compared sparse algorithms numerically.
AbstractList Sparse signal recovery is a challenging task. This paper focuses on the technique of non-signal components minimization for recovering the latent sparsest signal behind observations from two viewpoints: minimizing the residual subject to the sparsity level and minimizing the sparsity subject to the residual constraint. A successive sparsity increment method is proposed to address these two closely related tasks. This method yields two algorithms: SINSM for residual minimization and SISP for sparsity minimization. Additionally, an improved accelerated proximal gradient algorithm is provided to solve each non-signal components minimization problem penalized by the residual. The convergence of the improved algorithm is guaranteed. Numerical experiments demonstrate the superior performance of SINSM and SISP on both synthetic and real-world data. •Theoretical equivalence of non-signal components minimization and signal pursuing.•Sparsity increment overcomes the weakness of frequently meeting local minima.•Improved accelerated PG solves the successive minimization problem and converges.•SINSM and SISP minimize residual or sparsity via incremental sparsity.•SINSM and SISP significantly outperform the compared sparse algorithms numerically.
ArticleNumber 109617
Author Xiang, Min
Zhang, Zhenyue
Author_xml – sequence: 1
  givenname: Min
  surname: Xiang
  fullname: Xiang, Min
  email: xiangmin@zju.edu.cn
  organization: School of Mathematical Sciences, Zhejiang University, Hangzhou, 310058, China
– sequence: 2
  givenname: Zhenyue
  surname: Zhang
  fullname: Zhang, Zhenyue
  email: zyzhang@zju.edu.cn
  organization: School of Mathematical Sciences, Zhejiang University, Hangzhou, 310058, China
BookMark eNqFj01LAzEQhnOoYFv9Bx72D2yd7KbZXUFBil9Q9KLnMM1OJKWbLMlSqL_e1O3Jg54GZuZ5eZ8ZmzjviLErDgsOXF5vF9F-9sEvCihEWjWSVxM2TadlzmUtztksxi0A8FLClN2-epcnwuEu077rU5gbYtZZZzv7hYP1LjM-ZLHHECk7fQbSfk_hcMHODO4iXZ7mnH08PryvnvP129PL6n6d6xLkkIsNrzetbKjlIEusGwJZES9AQ30sKI1YtmiKimqjkUQS4Q0aw5FIlIjlnN2MuTr4GAMZpe3wU24IaHeKgzrKq60a5dVRXo3yCRa_4D7YDsPhP-xuxCiJ7S0FFbUlp6m1SX9Qrbd_B3wD2bt7eg
CitedBy_id crossref_primary_10_1016_j_cnsns_2025_108822
Cites_doi 10.1007/s10107-017-1181-0
10.1109/TBME.2012.2226175
10.1016/j.sigpro.2023.108955
10.1109/TIT.2009.2016006
10.1214/15-AOS1388
10.1109/TPAMI.2017.2651813
10.1137/140952363
10.1109/TIT.2006.871582
10.1137/080716542
10.1137/090772447
10.1016/j.sigpro.2023.108994
10.1137/100806278
10.1007/s10957-014-0614-7
10.1109/TSP.2016.2585096
10.1109/TSP.2017.2778695
10.1109/TSP.2020.3037996
10.1109/TSP.2006.881199
10.1016/j.cam.2023.115264
10.1109/ICASSP39728.2021.9415082
10.1214/18-AOS1804
10.1137/S0097539792240406
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.sigpro.2024.109617
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_sigpro_2024_109617
S0165168424002366
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c306t-4b18bd69ed1063a89e067e120c0809616f45daf27e8fcae410119aff1aee43aa3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001293250600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0165-1684
IngestDate Sat Nov 29 03:23:05 EST 2025
Tue Nov 18 21:57:34 EST 2025
Sat Sep 14 18:13:26 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Proximal gradient
Sparse signal recovery
Sparsity increment
Compressed sensing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-4b18bd69ed1063a89e067e120c0809616f45daf27e8fcae410119aff1aee43aa3
ParticipantIDs crossref_citationtrail_10_1016_j_sigpro_2024_109617
crossref_primary_10_1016_j_sigpro_2024_109617
elsevier_sciencedirect_doi_10_1016_j_sigpro_2024_109617
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationTitle Signal processing
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Aharon, Elad, Bruckstein (b2) 2006; 54
Donoho (b1) 2006; 52
Gotoh, Takeda, Tono (b20) 2017; 169
Foucart (b8) 2011; 49
Y.C. Pati, R. Rezaiifar, P.S. Krishnaprasad, Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition, in: Proc. 27th Annu. Asilomar Conf. Signals, Systems, and Computers, 1993, pp. 40–44.
R. Sameni, OSET: The open-source electrophysiological toolbox. Version 3.14.
S. Ament, C. Gomes, On the optimality of backward regression: sparse recovery and subset selection, in: Proc. IEEE Int. Conf. Acoust. Speech Signal Process, 2021, pp. 5599–5603.
Sun, Zhou, Zhao, Meng (b10) 2023; 430
Zhou, Wang, Mou, Zeng, Tian, Jia (b9) 2023; 208
Beck, Teboulle (b21) 2009; 2
Yuan, Liu (b11) 2017; 39
Yin, Lou, He, Xin (b15) 2015; 37
Kristian, Dirk, Stefan (b22) 2015; 165
Dai, Milenkovic (b7) 2009; 55
Alamdari, Fatemi, Ghaffari (b18) 2023; 207
Meng, Zhao (b12) 2020; 68
Bertsimas, Parys (b4) 2020; 48
.
Mohammadi, Koochakzadeh, Zadeh, Jansson, Rojas (b16) 2016; 64
Natarajan (b5) 1995; 24
Ghayem, Sadeghi, Babaie-Zadeh, Chatterjee, Skoglund, Jutten (b17) 2018; 66
Zhang, Jung, Makeig, Rao (b23) 2013; 60
Bertsimas, King, Mazumder (b3) 2016; 44
Wang, Yin (b19) 2010; 3
S. Chen, D.L. Donoho, Basis pursuit, in: 28th Asilomar Conference on Signals, Systems Computers, Asilomar, 1994.
Foucart (10.1016/j.sigpro.2024.109617_b8) 2011; 49
Yuan (10.1016/j.sigpro.2024.109617_b11) 2017; 39
Zhou (10.1016/j.sigpro.2024.109617_b9) 2023; 208
Ghayem (10.1016/j.sigpro.2024.109617_b17) 2018; 66
Donoho (10.1016/j.sigpro.2024.109617_b1) 2006; 52
Bertsimas (10.1016/j.sigpro.2024.109617_b3) 2016; 44
Alamdari (10.1016/j.sigpro.2024.109617_b18) 2023; 207
Meng (10.1016/j.sigpro.2024.109617_b12) 2020; 68
Bertsimas (10.1016/j.sigpro.2024.109617_b4) 2020; 48
Yin (10.1016/j.sigpro.2024.109617_b15) 2015; 37
Aharon (10.1016/j.sigpro.2024.109617_b2) 2006; 54
Dai (10.1016/j.sigpro.2024.109617_b7) 2009; 55
Zhang (10.1016/j.sigpro.2024.109617_b23) 2013; 60
10.1016/j.sigpro.2024.109617_b14
10.1016/j.sigpro.2024.109617_b13
Mohammadi (10.1016/j.sigpro.2024.109617_b16) 2016; 64
Beck (10.1016/j.sigpro.2024.109617_b21) 2009; 2
Kristian (10.1016/j.sigpro.2024.109617_b22) 2015; 165
10.1016/j.sigpro.2024.109617_b24
Sun (10.1016/j.sigpro.2024.109617_b10) 2023; 430
Natarajan (10.1016/j.sigpro.2024.109617_b5) 1995; 24
Gotoh (10.1016/j.sigpro.2024.109617_b20) 2017; 169
10.1016/j.sigpro.2024.109617_b6
Wang (10.1016/j.sigpro.2024.109617_b19) 2010; 3
References_xml – volume: 64
  start-page: 5657
  year: 2016
  end-page: 5671
  ident: b16
  article-title: Successive concave sparsity approximation for compressed sensing
  publication-title: IEEE Trans. Signal Process.
– volume: 49
  start-page: 2543
  year: 2011
  end-page: 2563
  ident: b8
  article-title: Hard thresholding pursuit: an algorithm for compressive sensing
  publication-title: SIAM J. Numer. Anal.
– reference: R. Sameni, OSET: The open-source electrophysiological toolbox. Version 3.14.
– volume: 60
  start-page: 300
  year: 2013
  end-page: 309
  ident: b23
  article-title: Compressed sensing for energy-efficient wireless telemonitoring of noninvasive fetal ECG via block sparse bayesian learning
  publication-title: IEEE Trans. Biomed. Eng.
– reference: S. Chen, D.L. Donoho, Basis pursuit, in: 28th Asilomar Conference on Signals, Systems Computers, Asilomar, 1994.
– volume: 208
  year: 2023
  ident: b9
  article-title: Recovery analysis of log-sum minimization under mutual incoherence property
  publication-title: Signal Process.
– reference: Y.C. Pati, R. Rezaiifar, P.S. Krishnaprasad, Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition, in: Proc. 27th Annu. Asilomar Conf. Signals, Systems, and Computers, 1993, pp. 40–44.
– volume: 430
  year: 2023
  ident: b10
  article-title: Heavy-ball-based hard thresholding algorithms for sparse signal recovery
  publication-title: J. Comput. Appl. Math.
– volume: 39
  start-page: 2437
  year: 2017
  end-page: 2450
  ident: b11
  article-title: Newton-type greedy selection methods for
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 165
  start-page: 78
  year: 2015
  end-page: 112
  ident: b22
  article-title: Minimization of non-smooth, non-convex functionals by iterative thresholding
  publication-title: J. Optim. Theory Appl.
– reference: S. Ament, C. Gomes, On the optimality of backward regression: sparse recovery and subset selection, in: Proc. IEEE Int. Conf. Acoust. Speech Signal Process, 2021, pp. 5599–5603.
– volume: 169
  start-page: 141
  year: 2017
  end-page: 176
  ident: b20
  article-title: DC formulations and algorithms for sparse optimization problems
  publication-title: Math. Program.
– volume: 44
  start-page: 813
  year: 2016
  end-page: 852
  ident: b3
  article-title: Best subset selection via a modern optimization lens
  publication-title: Ann. Statist.
– volume: 52
  start-page: 1289
  year: 2006
  end-page: 1306
  ident: b1
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inform. Theory.
– volume: 37
  start-page: A536
  year: 2015
  end-page: A563
  ident: b15
  article-title: Minimization of
  publication-title: SIAM J. Sci. Comput.
– volume: 68
  start-page: 6594
  year: 2020
  end-page: 6606
  ident: b12
  article-title: Newton-step-based hard thresholding algorithms for sparse signal recovery
  publication-title: IEEE Trans. Signal Process.
– volume: 207
  year: 2023
  ident: b18
  article-title: A modified sequential quadratic programming method for sparse signal recovery problems
  publication-title: Signal Process.
– volume: 48
  start-page: 300
  year: 2020
  end-page: 323
  ident: b4
  article-title: Sparse high-dimensional regression: exact scalable algorithms and phase transitions
  publication-title: Ann. Statist.
– volume: 24
  start-page: 227
  year: 1995
  end-page: 234
  ident: b5
  article-title: Sparse approximate solutions to linear systems
  publication-title: SIAM J. Comput.
– volume: 66
  start-page: 879
  year: 2018
  end-page: 894
  ident: b17
  article-title: Sparse signal recovery using iterative proximal projection
  publication-title: IEEE Trans. Signal Process.
– reference: .
– volume: 3
  start-page: 462
  year: 2010
  end-page: 491
  ident: b19
  article-title: Sparse signal reconstruction via iterative support detection
  publication-title: SIAM J. Imag. Sci.
– volume: 55
  start-page: 2230
  year: 2009
  end-page: 2249
  ident: b7
  article-title: Subspace pursuit for compressive sensing signal reconstruction
  publication-title: IEEE Trans. Inform. Theory.
– volume: 54
  start-page: 4311
  year: 2006
  end-page: 4322
  ident: b2
  article-title: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans. Signal Process.
– volume: 2
  start-page: 183
  year: 2009
  end-page: 202
  ident: b21
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J. Imaging Sci.
– volume: 169
  start-page: 141
  year: 2017
  ident: 10.1016/j.sigpro.2024.109617_b20
  article-title: DC formulations and algorithms for sparse optimization problems
  publication-title: Math. Program.
  doi: 10.1007/s10107-017-1181-0
– volume: 60
  start-page: 300
  issue: 2
  year: 2013
  ident: 10.1016/j.sigpro.2024.109617_b23
  article-title: Compressed sensing for energy-efficient wireless telemonitoring of noninvasive fetal ECG via block sparse bayesian learning
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2226175
– volume: 207
  year: 2023
  ident: 10.1016/j.sigpro.2024.109617_b18
  article-title: A modified sequential quadratic programming method for sparse signal recovery problems
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2023.108955
– volume: 55
  start-page: 2230
  issue: 5
  year: 2009
  ident: 10.1016/j.sigpro.2024.109617_b7
  article-title: Subspace pursuit for compressive sensing signal reconstruction
  publication-title: IEEE Trans. Inform. Theory.
  doi: 10.1109/TIT.2009.2016006
– volume: 44
  start-page: 813
  issue: 2
  year: 2016
  ident: 10.1016/j.sigpro.2024.109617_b3
  article-title: Best subset selection via a modern optimization lens
  publication-title: Ann. Statist.
  doi: 10.1214/15-AOS1388
– ident: 10.1016/j.sigpro.2024.109617_b6
– volume: 39
  start-page: 2437
  issue: 12
  year: 2017
  ident: 10.1016/j.sigpro.2024.109617_b11
  article-title: Newton-type greedy selection methods for ℓ0-constrained minimization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2651813
– ident: 10.1016/j.sigpro.2024.109617_b24
– volume: 37
  start-page: A536
  issue: 1
  year: 2015
  ident: 10.1016/j.sigpro.2024.109617_b15
  article-title: Minimization of ℓ1−2 for compressed sensing
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/140952363
– volume: 52
  start-page: 1289
  year: 2006
  ident: 10.1016/j.sigpro.2024.109617_b1
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inform. Theory.
  doi: 10.1109/TIT.2006.871582
– volume: 2
  start-page: 183
  year: 2009
  ident: 10.1016/j.sigpro.2024.109617_b21
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/080716542
– volume: 3
  start-page: 462
  issue: 3
  year: 2010
  ident: 10.1016/j.sigpro.2024.109617_b19
  article-title: Sparse signal reconstruction via iterative support detection
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/090772447
– volume: 208
  year: 2023
  ident: 10.1016/j.sigpro.2024.109617_b9
  article-title: Recovery analysis of log-sum minimization under mutual incoherence property
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2023.108994
– volume: 49
  start-page: 2543
  issue: 6
  year: 2011
  ident: 10.1016/j.sigpro.2024.109617_b8
  article-title: Hard thresholding pursuit: an algorithm for compressive sensing
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/100806278
– volume: 165
  start-page: 78
  issue: 1
  year: 2015
  ident: 10.1016/j.sigpro.2024.109617_b22
  article-title: Minimization of non-smooth, non-convex functionals by iterative thresholding
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-014-0614-7
– volume: 64
  start-page: 5657
  issue: 21
  year: 2016
  ident: 10.1016/j.sigpro.2024.109617_b16
  article-title: Successive concave sparsity approximation for compressed sensing
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2585096
– volume: 66
  start-page: 879
  issue: 4
  year: 2018
  ident: 10.1016/j.sigpro.2024.109617_b17
  article-title: Sparse signal recovery using iterative proximal projection
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2017.2778695
– volume: 68
  start-page: 6594
  year: 2020
  ident: 10.1016/j.sigpro.2024.109617_b12
  article-title: Newton-step-based hard thresholding algorithms for sparse signal recovery
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2020.3037996
– volume: 54
  start-page: 4311
  issue: 11
  year: 2006
  ident: 10.1016/j.sigpro.2024.109617_b2
  article-title: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2006.881199
– volume: 430
  year: 2023
  ident: 10.1016/j.sigpro.2024.109617_b10
  article-title: Heavy-ball-based hard thresholding algorithms for sparse signal recovery
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2023.115264
– ident: 10.1016/j.sigpro.2024.109617_b13
  doi: 10.1109/ICASSP39728.2021.9415082
– volume: 48
  start-page: 300
  issue: 1
  year: 2020
  ident: 10.1016/j.sigpro.2024.109617_b4
  article-title: Sparse high-dimensional regression: exact scalable algorithms and phase transitions
  publication-title: Ann. Statist.
  doi: 10.1214/18-AOS1804
– ident: 10.1016/j.sigpro.2024.109617_b14
– volume: 24
  start-page: 227
  year: 1995
  ident: 10.1016/j.sigpro.2024.109617_b5
  article-title: Sparse approximate solutions to linear systems
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539792240406
SSID ssj0001360
Score 2.4429605
Snippet Sparse signal recovery is a challenging task. This paper focuses on the technique of non-signal components minimization for recovering the latent sparsest...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109617
SubjectTerms Compressed sensing
Proximal gradient
Sparse signal recovery
Sparsity increment
Title Non-signal components minimization for sparse signal recovery
URI https://dx.doi.org/10.1016/j.sigpro.2024.109617
Volume 226
WOSCitedRecordID wos001293250600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect (Freedom Collection)
  issn: 0165-1684
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001360
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEA7aetCD-MT6Yg_eJNJkH8kei1RUsAgqFC9LdptgxW5LX9R_72ST3a5a1B68hGV3kh3yhcnMMA-EzkJQugXYsjiOFQUDJaZYJEGCFfN9N-Yh5bFpNsFaLd5uh_e2V_koayfA0pTPZuHgX6GGdwC2Tp1dAu5iUXgBzwA6jAA7jH8CvtVPsY7KyAp_9Ab9NMth0yVEejbnMgstBEkyHMlzS6nt4umX9OgH82lgUgnyKw7AaXetk_muWxytwvH8_CLT94ksexOoX_ImWAdj4GMSmLZtuYSktCzjiO4SwxaKX-MJeL0A3oE5sL6pdzEn_1zt-sstVMQG5mFnr5FZJdKrRGaVVVSlzA9BelUbN832bXHnEjfLBy-4z5Mks0i-79wsVkJKisXjFtq0FoHTMEhuoxWZ7qCNUp3IXVTC1Jlj6pQxdQBTx2DqWMoc0z30dNV8vLzGtu8FTsCAG2MvJjzuBKHsgL3uCh5KUCkkoXVdFR7YD5Tnd4SiTHKVCOkRXbdPKEWElJ4rhLuPKilwcoAcUD8SUDoVk3XuJSzmHSIDXwiiRACWNa8hN9-IKLFF4XVvkrfoJxhqCBezBqYoyi_0LN_jyCp2RmGL4OD8OPNwyT8dofX5qT5GlfFwIk_QWjIdd0fDU3tqPgAZiHFJ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-signal+components+minimization+for+sparse+signal+recovery&rft.jtitle=Signal+processing&rft.au=Xiang%2C+Min&rft.au=Zhang%2C+Zhenyue&rft.date=2025-01-01&rft.issn=0165-1684&rft.volume=226&rft.spage=109617&rft_id=info:doi/10.1016%2Fj.sigpro.2024.109617&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sigpro_2024_109617
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon