Reflective scanning imaging based on a fast terahertz photodetector

The fast detection of terahertz radiation is recognized as a key technology of terahertz imaging systems. We realize a terahertz imaging system employing a terahertz quantum-well photodetector (QWP) and a terahertz quantum cascade laser (QCL). The detector can rapidly detect the 4.3THz light generat...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Optics communications Ročník 427; s. 170 - 174
Hlavní autori: Qiu, Fucheng, Tan, Zhiyong, Fu, Zhanglong, Wan, Wenjian, Li, Mengqi, Wang, Chang, Cao, Juncheng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 15.11.2018
Predmet:
ISSN:0030-4018, 1873-0310
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The fast detection of terahertz radiation is recognized as a key technology of terahertz imaging systems. We realize a terahertz imaging system employing a terahertz quantum-well photodetector (QWP) and a terahertz quantum cascade laser (QCL). The detector can rapidly detect the 4.3THz light generated from a pulsed electrically-pump terahertz QCL, which is used as the terahertz source of the imaging system. The object is placed on a rotary scanning platform to realize fast scanning. A practical detection method of the terahertz pulse signal is employed to extract the amplitude information from the terahertz signal and improve the signal-to-noise ratio (SNR) of the system. The electrical and optical performances of the fast terahertz QWP are characterized, and the results show that the terahertz QWP can completely meet the fast detection requirement of the terahertz imaging system. The terahertz images of some invisible objects are obtained with a high contrast within 5 s. The imaging system owns a resolution of 0.3 mm and a circular imaging region with a diameter of 100 mm. An image processing algorithm is applied in this system to solve the noise problem and improve the quality of the images. The imaging results indicate that terahertz QWP has a good application prospect in nondestructive inspection applications and the research of the fast physical or chemistry process.
AbstractList The fast detection of terahertz radiation is recognized as a key technology of terahertz imaging systems. We realize a terahertz imaging system employing a terahertz quantum-well photodetector (QWP) and a terahertz quantum cascade laser (QCL). The detector can rapidly detect the 4.3THz light generated from a pulsed electrically-pump terahertz QCL, which is used as the terahertz source of the imaging system. The object is placed on a rotary scanning platform to realize fast scanning. A practical detection method of the terahertz pulse signal is employed to extract the amplitude information from the terahertz signal and improve the signal-to-noise ratio (SNR) of the system. The electrical and optical performances of the fast terahertz QWP are characterized, and the results show that the terahertz QWP can completely meet the fast detection requirement of the terahertz imaging system. The terahertz images of some invisible objects are obtained with a high contrast within 5 s. The imaging system owns a resolution of 0.3 mm and a circular imaging region with a diameter of 100 mm. An image processing algorithm is applied in this system to solve the noise problem and improve the quality of the images. The imaging results indicate that terahertz QWP has a good application prospect in nondestructive inspection applications and the research of the fast physical or chemistry process.
Author Wan, Wenjian
Cao, Juncheng
Qiu, Fucheng
Wang, Chang
Tan, Zhiyong
Li, Mengqi
Fu, Zhanglong
Author_xml – sequence: 1
  givenname: Fucheng
  surname: Qiu
  fullname: Qiu, Fucheng
– sequence: 2
  givenname: Zhiyong
  surname: Tan
  fullname: Tan, Zhiyong
  email: zytan@mail.sim.ac.cn
– sequence: 3
  givenname: Zhanglong
  surname: Fu
  fullname: Fu, Zhanglong
– sequence: 4
  givenname: Wenjian
  surname: Wan
  fullname: Wan, Wenjian
– sequence: 5
  givenname: Mengqi
  surname: Li
  fullname: Li, Mengqi
– sequence: 6
  givenname: Chang
  surname: Wang
  fullname: Wang, Chang
  email: cwang@mail.sim.ac.cn
– sequence: 7
  givenname: Juncheng
  surname: Cao
  fullname: Cao, Juncheng
  email: jccao@mail.sim.ac.cn
BookMark eNqFkE9LAzEQxYNUsK1-Aw_5ArtOmuw260GQ4j8oCKLnkM1O2pQ2KUko6Kc3pZ486OkNM_we896EjHzwSMg1g5oBa282ddhnE3b1DJisoa2BwxkZMznnFXAGIzKGsqpEOV-QSUobAGCCyzFZvKHdosnugDQZ7b3zK-p2enXUXiccaPBUU6tTphmjXmPMX3S_DjkMmAsZ4iU5t3qb8OpHp-Tj8eF98VwtX59eFvfLynBocyV020EHfcOB8w4bY1mD2hhrZTsMUuvWCGEaO2tAdp3sRS9ZP-MaxFyXueFTIk6-JoaUIlq1j-XV-KkYqGMRaqNORahjEQpaVVIX7PYXZlzW2QWfo3bb_-C7E4wl2MFhVMk49AYHF0t4NQT3t8E3edt_Ew
CitedBy_id crossref_primary_10_3390_app11010071
crossref_primary_10_3390_photonics9120894
crossref_primary_10_1007_s00340_019_7198_8
crossref_primary_10_1016_j_optcom_2019_04_040
crossref_primary_10_1088_1674_1056_aba945
crossref_primary_10_3390_nano12071114
crossref_primary_10_3389_fphy_2021_751018
crossref_primary_10_1016_j_optlastec_2019_105683
crossref_primary_10_1080_10408347_2023_2183077
crossref_primary_10_1088_1361_6463_ac598d
Cites_doi 10.1002/jps.20225
10.3390/s17102209
10.1063/1.108115
10.1063/1.4918983
10.1063/1.117808
10.1109/TTHZ.2013.2273226
10.1364/OL.39.004863
10.1088/0022-3727/47/37/374008
10.1063/1.4793424
10.1364/OE.24.013839
10.1049/el.2013.4079
10.1587/elex.8.1127
10.1016/0020-0891(74)90041-4
10.1631/FITEE.1601719
10.1364/OE.20.019200
10.1007/s10762-012-9885-y
10.1117/12.946013
10.1109/JSTQE.2016.2608618
10.1364/OE.19.016401
10.1109/JSTQE.2012.2201136
10.1364/AO.47.000072
10.1038/417156a
10.1038/s41598-017-03787-6
10.1021/acsphotonics.6b00405
10.1063/1.4926602
ContentType Journal Article
Copyright 2018
Copyright_xml – notice: 2018
DBID AAYXX
CITATION
DOI 10.1016/j.optcom.2018.06.030
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-0310
EndPage 174
ExternalDocumentID 10_1016_j_optcom_2018_06_030
S0030401818305212
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LY7
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29N
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AETEA
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
F0J
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
MVM
NDZJH
R2-
SET
SEW
SPG
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c306t-4a69090b530339e5cf15eaccff86dd8aa6c44c5f2508998b4b81b23a047a4b853
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000441174200027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0030-4018
IngestDate Sat Nov 29 07:29:12 EST 2025
Tue Nov 18 22:44:25 EST 2025
Fri Feb 23 02:15:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fast imaging system
Terahertz quantum-well photodetectors
Invisible objects
Image processing algorithm
Pulse signal detection method
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-4a69090b530339e5cf15eaccff86dd8aa6c44c5f2508998b4b81b23a047a4b853
PageCount 5
ParticipantIDs crossref_primary_10_1016_j_optcom_2018_06_030
crossref_citationtrail_10_1016_j_optcom_2018_06_030
elsevier_sciencedirect_doi_10_1016_j_optcom_2018_06_030
PublicationCentury 2000
PublicationDate 2018-11-15
PublicationDateYYYYMMDD 2018-11-15
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-15
  day: 15
PublicationDecade 2010
PublicationTitle Optics communications
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Köhler, Tredicucci, Beltram (b5) 2002; 417
Liu (b7) 1992; 61
Ravaro, Jagtap, Barbieri (b6) 2013; 102
Probst, Rehn, Busch (b17) 2014; 39
Tan, Zhou, Cao (b12) 2014; 50
Guo, Cao, Zhang, Tan, Liu (b8) 2013; 19
Ren, Wallis, Jessop (b23) 2015; 107
Cho, Lee, Chan (b19) 2011; 19
Zhang, Shao, Fu (b25) 2017; 23
Palaferri, Todorov, Chen (b26) 2015; 106
Hor, Federici, Wample (b4) 2008; 47
Nagatsuma (b2) 2011; 8
Dalloglio, Melchiorri, Melchiorri, Natale (b9) 1974; 14
Rothbart, Richter, Wienold (b16) 2013; 3
Guo, Wang, Chen (b21) 2017; 18
Schumann, Jansen, Schwerdtfeger (b24) 2012; 20
S. Sung, N. Bajwa, N. Fokwa, Fast-scanning THz medical imaging system for clinical application, Terahertz Emitters, Receivers, and Applications III, San Diego, CA, AUG 12-13, 2012.
Hagelschuer, Rothbart, Richter (b15) 2016; 24
Degl’Innocenti, Xiao, Jessop (b22) 2016; 3
Jiang, Deng, Qin (b20) 2017; 17
Fitzgerald, Cole, Taday (b3) 2005; 94
Li, Wan, Tan (b13) 2017; 7
Dean, Valavanis, Keeley (b1) 2014; 47
Gousev, Semenov, Pechen (b10) 1996; 69
Dooley (b11) 2010; 46
Cui, Fu, Guan (b14) 2012; 33
Guo (10.1016/j.optcom.2018.06.030_b21) 2017; 18
Schumann (10.1016/j.optcom.2018.06.030_b24) 2012; 20
Dean (10.1016/j.optcom.2018.06.030_b1) 2014; 47
Köhler (10.1016/j.optcom.2018.06.030_b5) 2002; 417
Cui (10.1016/j.optcom.2018.06.030_b14) 2012; 33
10.1016/j.optcom.2018.06.030_b18
Degl’Innocenti (10.1016/j.optcom.2018.06.030_b22) 2016; 3
Ren (10.1016/j.optcom.2018.06.030_b23) 2015; 107
Ravaro (10.1016/j.optcom.2018.06.030_b6) 2013; 102
Hor (10.1016/j.optcom.2018.06.030_b4) 2008; 47
Guo (10.1016/j.optcom.2018.06.030_b8) 2013; 19
Dalloglio (10.1016/j.optcom.2018.06.030_b9) 1974; 14
Fitzgerald (10.1016/j.optcom.2018.06.030_b3) 2005; 94
Jiang (10.1016/j.optcom.2018.06.030_b20) 2017; 17
Gousev (10.1016/j.optcom.2018.06.030_b10) 1996; 69
Probst (10.1016/j.optcom.2018.06.030_b17) 2014; 39
Dooley (10.1016/j.optcom.2018.06.030_b11) 2010; 46
Cho (10.1016/j.optcom.2018.06.030_b19) 2011; 19
Zhang (10.1016/j.optcom.2018.06.030_b25) 2017; 23
Hagelschuer (10.1016/j.optcom.2018.06.030_b15) 2016; 24
Palaferri (10.1016/j.optcom.2018.06.030_b26) 2015; 106
Nagatsuma (10.1016/j.optcom.2018.06.030_b2) 2011; 8
Liu (10.1016/j.optcom.2018.06.030_b7) 1992; 61
Tan (10.1016/j.optcom.2018.06.030_b12) 2014; 50
Rothbart (10.1016/j.optcom.2018.06.030_b16) 2013; 3
Li (10.1016/j.optcom.2018.06.030_b13) 2017; 7
References_xml – volume: 7
  start-page: 3452
  year: 2017
  ident: b13
  article-title: 6.2-GHz modulated terahertz light detection using fast terahertz quantum well photodetectors
  publication-title: Sci. Rep.
– volume: 47
  start-page: 72
  year: 2008
  end-page: 78
  ident: b4
  article-title: Nondestructive evaluation of cork enclosures using terahertz millimeter wave spectroscopy and imaging
  publication-title: Appl. Opt.
– volume: 107
  year: 2015
  ident: b23
  article-title: Fast terahertz imaging using a quantum cascade amplifier
  publication-title: Appl. Phys. Lett.
– reference: S. Sung, N. Bajwa, N. Fokwa, Fast-scanning THz medical imaging system for clinical application, Terahertz Emitters, Receivers, and Applications III, San Diego, CA, AUG 12-13, 2012.
– volume: 50
  start-page: 389
  year: 2014
  end-page: 391
  ident: b12
  article-title: Reflection imaging with terahertz quantum-cascade laser and quantum-well photodetector
  publication-title: Electron. Lett.
– volume: 61
  start-page: 2703
  year: 1992
  ident: b7
  article-title: Noise gain and operating temperature of quantum-well infrared photodetectors
  publication-title: Appl. Phys. Lett.
– volume: 33
  start-page: 513
  year: 2012
  end-page: 521
  ident: b14
  article-title: Experiment studies on two-dimension terahertz taster scan imaging
  publication-title: J. Infrared Millim. Terahz. Waves
– volume: 23
  start-page: 3800407
  year: 2017
  ident: b25
  article-title: Terahertz quantum well photodetectors with metal-grating couplers
  publication-title: IEEE J. Sel. Top. Quantum Electron.
– volume: 18
  start-page: 1261
  year: 2017
  end-page: 1267
  ident: b21
  article-title: Principles and applications of high-speed single-pixel imaging technology
  publication-title: Front Inform. Technol. Electron. Eng.
– volume: 39
  start-page: 4863
  year: 2014
  end-page: 4866
  ident: b17
  article-title: Cost-efficient delay generator for fast terahertz imaging
  publication-title: Opt. Lett.
– volume: 3
  start-page: 617
  year: 2013
  end-page: 624
  ident: b16
  article-title: Fast 2-D and 3-D terahertz imaging with a quantum-cscade laser and a scanning mirror
  publication-title: IEEE Trans. THz Sci. Technol.
– volume: 20
  start-page: 19200
  year: 2012
  end-page: 19205
  ident: b24
  article-title: Spectrum to space transformed fast terahertz imaging
  publication-title: Opt. Express
– volume: 14
  start-page: 347
  year: 1974
  ident: b9
  article-title: Comparison between carbon, silicon and germanium bolometers and golay cell in far infrared
  publication-title: Infrared Phys.
– volume: 19
  start-page: 16401
  year: 2011
  end-page: 16409
  ident: b19
  article-title: Fast terahertz reflection tomography using block-based compressed sensing
  publication-title: Opt. Express
– volume: 19
  start-page: 8500508
  year: 2013
  ident: b8
  article-title: Recent progress in Terahertz quantum-well photodetectors
  publication-title: IEEE J. Sel. Top. Quantum Electron.
– volume: 47
  year: 2014
  ident: b1
  article-title: Terahertz imaging using quantum cascade lasers-a review of systems and applications
  publication-title: J. Phys. D, Appl. Phys.
– volume: 94
  start-page: 177
  year: 2005
  end-page: 183
  ident: b3
  article-title: Nondestructive analysis of tablet coating thicknesses using terahertz pulsed imaging
  publication-title: J. Pharm. Sci.
– volume: 69
  start-page: 691
  year: 1996
  ident: b10
  article-title: Coupling of terahertz radiation to a high-T-c superconducting hot electron bolometer mixer
  publication-title: Appl. Phys. Lett.
– volume: 24
  start-page: 13839
  year: 2016
  end-page: 13849
  ident: b15
  article-title: High-spectral-resolution terahertz imaging with a quantum-cascade laser
  publication-title: Opt. Express
– volume: 3
  start-page: 1747
  year: 2016
  end-page: 1753
  ident: b22
  article-title: Fast room-temperature detection of terahertz quantum cascade lasers with graphene-loaded bow-tie plasmonic antenna arrays
  publication-title: Acs Photonics
– volume: 8
  start-page: 1127
  year: 2011
  end-page: 1142
  ident: b2
  article-title: Terahertz technologies: present and future
  publication-title: IEICE Electron. Express
– volume: 102
  year: 2013
  ident: b6
  article-title: Continuous-wave coherent imaging with terahertz quantum cascade lasers using electro-optic harmonic sampling
  publication-title: Appl. Phys. Lett.
– volume: 417
  start-page: 156
  year: 2002
  end-page: 159
  ident: b5
  article-title: Terahertz semiconductor-heterostructure laser
  publication-title: Nature
– volume: 46
  start-page: 49
  year: 2010
  ident: b11
  article-title: Sensitivity of broadband pyroelectric terahertz detectors continues to improve
  publication-title: Laser Focus World
– volume: 106
  year: 2015
  ident: b26
  article-title: Patch antenna terahertz photodetectors
  publication-title: Appl. Phys. Lett.
– volume: 17
  start-page: 2209
  year: 2017
  ident: b20
  article-title: A fast terahertz imaging method using sparse rotating array
  publication-title: Sensors
– volume: 94
  start-page: 177
  issue: 1
  year: 2005
  ident: 10.1016/j.optcom.2018.06.030_b3
  article-title: Nondestructive analysis of tablet coating thicknesses using terahertz pulsed imaging
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.20225
– volume: 17
  start-page: 2209
  issue: 10
  year: 2017
  ident: 10.1016/j.optcom.2018.06.030_b20
  article-title: A fast terahertz imaging method using sparse rotating array
  publication-title: Sensors
  doi: 10.3390/s17102209
– volume: 61
  start-page: 2703
  issue: 22
  year: 1992
  ident: 10.1016/j.optcom.2018.06.030_b7
  article-title: Noise gain and operating temperature of quantum-well infrared photodetectors
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.108115
– volume: 46
  start-page: 49
  issue: 5
  year: 2010
  ident: 10.1016/j.optcom.2018.06.030_b11
  article-title: Sensitivity of broadband pyroelectric terahertz detectors continues to improve
  publication-title: Laser Focus World
– volume: 106
  issue: 16
  year: 2015
  ident: 10.1016/j.optcom.2018.06.030_b26
  article-title: Patch antenna terahertz photodetectors
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4918983
– volume: 69
  start-page: 691
  issue: 5
  year: 1996
  ident: 10.1016/j.optcom.2018.06.030_b10
  article-title: Coupling of terahertz radiation to a high-T-c superconducting hot electron bolometer mixer
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.117808
– volume: 3
  start-page: 617
  issue: 5
  year: 2013
  ident: 10.1016/j.optcom.2018.06.030_b16
  article-title: Fast 2-D and 3-D terahertz imaging with a quantum-cscade laser and a scanning mirror
  publication-title: IEEE Trans. THz Sci. Technol.
  doi: 10.1109/TTHZ.2013.2273226
– volume: 39
  start-page: 4863
  issue: 16
  year: 2014
  ident: 10.1016/j.optcom.2018.06.030_b17
  article-title: Cost-efficient delay generator for fast terahertz imaging
  publication-title: Opt. Lett.
  doi: 10.1364/OL.39.004863
– volume: 47
  issue: 37
  year: 2014
  ident: 10.1016/j.optcom.2018.06.030_b1
  article-title: Terahertz imaging using quantum cascade lasers-a review of systems and applications
  publication-title: J. Phys. D, Appl. Phys.
  doi: 10.1088/0022-3727/47/37/374008
– volume: 102
  issue: 9
  year: 2013
  ident: 10.1016/j.optcom.2018.06.030_b6
  article-title: Continuous-wave coherent imaging with terahertz quantum cascade lasers using electro-optic harmonic sampling
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4793424
– volume: 24
  start-page: 13839
  issue: 13
  year: 2016
  ident: 10.1016/j.optcom.2018.06.030_b15
  article-title: High-spectral-resolution terahertz imaging with a quantum-cascade laser
  publication-title: Opt. Express
  doi: 10.1364/OE.24.013839
– volume: 50
  start-page: 389
  issue: 5
  year: 2014
  ident: 10.1016/j.optcom.2018.06.030_b12
  article-title: Reflection imaging with terahertz quantum-cascade laser and quantum-well photodetector
  publication-title: Electron. Lett.
  doi: 10.1049/el.2013.4079
– volume: 8
  start-page: 1127
  issue: 14
  year: 2011
  ident: 10.1016/j.optcom.2018.06.030_b2
  article-title: Terahertz technologies: present and future
  publication-title: IEICE Electron. Express
  doi: 10.1587/elex.8.1127
– volume: 14
  start-page: 347
  issue: 4
  year: 1974
  ident: 10.1016/j.optcom.2018.06.030_b9
  article-title: Comparison between carbon, silicon and germanium bolometers and golay cell in far infrared
  publication-title: Infrared Phys.
  doi: 10.1016/0020-0891(74)90041-4
– volume: 18
  start-page: 1261
  issue: 9
  year: 2017
  ident: 10.1016/j.optcom.2018.06.030_b21
  article-title: Principles and applications of high-speed single-pixel imaging technology
  publication-title: Front Inform. Technol. Electron. Eng.
  doi: 10.1631/FITEE.1601719
– volume: 20
  start-page: 19200
  issue: 17
  year: 2012
  ident: 10.1016/j.optcom.2018.06.030_b24
  article-title: Spectrum to space transformed fast terahertz imaging
  publication-title: Opt. Express
  doi: 10.1364/OE.20.019200
– volume: 33
  start-page: 513
  year: 2012
  ident: 10.1016/j.optcom.2018.06.030_b14
  article-title: Experiment studies on two-dimension terahertz taster scan imaging
  publication-title: J. Infrared Millim. Terahz. Waves
  doi: 10.1007/s10762-012-9885-y
– ident: 10.1016/j.optcom.2018.06.030_b18
  doi: 10.1117/12.946013
– volume: 23
  start-page: 3800407
  issue: 4
  year: 2017
  ident: 10.1016/j.optcom.2018.06.030_b25
  article-title: Terahertz quantum well photodetectors with metal-grating couplers
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2016.2608618
– volume: 19
  start-page: 16401
  issue: 17
  year: 2011
  ident: 10.1016/j.optcom.2018.06.030_b19
  article-title: Fast terahertz reflection tomography using block-based compressed sensing
  publication-title: Opt. Express
  doi: 10.1364/OE.19.016401
– volume: 19
  start-page: 8500508
  issue: 1
  year: 2013
  ident: 10.1016/j.optcom.2018.06.030_b8
  article-title: Recent progress in Terahertz quantum-well photodetectors
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2012.2201136
– volume: 47
  start-page: 72
  issue: 1
  year: 2008
  ident: 10.1016/j.optcom.2018.06.030_b4
  article-title: Nondestructive evaluation of cork enclosures using terahertz millimeter wave spectroscopy and imaging
  publication-title: Appl. Opt.
  doi: 10.1364/AO.47.000072
– volume: 417
  start-page: 156
  year: 2002
  ident: 10.1016/j.optcom.2018.06.030_b5
  article-title: Terahertz semiconductor-heterostructure laser
  publication-title: Nature
  doi: 10.1038/417156a
– volume: 7
  start-page: 3452
  year: 2017
  ident: 10.1016/j.optcom.2018.06.030_b13
  article-title: 6.2-GHz modulated terahertz light detection using fast terahertz quantum well photodetectors
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-03787-6
– volume: 3
  start-page: 1747
  issue: 10
  year: 2016
  ident: 10.1016/j.optcom.2018.06.030_b22
  article-title: Fast room-temperature detection of terahertz quantum cascade lasers with graphene-loaded bow-tie plasmonic antenna arrays
  publication-title: Acs Photonics
  doi: 10.1021/acsphotonics.6b00405
– volume: 107
  issue: 1
  year: 2015
  ident: 10.1016/j.optcom.2018.06.030_b23
  article-title: Fast terahertz imaging using a quantum cascade amplifier
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4926602
SSID ssj0001438
Score 2.3506594
Snippet The fast detection of terahertz radiation is recognized as a key technology of terahertz imaging systems. We realize a terahertz imaging system employing a...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 170
SubjectTerms Fast imaging system
Image processing algorithm
Invisible objects
Pulse signal detection method
Terahertz quantum-well photodetectors
Title Reflective scanning imaging based on a fast terahertz photodetector
URI https://dx.doi.org/10.1016/j.optcom.2018.06.030
Volume 427
WOSCitedRecordID wos000441174200027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-0310
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001438
  issn: 0030-4018
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT9wwFLYotFIvCLqoQEE-9BYFJRM7iY8IgQoHNlEx4hI5jl1mNE0ikqmAX8_zkswAFcuhlyh6SpzlfXlb3oLQD0mVSrgOLwEYfCLjyGdFzvw4zsHVpgOlaG6GTSRHR-lwyE5cQL8x4wSSskxvblj9X1kNNGC2Lp19A7v7RYEA-8B02ALbYfsqxp9JNbFSzGuEnUjkjf7YYURaZxX6_wD3FG9aT5cfA9PaO6--qtqqkK0J4s9brMe1aeQs5gtJejv8dDQ11u8UWO9UoIkCGFF2eTW6rWbU_akl8vL3ZI58YQ--kOW4Q6oLQoSprsazZZidYI2A04ETpU6wElv170RjaAeEOC0b2tk8TwS4jSWMt6u61dk8-lqmv6r7efOgX_YjPdZnF3aJa-PMrpLpVTKdvxcF79DSIKEM5N_SzsHe8LDX2noMvG3haR-kK7M0uYBP7-bfZsycaXK-gpadT4F3LBZW0YIsP6EPJrdXNJ_R7gwRuEMEdojABhG4KjHHGhG4RwR-gIgv6Nf-3vnuT9_NzvAFOIGtT3jMAhbkFEyUiEkqVEhBxwql0rgoUs5jQYigCixg7XHnJAf_ZRDxgCQc9mn0FS2WVSm_IRyBDx6oMAZDUBAaciZiGRQFfMgpIaxgayjqXkUmXGN5Pd9kkj3HiDXk92fVtrHKC8cn3VvOnHFojb4MoPPsmetvvNIG-jiD-He02F5P5SZ6L_62o-Z6y-HmHnUriD0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reflective+scanning+imaging+based+on+a+fast+terahertz+photodetector&rft.jtitle=Optics+communications&rft.au=Qiu%2C+Fucheng&rft.au=Tan%2C+Zhiyong&rft.au=Fu%2C+Zhanglong&rft.au=Wan%2C+Wenjian&rft.date=2018-11-15&rft.issn=0030-4018&rft.volume=427&rft.spage=170&rft.epage=174&rft_id=info:doi/10.1016%2Fj.optcom.2018.06.030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_optcom_2018_06_030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-4018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-4018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-4018&client=summon