Non-signal components minimization for sparse signal recovery
Sparse signal recovery is a challenging task. This paper focuses on the technique of non-signal components minimization for recovering the latent sparsest signal behind observations from two viewpoints: minimizing the residual subject to the sparsity level and minimizing the sparsity subject to the...
Saved in:
| Published in: | Signal processing Vol. 226; p. 109617 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.01.2025
|
| Subjects: | |
| ISSN: | 0165-1684 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Sparse signal recovery is a challenging task. This paper focuses on the technique of non-signal components minimization for recovering the latent sparsest signal behind observations from two viewpoints: minimizing the residual subject to the sparsity level and minimizing the sparsity subject to the residual constraint. A successive sparsity increment method is proposed to address these two closely related tasks. This method yields two algorithms: SINSM for residual minimization and SISP for sparsity minimization. Additionally, an improved accelerated proximal gradient algorithm is provided to solve each non-signal components minimization problem penalized by the residual. The convergence of the improved algorithm is guaranteed. Numerical experiments demonstrate the superior performance of SINSM and SISP on both synthetic and real-world data.
•Theoretical equivalence of non-signal components minimization and signal pursuing.•Sparsity increment overcomes the weakness of frequently meeting local minima.•Improved accelerated PG solves the successive minimization problem and converges.•SINSM and SISP minimize residual or sparsity via incremental sparsity.•SINSM and SISP significantly outperform the compared sparse algorithms numerically. |
|---|---|
| AbstractList | Sparse signal recovery is a challenging task. This paper focuses on the technique of non-signal components minimization for recovering the latent sparsest signal behind observations from two viewpoints: minimizing the residual subject to the sparsity level and minimizing the sparsity subject to the residual constraint. A successive sparsity increment method is proposed to address these two closely related tasks. This method yields two algorithms: SINSM for residual minimization and SISP for sparsity minimization. Additionally, an improved accelerated proximal gradient algorithm is provided to solve each non-signal components minimization problem penalized by the residual. The convergence of the improved algorithm is guaranteed. Numerical experiments demonstrate the superior performance of SINSM and SISP on both synthetic and real-world data.
•Theoretical equivalence of non-signal components minimization and signal pursuing.•Sparsity increment overcomes the weakness of frequently meeting local minima.•Improved accelerated PG solves the successive minimization problem and converges.•SINSM and SISP minimize residual or sparsity via incremental sparsity.•SINSM and SISP significantly outperform the compared sparse algorithms numerically. |
| ArticleNumber | 109617 |
| Author | Xiang, Min Zhang, Zhenyue |
| Author_xml | – sequence: 1 givenname: Min surname: Xiang fullname: Xiang, Min email: xiangmin@zju.edu.cn organization: School of Mathematical Sciences, Zhejiang University, Hangzhou, 310058, China – sequence: 2 givenname: Zhenyue surname: Zhang fullname: Zhang, Zhenyue email: zyzhang@zju.edu.cn organization: School of Mathematical Sciences, Zhejiang University, Hangzhou, 310058, China |
| BookMark | eNqFj01LAzEQhnOoYFv9Bx72D2yd7KbZXUFBil9Q9KLnMM1OJKWbLMlSqL_e1O3Jg54GZuZ5eZ8ZmzjviLErDgsOXF5vF9F-9sEvCihEWjWSVxM2TadlzmUtztksxi0A8FLClN2-epcnwuEu077rU5gbYtZZZzv7hYP1LjM-ZLHHECk7fQbSfk_hcMHODO4iXZ7mnH08PryvnvP129PL6n6d6xLkkIsNrzetbKjlIEusGwJZES9AQ30sKI1YtmiKimqjkUQS4Q0aw5FIlIjlnN2MuTr4GAMZpe3wU24IaHeKgzrKq60a5dVRXo3yCRa_4D7YDsPhP-xuxCiJ7S0FFbUlp6m1SX9Qrbd_B3wD2bt7eg |
| CitedBy_id | crossref_primary_10_1016_j_cnsns_2025_108822 |
| Cites_doi | 10.1007/s10107-017-1181-0 10.1109/TBME.2012.2226175 10.1016/j.sigpro.2023.108955 10.1109/TIT.2009.2016006 10.1214/15-AOS1388 10.1109/TPAMI.2017.2651813 10.1137/140952363 10.1109/TIT.2006.871582 10.1137/080716542 10.1137/090772447 10.1016/j.sigpro.2023.108994 10.1137/100806278 10.1007/s10957-014-0614-7 10.1109/TSP.2016.2585096 10.1109/TSP.2017.2778695 10.1109/TSP.2020.3037996 10.1109/TSP.2006.881199 10.1016/j.cam.2023.115264 10.1109/ICASSP39728.2021.9415082 10.1214/18-AOS1804 10.1137/S0097539792240406 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.sigpro.2024.109617 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_sigpro_2024_109617 S0165168424002366 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYFN ABBOA ABFNM ABFRF ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 WUQ XPP ZMT ~02 ~G- 9DU AATTM AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c306t-4b18bd69ed1063a89e067e120c0809616f45daf27e8fcae410119aff1aee43aa3 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001293250600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0165-1684 |
| IngestDate | Sat Nov 29 03:23:05 EST 2025 Tue Nov 18 21:57:34 EST 2025 Sat Sep 14 18:13:26 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Proximal gradient Sparse signal recovery Sparsity increment Compressed sensing |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-4b18bd69ed1063a89e067e120c0809616f45daf27e8fcae410119aff1aee43aa3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_sigpro_2024_109617 crossref_primary_10_1016_j_sigpro_2024_109617 elsevier_sciencedirect_doi_10_1016_j_sigpro_2024_109617 |
| PublicationCentury | 2000 |
| PublicationDate | January 2025 2025-01-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Signal processing |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Aharon, Elad, Bruckstein (b2) 2006; 54 Donoho (b1) 2006; 52 Gotoh, Takeda, Tono (b20) 2017; 169 Foucart (b8) 2011; 49 Y.C. Pati, R. Rezaiifar, P.S. Krishnaprasad, Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition, in: Proc. 27th Annu. Asilomar Conf. Signals, Systems, and Computers, 1993, pp. 40–44. R. Sameni, OSET: The open-source electrophysiological toolbox. Version 3.14. S. Ament, C. Gomes, On the optimality of backward regression: sparse recovery and subset selection, in: Proc. IEEE Int. Conf. Acoust. Speech Signal Process, 2021, pp. 5599–5603. Sun, Zhou, Zhao, Meng (b10) 2023; 430 Zhou, Wang, Mou, Zeng, Tian, Jia (b9) 2023; 208 Beck, Teboulle (b21) 2009; 2 Yuan, Liu (b11) 2017; 39 Yin, Lou, He, Xin (b15) 2015; 37 Kristian, Dirk, Stefan (b22) 2015; 165 Dai, Milenkovic (b7) 2009; 55 Alamdari, Fatemi, Ghaffari (b18) 2023; 207 Meng, Zhao (b12) 2020; 68 Bertsimas, Parys (b4) 2020; 48 . Mohammadi, Koochakzadeh, Zadeh, Jansson, Rojas (b16) 2016; 64 Natarajan (b5) 1995; 24 Ghayem, Sadeghi, Babaie-Zadeh, Chatterjee, Skoglund, Jutten (b17) 2018; 66 Zhang, Jung, Makeig, Rao (b23) 2013; 60 Bertsimas, King, Mazumder (b3) 2016; 44 Wang, Yin (b19) 2010; 3 S. Chen, D.L. Donoho, Basis pursuit, in: 28th Asilomar Conference on Signals, Systems Computers, Asilomar, 1994. Foucart (10.1016/j.sigpro.2024.109617_b8) 2011; 49 Yuan (10.1016/j.sigpro.2024.109617_b11) 2017; 39 Zhou (10.1016/j.sigpro.2024.109617_b9) 2023; 208 Ghayem (10.1016/j.sigpro.2024.109617_b17) 2018; 66 Donoho (10.1016/j.sigpro.2024.109617_b1) 2006; 52 Bertsimas (10.1016/j.sigpro.2024.109617_b3) 2016; 44 Alamdari (10.1016/j.sigpro.2024.109617_b18) 2023; 207 Meng (10.1016/j.sigpro.2024.109617_b12) 2020; 68 Bertsimas (10.1016/j.sigpro.2024.109617_b4) 2020; 48 Yin (10.1016/j.sigpro.2024.109617_b15) 2015; 37 Aharon (10.1016/j.sigpro.2024.109617_b2) 2006; 54 Dai (10.1016/j.sigpro.2024.109617_b7) 2009; 55 Zhang (10.1016/j.sigpro.2024.109617_b23) 2013; 60 10.1016/j.sigpro.2024.109617_b14 10.1016/j.sigpro.2024.109617_b13 Mohammadi (10.1016/j.sigpro.2024.109617_b16) 2016; 64 Beck (10.1016/j.sigpro.2024.109617_b21) 2009; 2 Kristian (10.1016/j.sigpro.2024.109617_b22) 2015; 165 10.1016/j.sigpro.2024.109617_b24 Sun (10.1016/j.sigpro.2024.109617_b10) 2023; 430 Natarajan (10.1016/j.sigpro.2024.109617_b5) 1995; 24 Gotoh (10.1016/j.sigpro.2024.109617_b20) 2017; 169 10.1016/j.sigpro.2024.109617_b6 Wang (10.1016/j.sigpro.2024.109617_b19) 2010; 3 |
| References_xml | – volume: 64 start-page: 5657 year: 2016 end-page: 5671 ident: b16 article-title: Successive concave sparsity approximation for compressed sensing publication-title: IEEE Trans. Signal Process. – volume: 49 start-page: 2543 year: 2011 end-page: 2563 ident: b8 article-title: Hard thresholding pursuit: an algorithm for compressive sensing publication-title: SIAM J. Numer. Anal. – reference: R. Sameni, OSET: The open-source electrophysiological toolbox. Version 3.14. – volume: 60 start-page: 300 year: 2013 end-page: 309 ident: b23 article-title: Compressed sensing for energy-efficient wireless telemonitoring of noninvasive fetal ECG via block sparse bayesian learning publication-title: IEEE Trans. Biomed. Eng. – reference: S. Chen, D.L. Donoho, Basis pursuit, in: 28th Asilomar Conference on Signals, Systems Computers, Asilomar, 1994. – volume: 208 year: 2023 ident: b9 article-title: Recovery analysis of log-sum minimization under mutual incoherence property publication-title: Signal Process. – reference: Y.C. Pati, R. Rezaiifar, P.S. Krishnaprasad, Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition, in: Proc. 27th Annu. Asilomar Conf. Signals, Systems, and Computers, 1993, pp. 40–44. – volume: 430 year: 2023 ident: b10 article-title: Heavy-ball-based hard thresholding algorithms for sparse signal recovery publication-title: J. Comput. Appl. Math. – volume: 39 start-page: 2437 year: 2017 end-page: 2450 ident: b11 article-title: Newton-type greedy selection methods for publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 165 start-page: 78 year: 2015 end-page: 112 ident: b22 article-title: Minimization of non-smooth, non-convex functionals by iterative thresholding publication-title: J. Optim. Theory Appl. – reference: S. Ament, C. Gomes, On the optimality of backward regression: sparse recovery and subset selection, in: Proc. IEEE Int. Conf. Acoust. Speech Signal Process, 2021, pp. 5599–5603. – volume: 169 start-page: 141 year: 2017 end-page: 176 ident: b20 article-title: DC formulations and algorithms for sparse optimization problems publication-title: Math. Program. – volume: 44 start-page: 813 year: 2016 end-page: 852 ident: b3 article-title: Best subset selection via a modern optimization lens publication-title: Ann. Statist. – volume: 52 start-page: 1289 year: 2006 end-page: 1306 ident: b1 article-title: Compressed sensing publication-title: IEEE Trans. Inform. Theory. – volume: 37 start-page: A536 year: 2015 end-page: A563 ident: b15 article-title: Minimization of publication-title: SIAM J. Sci. Comput. – volume: 68 start-page: 6594 year: 2020 end-page: 6606 ident: b12 article-title: Newton-step-based hard thresholding algorithms for sparse signal recovery publication-title: IEEE Trans. Signal Process. – volume: 207 year: 2023 ident: b18 article-title: A modified sequential quadratic programming method for sparse signal recovery problems publication-title: Signal Process. – volume: 48 start-page: 300 year: 2020 end-page: 323 ident: b4 article-title: Sparse high-dimensional regression: exact scalable algorithms and phase transitions publication-title: Ann. Statist. – volume: 24 start-page: 227 year: 1995 end-page: 234 ident: b5 article-title: Sparse approximate solutions to linear systems publication-title: SIAM J. Comput. – volume: 66 start-page: 879 year: 2018 end-page: 894 ident: b17 article-title: Sparse signal recovery using iterative proximal projection publication-title: IEEE Trans. Signal Process. – reference: . – volume: 3 start-page: 462 year: 2010 end-page: 491 ident: b19 article-title: Sparse signal reconstruction via iterative support detection publication-title: SIAM J. Imag. Sci. – volume: 55 start-page: 2230 year: 2009 end-page: 2249 ident: b7 article-title: Subspace pursuit for compressive sensing signal reconstruction publication-title: IEEE Trans. Inform. Theory. – volume: 54 start-page: 4311 year: 2006 end-page: 4322 ident: b2 article-title: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation publication-title: IEEE Trans. Signal Process. – volume: 2 start-page: 183 year: 2009 end-page: 202 ident: b21 article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems publication-title: SIAM J. Imaging Sci. – volume: 169 start-page: 141 year: 2017 ident: 10.1016/j.sigpro.2024.109617_b20 article-title: DC formulations and algorithms for sparse optimization problems publication-title: Math. Program. doi: 10.1007/s10107-017-1181-0 – volume: 60 start-page: 300 issue: 2 year: 2013 ident: 10.1016/j.sigpro.2024.109617_b23 article-title: Compressed sensing for energy-efficient wireless telemonitoring of noninvasive fetal ECG via block sparse bayesian learning publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2226175 – volume: 207 year: 2023 ident: 10.1016/j.sigpro.2024.109617_b18 article-title: A modified sequential quadratic programming method for sparse signal recovery problems publication-title: Signal Process. doi: 10.1016/j.sigpro.2023.108955 – volume: 55 start-page: 2230 issue: 5 year: 2009 ident: 10.1016/j.sigpro.2024.109617_b7 article-title: Subspace pursuit for compressive sensing signal reconstruction publication-title: IEEE Trans. Inform. Theory. doi: 10.1109/TIT.2009.2016006 – volume: 44 start-page: 813 issue: 2 year: 2016 ident: 10.1016/j.sigpro.2024.109617_b3 article-title: Best subset selection via a modern optimization lens publication-title: Ann. Statist. doi: 10.1214/15-AOS1388 – ident: 10.1016/j.sigpro.2024.109617_b6 – volume: 39 start-page: 2437 issue: 12 year: 2017 ident: 10.1016/j.sigpro.2024.109617_b11 article-title: Newton-type greedy selection methods for ℓ0-constrained minimization publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2651813 – ident: 10.1016/j.sigpro.2024.109617_b24 – volume: 37 start-page: A536 issue: 1 year: 2015 ident: 10.1016/j.sigpro.2024.109617_b15 article-title: Minimization of ℓ1−2 for compressed sensing publication-title: SIAM J. Sci. Comput. doi: 10.1137/140952363 – volume: 52 start-page: 1289 year: 2006 ident: 10.1016/j.sigpro.2024.109617_b1 article-title: Compressed sensing publication-title: IEEE Trans. Inform. Theory. doi: 10.1109/TIT.2006.871582 – volume: 2 start-page: 183 year: 2009 ident: 10.1016/j.sigpro.2024.109617_b21 article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems publication-title: SIAM J. Imaging Sci. doi: 10.1137/080716542 – volume: 3 start-page: 462 issue: 3 year: 2010 ident: 10.1016/j.sigpro.2024.109617_b19 article-title: Sparse signal reconstruction via iterative support detection publication-title: SIAM J. Imag. Sci. doi: 10.1137/090772447 – volume: 208 year: 2023 ident: 10.1016/j.sigpro.2024.109617_b9 article-title: Recovery analysis of log-sum minimization under mutual incoherence property publication-title: Signal Process. doi: 10.1016/j.sigpro.2023.108994 – volume: 49 start-page: 2543 issue: 6 year: 2011 ident: 10.1016/j.sigpro.2024.109617_b8 article-title: Hard thresholding pursuit: an algorithm for compressive sensing publication-title: SIAM J. Numer. Anal. doi: 10.1137/100806278 – volume: 165 start-page: 78 issue: 1 year: 2015 ident: 10.1016/j.sigpro.2024.109617_b22 article-title: Minimization of non-smooth, non-convex functionals by iterative thresholding publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-014-0614-7 – volume: 64 start-page: 5657 issue: 21 year: 2016 ident: 10.1016/j.sigpro.2024.109617_b16 article-title: Successive concave sparsity approximation for compressed sensing publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2016.2585096 – volume: 66 start-page: 879 issue: 4 year: 2018 ident: 10.1016/j.sigpro.2024.109617_b17 article-title: Sparse signal recovery using iterative proximal projection publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2017.2778695 – volume: 68 start-page: 6594 year: 2020 ident: 10.1016/j.sigpro.2024.109617_b12 article-title: Newton-step-based hard thresholding algorithms for sparse signal recovery publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2020.3037996 – volume: 54 start-page: 4311 issue: 11 year: 2006 ident: 10.1016/j.sigpro.2024.109617_b2 article-title: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2006.881199 – volume: 430 year: 2023 ident: 10.1016/j.sigpro.2024.109617_b10 article-title: Heavy-ball-based hard thresholding algorithms for sparse signal recovery publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2023.115264 – ident: 10.1016/j.sigpro.2024.109617_b13 doi: 10.1109/ICASSP39728.2021.9415082 – volume: 48 start-page: 300 issue: 1 year: 2020 ident: 10.1016/j.sigpro.2024.109617_b4 article-title: Sparse high-dimensional regression: exact scalable algorithms and phase transitions publication-title: Ann. Statist. doi: 10.1214/18-AOS1804 – ident: 10.1016/j.sigpro.2024.109617_b14 – volume: 24 start-page: 227 year: 1995 ident: 10.1016/j.sigpro.2024.109617_b5 article-title: Sparse approximate solutions to linear systems publication-title: SIAM J. Comput. doi: 10.1137/S0097539792240406 |
| SSID | ssj0001360 |
| Score | 2.4429605 |
| Snippet | Sparse signal recovery is a challenging task. This paper focuses on the technique of non-signal components minimization for recovering the latent sparsest... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 109617 |
| SubjectTerms | Compressed sensing Proximal gradient Sparse signal recovery Sparsity increment |
| Title | Non-signal components minimization for sparse signal recovery |
| URI | https://dx.doi.org/10.1016/j.sigpro.2024.109617 |
| Volume | 226 |
| WOSCitedRecordID | wos001293250600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0165-1684 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0001360 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NS8MwFA-6edCD-Inzix68SYZN2zU9Dpmo6BCcUryUNE1xw3VjX8z_3pcm7eoc0x28hNIm6SO_5OW9x_tA6IJbkXCB8WFGrwS2BbUx9UKKI-aELCbcs9MqEa8PbrNJfd970rXKh2k5ATdJ6HTq9f8VangHYMvQ2RXgzieFF_AMoEMLsEP7J-CbvQRLr4w08Ue330vSGDaZQqSrYy5T10LgJIOhuNQ9pV48mQuPflaf-iqUILviABy_rY3Mj-18a-WG57d3kXyORdGaQJyCNUEbGGsONmuqbFvGIQkp8jhTVolxF7JfZQnoVIF2IA60b2JXZ92_Z7ueu4Vy38DM7awTqFkCOUugZllHZeI6HnCvcv2u4d_nd65ppfHgOfVZkGTqyfeTmsVCSEGwaO2gba0RGHWF5C5aE8ke2irkidxHBUyNGaZGEVMDMDUUpobumWF6gF5uGq3rW6zrXmAOCtwI26FJw6jmiQj0dYtRT4BIIUxyJbPCA_m12HYiOEiuoDFnwjZl3j4WxyYTwrYYsw5RKQFKjpBBXemICSIYh0XxOHBrwpkVURrFBA4nryArW4iA66TwsjbJR7AMhgrC-ai-SoryS383W-NAC3ZKYAtg4ywdebzin07Q5mxXn6LSaDAWZ2iDT0bt4eBc75ov7OBx8Q |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-signal+components+minimization+for+sparse+signal+recovery&rft.jtitle=Signal+processing&rft.au=Xiang%2C+Min&rft.au=Zhang%2C+Zhenyue&rft.date=2025-01-01&rft.issn=0165-1684&rft.volume=226&rft.spage=109617&rft_id=info:doi/10.1016%2Fj.sigpro.2024.109617&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sigpro_2024_109617 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon |