A generalized adaptive robust distance metric driven smooth regularization learning framework for pattern recognition
•A novel generalized adaptive robust distance metric is presented, called Lδ(u).•The Lδ(u) has some desirable salient properties, such as symmetry, boundedness, robustness, nonconvexity, and adaptivity, with both first-order and higher-order moments from samples.•The Lδ(u) can pick different robust...
Saved in:
| Published in: | Signal processing Vol. 211; p. 109102 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.10.2023
|
| Subjects: | |
| ISSN: | 0165-1684, 1872-7557 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A novel generalized adaptive robust distance metric is presented, called Lδ(u).•The Lδ(u) has some desirable salient properties, such as symmetry, boundedness, robustness, nonconvexity, and adaptivity, with both first-order and higher-order moments from samples.•The Lδ(u) can pick different robust distance metrics for different learning tasks during the learning process by the adaptive parameter δ.•A smooth regularized TELM learning framework for supervised and semi-supervised classification is proposed by introducing Lδ(u), regularization and smoothing techniques.•The fast Newton-Armijo algorithm and DC (difference of convex functions) programming algorithm (DCA) are used to solve the proposed methods.
In this work, we propose a novel generalized adaptive robust distance metric called Lδ(u). Compared with other distance metrics, Lδ(u) has some desirable salient properties, such as symmetry, boundedness, robustness, nonconvexity, and adaptivity, with both first-order and higher-order moments from samples. On the other hand, Lδ(u) can pick different robust distance metrics for different learning tasks during the learning process by the adaptive parameter δ. Furthermore, we apply Lδ(u) to twin extreme learning machine (TELM) and develop an smooth regularized TELM learning framework for supervised and semi-supervised classification. By introducing the structural risk minimization (SRM) principle and smoothing techniques, the learning framework perfectly overcomes the computational burden associated with the matrix inversion operation required during TELM solving, while also significantly improving performance. More importantly, the proposed learning framework not only improves the robustness of TELM, but also can effectively use the geometric information of the marginal distribution embedded in the unlabeled samples to construct a more reasonable classifier. Finally, the globally convergent and quadratic convergent fast Newton-Armijo algorithm and DC (difference of convex functions) programming algorithm (DCA) are designed to solve the proposed methods. Experimental results demonstrate the effectiveness and robustness of our methods. |
|---|---|
| AbstractList | •A novel generalized adaptive robust distance metric is presented, called Lδ(u).•The Lδ(u) has some desirable salient properties, such as symmetry, boundedness, robustness, nonconvexity, and adaptivity, with both first-order and higher-order moments from samples.•The Lδ(u) can pick different robust distance metrics for different learning tasks during the learning process by the adaptive parameter δ.•A smooth regularized TELM learning framework for supervised and semi-supervised classification is proposed by introducing Lδ(u), regularization and smoothing techniques.•The fast Newton-Armijo algorithm and DC (difference of convex functions) programming algorithm (DCA) are used to solve the proposed methods.
In this work, we propose a novel generalized adaptive robust distance metric called Lδ(u). Compared with other distance metrics, Lδ(u) has some desirable salient properties, such as symmetry, boundedness, robustness, nonconvexity, and adaptivity, with both first-order and higher-order moments from samples. On the other hand, Lδ(u) can pick different robust distance metrics for different learning tasks during the learning process by the adaptive parameter δ. Furthermore, we apply Lδ(u) to twin extreme learning machine (TELM) and develop an smooth regularized TELM learning framework for supervised and semi-supervised classification. By introducing the structural risk minimization (SRM) principle and smoothing techniques, the learning framework perfectly overcomes the computational burden associated with the matrix inversion operation required during TELM solving, while also significantly improving performance. More importantly, the proposed learning framework not only improves the robustness of TELM, but also can effectively use the geometric information of the marginal distribution embedded in the unlabeled samples to construct a more reasonable classifier. Finally, the globally convergent and quadratic convergent fast Newton-Armijo algorithm and DC (difference of convex functions) programming algorithm (DCA) are designed to solve the proposed methods. Experimental results demonstrate the effectiveness and robustness of our methods. |
| ArticleNumber | 109102 |
| Author | Ma, Jun Yu, Guolin |
| Author_xml | – sequence: 1 givenname: Jun surname: Ma fullname: Ma, Jun email: jun_ma1990@126.com – sequence: 2 givenname: Guolin surname: Yu fullname: Yu, Guolin email: yuguolin@nmu.edu.cn |
| BookMark | eNqFkE1LxDAQhoMouK7-Aw_5A12TNk1bD4KIXyB40XOYptOatZssk6yiv96u68mDngZm3ueFeY7Yvg8eGTuVYiGF1GfLRXTDmsIiF3kxrRop8j02k3WVZ1VZVvtsNsXKTOpaHbKjGJdCCFloMWObSz6gR4LRfWLHoYN1cm_IKbSbmHjnYgJvka8wkbO8o-noeVyFkF444bAZgdwnJBc8HxHIOz_wnmCF74FeeR-IryElJD-lbRi820aP2UEPY8STnzlnzzfXT1d32cPj7f3V5UNmC6FTpkBXTd6iULoobd80UIhSgUTdo6qht7bSXQPYCCVayEG2Sve5sl0t2tqWtpgzteu1FGIk7M2a3Arow0hhturM0uzUma06s1M3Yee_MOvS94-JwI3_wRc7GKfH3hySidbh5LBzk4FkuuD-LvgCN9GTJQ |
| CitedBy_id | crossref_primary_10_1016_j_sigpro_2024_109594 crossref_primary_10_3390_axioms12070717 crossref_primary_10_1016_j_sigpro_2025_110104 |
| Cites_doi | 10.1016/j.knosys.2013.04.013 10.1016/j.neunet.2019.01.016 10.1007/s13042-013-0183-3 10.1016/j.neunet.2014.10.001 10.1016/j.patrec.2008.05.016 10.1016/j.neucom.2015.05.042 10.1016/j.sigpro.2015.12.008 10.1016/j.ins.2021.05.039 10.1007/s00521-014-1777-8 10.1016/j.patcog.2016.04.003 10.1016/j.sigpro.2020.107861 10.1016/j.neucom.2005.12.126 10.1016/j.knosys.2020.106707 10.1016/j.compag.2017.01.019 10.1109/TCYB.2013.2273355 10.1007/s00521-010-0454-9 10.1109/TPAMI.2007.1068 10.1109/TNN.2011.2130540 10.1016/j.neucom.2010.02.019 10.1023/A:1011215321374 10.1109/TCYB.2014.2307349 10.1016/j.neunet.2019.01.013 10.1016/j.knosys.2021.107226 10.1016/j.sigpro.2020.107915 10.1016/j.ins.2010.06.039 10.1016/j.neunet.2012.07.011 10.1016/j.aca.2011.03.023 10.1016/j.sigpro.2018.06.005 10.1016/j.sigpro.2016.03.016 10.1016/j.patcog.2017.09.035 10.1016/j.neunet.2021.06.028 10.1109/TSMCB.2011.2168604 10.1016/j.neucom.2015.06.056 10.1109/TPAMI.2008.114 10.1023/A:1022627411411 10.1016/j.neucom.2018.08.028 10.1016/j.patcog.2012.06.019 |
| ContentType | Journal Article |
| Copyright | 2023 |
| Copyright_xml | – notice: 2023 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.sigpro.2023.109102 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1872-7557 |
| ExternalDocumentID | 10_1016_j_sigpro_2023_109102 S0165168423001767 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 WUQ XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c306t-4a6792be04635cf99a3054a1e6fe48afcc76d9ae9040ba2a1b46f24cd80b8c5c3 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001015768100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0165-1684 |
| IngestDate | Sat Nov 29 07:25:34 EST 2025 Tue Nov 18 20:49:10 EST 2025 Fri Feb 23 02:37:03 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | DC programming algorithm Robust classification Twin extreme learning machine Manifold regularization Generalized adaptive robust distance metric Newton-Armijo algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-4a6792be04635cf99a3054a1e6fe48afcc76d9ae9040ba2a1b46f24cd80b8c5c3 |
| ParticipantIDs | crossref_primary_10_1016_j_sigpro_2023_109102 crossref_citationtrail_10_1016_j_sigpro_2023_109102 elsevier_sciencedirect_doi_10_1016_j_sigpro_2023_109102 |
| PublicationCentury | 2000 |
| PublicationDate | October 2023 2023-10-00 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: October 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Signal processing |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Yang, Zhang (bib0004) 2017; 33 Jiang, Nie, Huang (bib0035) 2015 Wu, Liu, Gao, Kong, Feng (bib0036) 2017 Sirsat, Cernadas, FernndezDelgado, Khan (bib0049) 2017; 135 Gao, Lu, Liu, Lu (bib0050) 2015 Jayadeva, Khemchandani, Chandra (bib0013) 2007; 29 Yang, Xu (bib0018) 2016; 171 Kwak (bib0029) 2008; 30 Zhang, Wu, Cai, Zhang, Chen (bib0009) 2016; 58 Huang, Zhou, Ding, Zhang (bib0012) 2012; 42 Wan, Song, Huang, Li (bib0022) 2017 Wang, Yang, Yuan (bib0043) 2019; 112 Peng (bib0014) 2010; 180 Wang, Ye, Luo, Ye, Fu (bib0037) 2019; 114 Chen, Cui (bib0006) 2016; 128 Qi, Tian, Shi (bib0017) 2012; 35 Qi, Chen (bib0005) 2018; 152 Huang, Ding, Zhou (bib0002) 2010; 74 Qi, Tian, Shi (bib0020) 2013; 46 Melacci, Belkin (bib0045) 2009; 12 Lee, Mangasarian (bib0024) 2001; 20 Ma, Yang (bib0042) 2021; 180 Ding, Vapnik (bib0011) 1995; 20 Nie, Wang, Huang (bib0040) 2017 Pierna, Lecler, Conzen, Niemoeller, Baeten, Dardenne (bib0051) 2011; 705 Mukherjee, Basu, Seelamantula (bib0031) 2016; 123 Khatab, Gazestani, Ghorashi, Ghavami (bib0007) 2021; 181 Shao, Zhang, Wang, Deng (bib0015) 2011; 22 Kumar, Gopal (bib0025) 2008; 29 Chen, Yang, Liang, Ye (bib0026) 2012; 21 Zhang, Ji, Liao, Zhang (bib0008) 2015; 168 Li, Shao, Deng (bib0032) 2015 Yuan, Yang (bib0041) 2021; 214 Huang, Song, Gupta, Wu (bib0046) 2014; 44 Belkin, Niyogi, Sindhwani (bib0016) 2006; 7 Peng, Wang, Xu (bib0021) 2013; 49 Yuan, Yang (bib0039) 2021; 142 Wang, Lu, Hu, Zheng (bib0030) 2014; 44 Ren, Liu, Gao, Kong, Zheng (bib0044) 2021; 227 Ye, Zhao, Li, Yang, Gao, Yin (bib0034) 2017 Yan, Ye, Zhang, Yu, Yuan, Xu, Fu (bib0033) 2018; 74 Zhao, Chow, Zhang, Yan (bib0038) 2017 Huang, Huang, Song, You (bib0003) 2015; 61 Huang, Zhu, Siew (bib0001) 2006; 70 Li, Song, Wan (bib0048) 2018 Ding, Lan, Zhang, Xu (bib0010) 2017 Xue, Zhang (bib0019) 2021; 573 Chen, Shao, Hong (bib0027) 2014; 5 Yang, Zhang (bib0028) 2017; 33 Kumar (10.1016/j.sigpro.2023.109102_bib0025) 2008; 29 Huang (10.1016/j.sigpro.2023.109102_bib0003) 2015; 61 Nie (10.1016/j.sigpro.2023.109102_sbref0040) 2017 Pierna (10.1016/j.sigpro.2023.109102_bib0051) 2011; 705 Li (10.1016/j.sigpro.2023.109102_bib0032) 2015 Zhao (10.1016/j.sigpro.2023.109102_bib0038) 2017 Chen (10.1016/j.sigpro.2023.109102_bib0027) 2014; 5 Huang (10.1016/j.sigpro.2023.109102_bib0001) 2006; 70 Gao (10.1016/j.sigpro.2023.109102_bib0050) 2015 Qi (10.1016/j.sigpro.2023.109102_bib0020) 2013; 46 Wang (10.1016/j.sigpro.2023.109102_bib0037) 2019; 114 Yuan (10.1016/j.sigpro.2023.109102_bib0039) 2021; 142 Peng (10.1016/j.sigpro.2023.109102_bib0014) 2010; 180 Chen (10.1016/j.sigpro.2023.109102_bib0026) 2012; 21 Jayadeva (10.1016/j.sigpro.2023.109102_bib0013) 2007; 29 Belkin (10.1016/j.sigpro.2023.109102_bib0016) 2006; 7 Qi (10.1016/j.sigpro.2023.109102_bib0005) 2018; 152 Ren (10.1016/j.sigpro.2023.109102_bib0044) 2021; 227 Shao (10.1016/j.sigpro.2023.109102_bib0015) 2011; 22 Wan (10.1016/j.sigpro.2023.109102_bib0022) 2017 Lee (10.1016/j.sigpro.2023.109102_bib0024) 2001; 20 Wang (10.1016/j.sigpro.2023.109102_bib0030) 2014; 44 Khatab (10.1016/j.sigpro.2023.109102_bib0007) 2021; 181 Liu (10.1016/j.sigpro.2023.109102_bib0047) 2016; 27 Huang (10.1016/j.sigpro.2023.109102_bib0002) 2010; 74 Kwak (10.1016/j.sigpro.2023.109102_bib0029) 2008; 30 Ding (10.1016/j.sigpro.2023.109102_bib0010) 2017 Jiang (10.1016/j.sigpro.2023.109102_bib0035) 2015 Zhang (10.1016/j.sigpro.2023.109102_bib0008) 2015; 168 Huang (10.1016/j.sigpro.2023.109102_bib0012) 2012; 42 Yang (10.1016/j.sigpro.2023.109102_bib0028) 2017; 33 Ye (10.1016/j.sigpro.2023.109102_bib0034) 2017 Xue (10.1016/j.sigpro.2023.109102_bib0019) 2021; 573 Ding (10.1016/j.sigpro.2023.109102_bib0011) 1995; 20 Peng (10.1016/j.sigpro.2023.109102_bib0021) 2013; 49 Yang (10.1016/j.sigpro.2023.109102_bib0004) 2017; 33 Yuan (10.1016/j.sigpro.2023.109102_bib0041) 2021; 214 Chen (10.1016/j.sigpro.2023.109102_bib0006) 2016; 128 Yan (10.1016/j.sigpro.2023.109102_bib0033) 2018; 74 Wu (10.1016/j.sigpro.2023.109102_bib0036) 2017 Li (10.1016/j.sigpro.2023.109102_bib0048) 2018 Ma (10.1016/j.sigpro.2023.109102_bib0042) 2021; 180 Mukherjee (10.1016/j.sigpro.2023.109102_bib0031) 2016; 123 Sirsat (10.1016/j.sigpro.2023.109102_bib0049) 2017; 135 Schölkopf (10.1016/j.sigpro.2023.109102_bib0023) 2001 Huang (10.1016/j.sigpro.2023.109102_bib0046) 2014; 44 Zhang (10.1016/j.sigpro.2023.109102_sbref0009) 2016; 58 Melacci (10.1016/j.sigpro.2023.109102_bib0045) 2009; 12 Qi (10.1016/j.sigpro.2023.109102_bib0017) 2012; 35 Wang (10.1016/j.sigpro.2023.109102_bib0043) 2019; 112 Yang (10.1016/j.sigpro.2023.109102_bib0018) 2016; 171 |
| References_xml | – year: 2017 ident: bib0036 article-title: Feature selection and clustering via robust graph-Laplacian PCA based on capped publication-title: IEEE International Conference on Bioinformatics & Biomedicine – volume: 227 start-page: 107226 year: 2021 ident: bib0044 article-title: Kernel risk-sensitive loss based hyper-graph regularized robust extreme learning machine and its semi-supervised extension for classification publication-title: Knowl. Based Syst. – volume: 135 start-page: 269 year: 2017 end-page: 279 ident: bib0049 article-title: Classification of agricultural soil parameters in India publication-title: Comput. Electron. Agric. – volume: 573 start-page: 1 year: 2021 end-page: 19 ident: bib0019 article-title: Laplacian pair-weight vector projection for semi-supervised learning publication-title: Inf. Sci. (Ny) – start-page: 1 year: 2017 end-page: 10 ident: bib0034 article-title: -Norm distance minimization-based fast robust twin support vector k-plane clustering publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 112 start-page: 41 year: 2019 end-page: 53 ident: bib0043 article-title: A robust outlier control framework for classification designed with family of homotopy loss function publication-title: Neural Netw. – volume: 44 start-page: 828 year: 2014 end-page: 842 ident: bib0030 article-title: Fisher discriminant analysis with publication-title: IEEE Trans. Cybern. – start-page: 260 year: 2017 ident: bib0022 article-title: Twin extreme learning machines for pattern classification publication-title: Neurocomputing – volume: 49 start-page: 63 year: 2013 end-page: 72 ident: bib0021 article-title: Structural twin parametric-margin support vector machine for binary classification publication-title: Knowl. Based Syst. – year: 2017 ident: bib0010 article-title: Optimization extreme learning machine with publication-title: Neurocomputing – start-page: 3590 year: 2015 end-page: 3596 ident: bib0035 article-title: Robust dictionary learning with capped publication-title: International Conference on Artificial Intelligence – volume: 33 start-page: 3373 year: 2017 end-page: 3381 ident: bib0028 article-title: A smooth extreme learning machine framework publication-title: J. Intell. Fuzzy Syst. – volume: 180 start-page: 107861 year: 2021 ident: bib0042 article-title: Robust supervised and semi-supervised twin extreme learning machines for pattern classification publication-title: Signal Process. – year: 2015 ident: bib0050 article-title: A soil moisture classification model based on SVM used in agricultural WSN publication-title: IEEE Joint International Information Technology & Artificial Intelligence Conference – volume: 181 start-page: 107915 year: 2021 ident: bib0007 article-title: A fingerprint technique for indoor localization using autoencoder based semi-supervised deep extreme learning machine publication-title: Signal Process. – start-page: 2415 year: 2017 end-page: 2421 ident: bib0040 article-title: Multiclass capped publication-title: The 31st AAAI Conference on Artificial Intelligence (AAAI) – volume: 12 start-page: 1149 year: 2009 end-page: 1184 ident: bib0045 article-title: Laplacian support vector machines trained in the primal publication-title: J. Mach. Learn. Res. – volume: 44 start-page: 2405 year: 2014 ident: bib0046 article-title: Semi-supervised and unsupervised extreme learning machines publication-title: IEEE Trans. Cybern. – volume: 123 start-page: 42 year: 2016 end-page: 52 ident: bib0031 article-title: -K-SVD: a robust dictionary learning algorithm with simultaneous update publication-title: Signal Process. – volume: 33 start-page: 3373 year: 2017 end-page: 3381 ident: bib0004 article-title: A smooth extreme learning machine framework publication-title: J. Intell. Fuzzy Syst. – volume: 30 start-page: 1672 year: 2008 end-page: 1680 ident: bib0029 article-title: Principal component analysis based on publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 20 start-page: 5 year: 2001 end-page: 22 ident: bib0024 article-title: SSVM: a smooth support vector machine for classification publication-title: Comput. Optim. Appl. – volume: 74 start-page: 434 year: 2018 end-page: 447 ident: bib0033 article-title: Least squares twin bounded support vector machines based on publication-title: Pattern Recognit. – volume: 5 start-page: 459 year: 2014 end-page: 468 ident: bib0027 article-title: Laplacian smooth twin support vector machine for semi-supervised classification publication-title: Int. J. Mach. Learn.Cybern. – volume: 74 start-page: 155 year: 2010 end-page: 163 ident: bib0002 article-title: Optimization method based extreme learning machine for classification publication-title: Neurocomputing – volume: 114 start-page: 47 year: 2019 end-page: 59 ident: bib0037 article-title: Robust capped publication-title: Neural Netw. – volume: 128 start-page: 1 year: 2016 end-page: 7 ident: bib0006 article-title: Efficient modeling of fiber optic gyroscope drift using improved EEMD and extreme learning machine publication-title: Signal Process. – year: 2018 ident: bib0048 article-title: Laplacian twin extreme learning machine for semi-supervised classification publication-title: Neurocomputing – year: 2017 ident: bib0038 article-title: Rolling fault diagnosis via robust semi-supervised model with capped publication-title: IEEE International Conference on Industrial Technology – volume: 152 start-page: 255 year: 2018 end-page: 264 ident: bib0005 article-title: Learning a discriminative dictionary for classification with outliers publication-title: Signal Process. – volume: 7 start-page: 2399 year: 2006 end-page: 2434 ident: bib0016 article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples publication-title: J. Mach. Learn. Res. – volume: 180 start-page: 3863 year: 2010 end-page: 3875 ident: bib0014 article-title: A publication-title: Inf. Sci. (Ny) – volume: 70 start-page: 489 year: 2006 end-page: 501 ident: bib0001 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing – volume: 214 start-page: 106707 year: 2021 ident: bib0041 article-title: Robust twin extreme learning machines with correntropy-based metric publication-title: Knowl. Based Syst – volume: 22 start-page: 962 year: 2011 end-page: 968 ident: bib0015 article-title: Improvements on twin support vector machines publication-title: IEEE Trans. Neural Netw. – volume: 46 start-page: 305 year: 2013 end-page: 316 ident: bib0020 article-title: Robust twin support vector machine for pattern classification publication-title: Pattern Recognit. – volume: 61 start-page: 32 year: 2015 end-page: 48 ident: bib0003 article-title: Trends in extreme learning machines: a review publication-title: Neural Netw. – volume: 21 start-page: 505 year: 2012 end-page: 513 ident: bib0026 article-title: Smooth twin support vector regression publication-title: Neural Comput. Appl. – volume: 168 start-page: 823 year: 2015 end-page: 828 ident: bib0008 article-title: A novel extreme learning machine using privileged information publication-title: Neurocomputing – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bib0011 article-title: Support vector networks publication-title: Mach. Learn. – volume: 29 start-page: 1842 year: 2008 end-page: 1848 ident: bib0025 article-title: Application of smoothing technique on twin support vector machines publication-title: Pattern Recognit. Lett. – volume: 705 start-page: 0 year: 2011 end-page: 34 ident: bib0051 article-title: Comparison of various chemometric approaches for large near infrared spectroscopic data of feed and feed products publication-title: Anal. Chim. Acta – volume: 35 start-page: 46 year: 2012 end-page: 53 ident: bib0017 article-title: Laplacian twin support vector machine for semi-supervised classification publication-title: Neural Netw. – volume: 171 start-page: 325 year: 2016 end-page: 334 ident: bib0018 article-title: Laplacian twin parametric-margin support vector machine for semi-supervised classification publication-title: Neurocomputing – volume: 29 start-page: 905 year: 2007 ident: bib0013 article-title: Twin support vector machines for pattern classification publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 58 start-page: 135 year: 2016 end-page: 148 ident: bib0009 article-title: Memetic extreme learning machine publication-title: Pattern Recognit. – volume: 142 start-page: 457 year: 2021 end-page: 478 ident: bib0039 article-title: Capped publication-title: Neural Netw. – volume: 42 start-page: 513 year: 2012 end-page: 529 ident: bib0012 article-title: Extreme learning machine for regression and multiclass classification publication-title: IEEE Trans. Syst. Man Cybern. B Cybern. – start-page: 1 year: 2015 end-page: 15 ident: bib0032 article-title: Robust publication-title: Optimization – year: 2001 ident: 10.1016/j.sigpro.2023.109102_bib0023 – volume: 49 start-page: 63 issue: 49 year: 2013 ident: 10.1016/j.sigpro.2023.109102_bib0021 article-title: Structural twin parametric-margin support vector machine for binary classification publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2013.04.013 – volume: 114 start-page: 47 year: 2019 ident: 10.1016/j.sigpro.2023.109102_bib0037 article-title: Robust capped l1-norm twin support vector machine publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.01.016 – volume: 5 start-page: 459 issue: 3 year: 2014 ident: 10.1016/j.sigpro.2023.109102_bib0027 article-title: Laplacian smooth twin support vector machine for semi-supervised classification publication-title: Int. J. Mach. Learn.Cybern. doi: 10.1007/s13042-013-0183-3 – volume: 61 start-page: 32 year: 2015 ident: 10.1016/j.sigpro.2023.109102_bib0003 article-title: Trends in extreme learning machines: a review publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.10.001 – volume: 29 start-page: 1842 issue: 13 year: 2008 ident: 10.1016/j.sigpro.2023.109102_bib0025 article-title: Application of smoothing technique on twin support vector machines publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2008.05.016 – volume: 168 start-page: 823 issue: C year: 2015 ident: 10.1016/j.sigpro.2023.109102_bib0008 article-title: A novel extreme learning machine using privileged information publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.05.042 – volume: 123 start-page: 42 year: 2016 ident: 10.1016/j.sigpro.2023.109102_bib0031 article-title: l1-K-SVD: a robust dictionary learning algorithm with simultaneous update publication-title: Signal Process. doi: 10.1016/j.sigpro.2015.12.008 – volume: 573 start-page: 1 year: 2021 ident: 10.1016/j.sigpro.2023.109102_bib0019 article-title: Laplacian pair-weight vector projection for semi-supervised learning publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2021.05.039 – volume: 27 start-page: 255 issue: 2 year: 2016 ident: 10.1016/j.sigpro.2023.109102_bib0047 article-title: Manifold regularized extreme learning machine publication-title: Neural Comput. Appl. doi: 10.1007/s00521-014-1777-8 – volume: 58 start-page: 135 year: 2016 ident: 10.1016/j.sigpro.2023.109102_sbref0009 article-title: Memetic extreme learning machine publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.04.003 – volume: 180 start-page: 107861 year: 2021 ident: 10.1016/j.sigpro.2023.109102_bib0042 article-title: Robust supervised and semi-supervised twin extreme learning machines for pattern classification publication-title: Signal Process. doi: 10.1016/j.sigpro.2020.107861 – volume: 70 start-page: 489 issue: 1 year: 2006 ident: 10.1016/j.sigpro.2023.109102_bib0001 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 12 start-page: 1149 issue: 5 year: 2009 ident: 10.1016/j.sigpro.2023.109102_bib0045 article-title: Laplacian support vector machines trained in the primal publication-title: J. Mach. Learn. Res. – volume: 33 start-page: 3373 issue: 6 year: 2017 ident: 10.1016/j.sigpro.2023.109102_bib0028 article-title: A smooth extreme learning machine framework publication-title: J. Intell. Fuzzy Syst. – volume: 214 start-page: 106707 year: 2021 ident: 10.1016/j.sigpro.2023.109102_bib0041 article-title: Robust twin extreme learning machines with correntropy-based metric publication-title: Knowl. Based Syst doi: 10.1016/j.knosys.2020.106707 – volume: 135 start-page: 269 issue: C year: 2017 ident: 10.1016/j.sigpro.2023.109102_bib0049 article-title: Classification of agricultural soil parameters in India publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.01.019 – year: 2017 ident: 10.1016/j.sigpro.2023.109102_bib0038 article-title: Rolling fault diagnosis via robust semi-supervised model with capped l2,1-norm regularization – volume: 44 start-page: 828 issue: 6 year: 2014 ident: 10.1016/j.sigpro.2023.109102_bib0030 article-title: Fisher discriminant analysis with l1-norm publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2013.2273355 – volume: 21 start-page: 505 issue: 3 year: 2012 ident: 10.1016/j.sigpro.2023.109102_bib0026 article-title: Smooth twin support vector regression publication-title: Neural Comput. Appl. doi: 10.1007/s00521-010-0454-9 – start-page: 1 year: 2015 ident: 10.1016/j.sigpro.2023.109102_bib0032 article-title: Robust l1-norm non-parallel proximal support vector machine publication-title: Optimization – volume: 29 start-page: 905 issue: 5 year: 2007 ident: 10.1016/j.sigpro.2023.109102_bib0013 article-title: Twin support vector machines for pattern classification publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.1068 – volume: 22 start-page: 962 issue: 6 year: 2011 ident: 10.1016/j.sigpro.2023.109102_bib0015 article-title: Improvements on twin support vector machines publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2011.2130540 – volume: 33 start-page: 3373 issue: 6 year: 2017 ident: 10.1016/j.sigpro.2023.109102_bib0004 article-title: A smooth extreme learning machine framework publication-title: J. Intell. Fuzzy Syst. – volume: 74 start-page: 155 year: 2010 ident: 10.1016/j.sigpro.2023.109102_bib0002 article-title: Optimization method based extreme learning machine for classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.02.019 – volume: 20 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.sigpro.2023.109102_bib0024 article-title: SSVM: a smooth support vector machine for classification publication-title: Comput. Optim. Appl. doi: 10.1023/A:1011215321374 – volume: 44 start-page: 2405 issue: 12 year: 2014 ident: 10.1016/j.sigpro.2023.109102_bib0046 article-title: Semi-supervised and unsupervised extreme learning machines publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2307349 – year: 2017 ident: 10.1016/j.sigpro.2023.109102_bib0036 article-title: Feature selection and clustering via robust graph-Laplacian PCA based on capped l1-norm – volume: 112 start-page: 41 year: 2019 ident: 10.1016/j.sigpro.2023.109102_bib0043 article-title: A robust outlier control framework for classification designed with family of homotopy loss function publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.01.013 – volume: 227 start-page: 107226 year: 2021 ident: 10.1016/j.sigpro.2023.109102_bib0044 article-title: Kernel risk-sensitive loss based hyper-graph regularized robust extreme learning machine and its semi-supervised extension for classification publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2021.107226 – start-page: 2415 year: 2017 ident: 10.1016/j.sigpro.2023.109102_sbref0040 article-title: Multiclass capped lp-norm SVM for robust classifications – year: 2015 ident: 10.1016/j.sigpro.2023.109102_bib0050 article-title: A soil moisture classification model based on SVM used in agricultural WSN – volume: 181 start-page: 107915 year: 2021 ident: 10.1016/j.sigpro.2023.109102_bib0007 article-title: A fingerprint technique for indoor localization using autoencoder based semi-supervised deep extreme learning machine publication-title: Signal Process. doi: 10.1016/j.sigpro.2020.107915 – volume: 180 start-page: 3863 issue: 20 year: 2010 ident: 10.1016/j.sigpro.2023.109102_bib0014 article-title: A ν-twin support vector machine (ν-TSVM) classifier and its geometric algorithms publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2010.06.039 – volume: 35 start-page: 46 issue: 11 year: 2012 ident: 10.1016/j.sigpro.2023.109102_bib0017 article-title: Laplacian twin support vector machine for semi-supervised classification publication-title: Neural Netw. doi: 10.1016/j.neunet.2012.07.011 – volume: 705 start-page: 0 issue: 1-2 year: 2011 ident: 10.1016/j.sigpro.2023.109102_bib0051 article-title: Comparison of various chemometric approaches for large near infrared spectroscopic data of feed and feed products publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2011.03.023 – volume: 152 start-page: 255 year: 2018 ident: 10.1016/j.sigpro.2023.109102_bib0005 article-title: Learning a discriminative dictionary for classification with outliers publication-title: Signal Process. doi: 10.1016/j.sigpro.2018.06.005 – start-page: 3590 year: 2015 ident: 10.1016/j.sigpro.2023.109102_bib0035 article-title: Robust dictionary learning with capped l1-norm – start-page: 260 year: 2017 ident: 10.1016/j.sigpro.2023.109102_bib0022 article-title: Twin extreme learning machines for pattern classification publication-title: Neurocomputing – volume: 128 start-page: 1 year: 2016 ident: 10.1016/j.sigpro.2023.109102_bib0006 article-title: Efficient modeling of fiber optic gyroscope drift using improved EEMD and extreme learning machine publication-title: Signal Process. doi: 10.1016/j.sigpro.2016.03.016 – volume: 74 start-page: 434 year: 2018 ident: 10.1016/j.sigpro.2023.109102_bib0033 article-title: Least squares twin bounded support vector machines based on l1-norm distance metric for classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.09.035 – volume: 142 start-page: 457 year: 2021 ident: 10.1016/j.sigpro.2023.109102_bib0039 article-title: Capped l2,p-norm metric based robust least squares twin support vector machine for pattern classification publication-title: Neural Netw. doi: 10.1016/j.neunet.2021.06.028 – volume: 42 start-page: 513 issue: 2 year: 2012 ident: 10.1016/j.sigpro.2023.109102_bib0012 article-title: Extreme learning machine for regression and multiclass classification publication-title: IEEE Trans. Syst. Man Cybern. B Cybern. doi: 10.1109/TSMCB.2011.2168604 – volume: 171 start-page: 325 issue: 1 year: 2016 ident: 10.1016/j.sigpro.2023.109102_bib0018 article-title: Laplacian twin parametric-margin support vector machine for semi-supervised classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.056 – start-page: 1 year: 2017 ident: 10.1016/j.sigpro.2023.109102_bib0034 article-title: l1-Norm distance minimization-based fast robust twin support vector k-plane clustering publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 30 start-page: 1672 issue: 9 year: 2008 ident: 10.1016/j.sigpro.2023.109102_bib0029 article-title: Principal component analysis based on l1-norm maximization publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.114 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.sigpro.2023.109102_bib0011 article-title: Support vector networks publication-title: Mach. Learn. doi: 10.1023/A:1022627411411 – volume: 7 start-page: 2399 issue: 11 year: 2006 ident: 10.1016/j.sigpro.2023.109102_bib0016 article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples publication-title: J. Mach. Learn. Res. – year: 2017 ident: 10.1016/j.sigpro.2023.109102_bib0010 article-title: Optimization extreme learning machine with ν regularization publication-title: Neurocomputing – year: 2018 ident: 10.1016/j.sigpro.2023.109102_bib0048 article-title: Laplacian twin extreme learning machine for semi-supervised classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.08.028 – volume: 46 start-page: 305 issue: 1 year: 2013 ident: 10.1016/j.sigpro.2023.109102_bib0020 article-title: Robust twin support vector machine for pattern classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2012.06.019 |
| SSID | ssj0001360 |
| Score | 2.416585 |
| Snippet | •A novel generalized adaptive robust distance metric is presented, called Lδ(u).•The Lδ(u) has some desirable salient properties, such as symmetry,... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 109102 |
| SubjectTerms | DC programming algorithm Generalized adaptive robust distance metric Manifold regularization Newton-Armijo algorithm Robust classification Twin extreme learning machine |
| Title | A generalized adaptive robust distance metric driven smooth regularization learning framework for pattern recognition |
| URI | https://dx.doi.org/10.1016/j.sigpro.2023.109102 |
| Volume | 211 |
| WOSCitedRecordID | wos001015768100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7557 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001360 issn: 0165-1684 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5QAHxFOUl3zgtvIqcZw4Oa5QESBUIVGk5RQ5trPaimajPFDFr2f8yqYUFXrgEkVR4lj5vownk29mEHrD40LoOqpIxuOUsDjSpGAJJZKlmiYyghXQIv2Jn5zk63Xx2Zcn6G07Ad40-cVF0f5XqOEYgG1SZ28A9zQoHIB9AB22ADts_wn4lemKbCJN25_gTAolWqsO6nbV2A_mh8xgswTOTSstuVCdMXeL_nwHkC0625m-87mZoaXEZlEHCZdVJba2JqfJg_HiIw-t93G_bDfGxW1dCkJYGm3U2-WBTHz8Ntqw_GgaB83DD3QvZJsikllK4sz1eQsmlXoD6oyiqT1q06qv2msXOjhb9tsNzGppbrDcn365PPZvy9YkJgw6tbPSjVKaUUo3ym10SHlagMU-XH04Xn-cFuk4sQnk0-xDVqWV_l2dzZ-9lpkncvoA3fefEHjloH-IbunmEbo3Kyz5GI0rPCMBDiTAjgQ4kAA7EmBHAuxIgC-TAAcS4IkEGEiAPQnwjARP0Nd3x6dv3xPfYINI-FIcCBMZL2ilTdW4VNZFIcD6MxHrrNYsF7WUPFOmejtY-kpQEVcsqymTKo-qXKYyeYoOml2jnyGsVB6nnCutGGOiTkVGudEwKZXUkYzzI5SEB1hKX33eNEH5Xl4H3xEi01Wtq77yl_N5wKb0HqTzDEsg3LVXPr_hnV6gu_u34SU6GLpRv0J35I9h23evPdt-AY7tmaI |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generalized+adaptive+robust+distance+metric+driven+smooth+regularization+learning+framework+for+pattern+recognition&rft.jtitle=Signal+processing&rft.au=Ma%2C+Jun&rft.au=Yu%2C+Guolin&rft.date=2023-10-01&rft.issn=0165-1684&rft.volume=211&rft.spage=109102&rft_id=info:doi/10.1016%2Fj.sigpro.2023.109102&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sigpro_2023_109102 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon |