A generalized adaptive robust distance metric driven smooth regularization learning framework for pattern recognition

•A novel generalized adaptive robust distance metric is presented, called Lδ(u).•The Lδ(u) has some desirable salient properties, such as symmetry, boundedness, robustness, nonconvexity, and adaptivity, with both first-order and higher-order moments from samples.•The Lδ(u) can pick different robust...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal processing Jg. 211; S. 109102
Hauptverfasser: Ma, Jun, Yu, Guolin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.10.2023
Schlagworte:
ISSN:0165-1684, 1872-7557
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A novel generalized adaptive robust distance metric is presented, called Lδ(u).•The Lδ(u) has some desirable salient properties, such as symmetry, boundedness, robustness, nonconvexity, and adaptivity, with both first-order and higher-order moments from samples.•The Lδ(u) can pick different robust distance metrics for different learning tasks during the learning process by the adaptive parameter δ.•A smooth regularized TELM learning framework for supervised and semi-supervised classification is proposed by introducing Lδ(u), regularization and smoothing techniques.•The fast Newton-Armijo algorithm and DC (difference of convex functions) programming algorithm (DCA) are used to solve the proposed methods. In this work, we propose a novel generalized adaptive robust distance metric called Lδ(u). Compared with other distance metrics, Lδ(u) has some desirable salient properties, such as symmetry, boundedness, robustness, nonconvexity, and adaptivity, with both first-order and higher-order moments from samples. On the other hand, Lδ(u) can pick different robust distance metrics for different learning tasks during the learning process by the adaptive parameter δ. Furthermore, we apply Lδ(u) to twin extreme learning machine (TELM) and develop an smooth regularized TELM learning framework for supervised and semi-supervised classification. By introducing the structural risk minimization (SRM) principle and smoothing techniques, the learning framework perfectly overcomes the computational burden associated with the matrix inversion operation required during TELM solving, while also significantly improving performance. More importantly, the proposed learning framework not only improves the robustness of TELM, but also can effectively use the geometric information of the marginal distribution embedded in the unlabeled samples to construct a more reasonable classifier. Finally, the globally convergent and quadratic convergent fast Newton-Armijo algorithm and DC (difference of convex functions) programming algorithm (DCA) are designed to solve the proposed methods. Experimental results demonstrate the effectiveness and robustness of our methods.
AbstractList •A novel generalized adaptive robust distance metric is presented, called Lδ(u).•The Lδ(u) has some desirable salient properties, such as symmetry, boundedness, robustness, nonconvexity, and adaptivity, with both first-order and higher-order moments from samples.•The Lδ(u) can pick different robust distance metrics for different learning tasks during the learning process by the adaptive parameter δ.•A smooth regularized TELM learning framework for supervised and semi-supervised classification is proposed by introducing Lδ(u), regularization and smoothing techniques.•The fast Newton-Armijo algorithm and DC (difference of convex functions) programming algorithm (DCA) are used to solve the proposed methods. In this work, we propose a novel generalized adaptive robust distance metric called Lδ(u). Compared with other distance metrics, Lδ(u) has some desirable salient properties, such as symmetry, boundedness, robustness, nonconvexity, and adaptivity, with both first-order and higher-order moments from samples. On the other hand, Lδ(u) can pick different robust distance metrics for different learning tasks during the learning process by the adaptive parameter δ. Furthermore, we apply Lδ(u) to twin extreme learning machine (TELM) and develop an smooth regularized TELM learning framework for supervised and semi-supervised classification. By introducing the structural risk minimization (SRM) principle and smoothing techniques, the learning framework perfectly overcomes the computational burden associated with the matrix inversion operation required during TELM solving, while also significantly improving performance. More importantly, the proposed learning framework not only improves the robustness of TELM, but also can effectively use the geometric information of the marginal distribution embedded in the unlabeled samples to construct a more reasonable classifier. Finally, the globally convergent and quadratic convergent fast Newton-Armijo algorithm and DC (difference of convex functions) programming algorithm (DCA) are designed to solve the proposed methods. Experimental results demonstrate the effectiveness and robustness of our methods.
ArticleNumber 109102
Author Ma, Jun
Yu, Guolin
Author_xml – sequence: 1
  givenname: Jun
  surname: Ma
  fullname: Ma, Jun
  email: jun_ma1990@126.com
– sequence: 2
  givenname: Guolin
  surname: Yu
  fullname: Yu, Guolin
  email: yuguolin@nmu.edu.cn
BookMark eNqFkE1LxDAQhoMouK7-Aw_5A12TNk1bD4KIXyB40XOYptOatZssk6yiv96u68mDngZm3ueFeY7Yvg8eGTuVYiGF1GfLRXTDmsIiF3kxrRop8j02k3WVZ1VZVvtsNsXKTOpaHbKjGJdCCFloMWObSz6gR4LRfWLHoYN1cm_IKbSbmHjnYgJvka8wkbO8o-noeVyFkF444bAZgdwnJBc8HxHIOz_wnmCF74FeeR-IryElJD-lbRi820aP2UEPY8STnzlnzzfXT1d32cPj7f3V5UNmC6FTpkBXTd6iULoobd80UIhSgUTdo6qht7bSXQPYCCVayEG2Sve5sl0t2tqWtpgzteu1FGIk7M2a3Arow0hhturM0uzUma06s1M3Yee_MOvS94-JwI3_wRc7GKfH3hySidbh5LBzk4FkuuD-LvgCN9GTJQ
CitedBy_id crossref_primary_10_1016_j_sigpro_2024_109594
crossref_primary_10_3390_axioms12070717
crossref_primary_10_1016_j_sigpro_2025_110104
Cites_doi 10.1016/j.knosys.2013.04.013
10.1016/j.neunet.2019.01.016
10.1007/s13042-013-0183-3
10.1016/j.neunet.2014.10.001
10.1016/j.patrec.2008.05.016
10.1016/j.neucom.2015.05.042
10.1016/j.sigpro.2015.12.008
10.1016/j.ins.2021.05.039
10.1007/s00521-014-1777-8
10.1016/j.patcog.2016.04.003
10.1016/j.sigpro.2020.107861
10.1016/j.neucom.2005.12.126
10.1016/j.knosys.2020.106707
10.1016/j.compag.2017.01.019
10.1109/TCYB.2013.2273355
10.1007/s00521-010-0454-9
10.1109/TPAMI.2007.1068
10.1109/TNN.2011.2130540
10.1016/j.neucom.2010.02.019
10.1023/A:1011215321374
10.1109/TCYB.2014.2307349
10.1016/j.neunet.2019.01.013
10.1016/j.knosys.2021.107226
10.1016/j.sigpro.2020.107915
10.1016/j.ins.2010.06.039
10.1016/j.neunet.2012.07.011
10.1016/j.aca.2011.03.023
10.1016/j.sigpro.2018.06.005
10.1016/j.sigpro.2016.03.016
10.1016/j.patcog.2017.09.035
10.1016/j.neunet.2021.06.028
10.1109/TSMCB.2011.2168604
10.1016/j.neucom.2015.06.056
10.1109/TPAMI.2008.114
10.1023/A:1022627411411
10.1016/j.neucom.2018.08.028
10.1016/j.patcog.2012.06.019
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.sigpro.2023.109102
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7557
ExternalDocumentID 10_1016_j_sigpro_2023_109102
S0165168423001767
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-4a6792be04635cf99a3054a1e6fe48afcc76d9ae9040ba2a1b46f24cd80b8c5c3
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001015768100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0165-1684
IngestDate Sat Nov 29 07:25:34 EST 2025
Tue Nov 18 20:49:10 EST 2025
Fri Feb 23 02:37:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords DC programming algorithm
Robust classification
Twin extreme learning machine
Manifold regularization
Generalized adaptive robust distance metric
Newton-Armijo algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-4a6792be04635cf99a3054a1e6fe48afcc76d9ae9040ba2a1b46f24cd80b8c5c3
ParticipantIDs crossref_primary_10_1016_j_sigpro_2023_109102
crossref_citationtrail_10_1016_j_sigpro_2023_109102
elsevier_sciencedirect_doi_10_1016_j_sigpro_2023_109102
PublicationCentury 2000
PublicationDate October 2023
2023-10-00
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationTitle Signal processing
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yang, Zhang (bib0004) 2017; 33
Jiang, Nie, Huang (bib0035) 2015
Wu, Liu, Gao, Kong, Feng (bib0036) 2017
Sirsat, Cernadas, FernndezDelgado, Khan (bib0049) 2017; 135
Gao, Lu, Liu, Lu (bib0050) 2015
Jayadeva, Khemchandani, Chandra (bib0013) 2007; 29
Yang, Xu (bib0018) 2016; 171
Kwak (bib0029) 2008; 30
Zhang, Wu, Cai, Zhang, Chen (bib0009) 2016; 58
Huang, Zhou, Ding, Zhang (bib0012) 2012; 42
Wan, Song, Huang, Li (bib0022) 2017
Wang, Yang, Yuan (bib0043) 2019; 112
Peng (bib0014) 2010; 180
Wang, Ye, Luo, Ye, Fu (bib0037) 2019; 114
Chen, Cui (bib0006) 2016; 128
Qi, Tian, Shi (bib0017) 2012; 35
Qi, Chen (bib0005) 2018; 152
Huang, Ding, Zhou (bib0002) 2010; 74
Qi, Tian, Shi (bib0020) 2013; 46
Melacci, Belkin (bib0045) 2009; 12
Lee, Mangasarian (bib0024) 2001; 20
Ma, Yang (bib0042) 2021; 180
Ding, Vapnik (bib0011) 1995; 20
Nie, Wang, Huang (bib0040) 2017
Pierna, Lecler, Conzen, Niemoeller, Baeten, Dardenne (bib0051) 2011; 705
Mukherjee, Basu, Seelamantula (bib0031) 2016; 123
Khatab, Gazestani, Ghorashi, Ghavami (bib0007) 2021; 181
Shao, Zhang, Wang, Deng (bib0015) 2011; 22
Kumar, Gopal (bib0025) 2008; 29
Chen, Yang, Liang, Ye (bib0026) 2012; 21
Zhang, Ji, Liao, Zhang (bib0008) 2015; 168
Li, Shao, Deng (bib0032) 2015
Yuan, Yang (bib0041) 2021; 214
Huang, Song, Gupta, Wu (bib0046) 2014; 44
Belkin, Niyogi, Sindhwani (bib0016) 2006; 7
Peng, Wang, Xu (bib0021) 2013; 49
Yuan, Yang (bib0039) 2021; 142
Wang, Lu, Hu, Zheng (bib0030) 2014; 44
Ren, Liu, Gao, Kong, Zheng (bib0044) 2021; 227
Ye, Zhao, Li, Yang, Gao, Yin (bib0034) 2017
Yan, Ye, Zhang, Yu, Yuan, Xu, Fu (bib0033) 2018; 74
Zhao, Chow, Zhang, Yan (bib0038) 2017
Huang, Huang, Song, You (bib0003) 2015; 61
Huang, Zhu, Siew (bib0001) 2006; 70
Li, Song, Wan (bib0048) 2018
Ding, Lan, Zhang, Xu (bib0010) 2017
Xue, Zhang (bib0019) 2021; 573
Chen, Shao, Hong (bib0027) 2014; 5
Yang, Zhang (bib0028) 2017; 33
Kumar (10.1016/j.sigpro.2023.109102_bib0025) 2008; 29
Huang (10.1016/j.sigpro.2023.109102_bib0003) 2015; 61
Nie (10.1016/j.sigpro.2023.109102_sbref0040) 2017
Pierna (10.1016/j.sigpro.2023.109102_bib0051) 2011; 705
Li (10.1016/j.sigpro.2023.109102_bib0032) 2015
Zhao (10.1016/j.sigpro.2023.109102_bib0038) 2017
Chen (10.1016/j.sigpro.2023.109102_bib0027) 2014; 5
Huang (10.1016/j.sigpro.2023.109102_bib0001) 2006; 70
Gao (10.1016/j.sigpro.2023.109102_bib0050) 2015
Qi (10.1016/j.sigpro.2023.109102_bib0020) 2013; 46
Wang (10.1016/j.sigpro.2023.109102_bib0037) 2019; 114
Yuan (10.1016/j.sigpro.2023.109102_bib0039) 2021; 142
Peng (10.1016/j.sigpro.2023.109102_bib0014) 2010; 180
Chen (10.1016/j.sigpro.2023.109102_bib0026) 2012; 21
Jayadeva (10.1016/j.sigpro.2023.109102_bib0013) 2007; 29
Belkin (10.1016/j.sigpro.2023.109102_bib0016) 2006; 7
Qi (10.1016/j.sigpro.2023.109102_bib0005) 2018; 152
Ren (10.1016/j.sigpro.2023.109102_bib0044) 2021; 227
Shao (10.1016/j.sigpro.2023.109102_bib0015) 2011; 22
Wan (10.1016/j.sigpro.2023.109102_bib0022) 2017
Lee (10.1016/j.sigpro.2023.109102_bib0024) 2001; 20
Wang (10.1016/j.sigpro.2023.109102_bib0030) 2014; 44
Khatab (10.1016/j.sigpro.2023.109102_bib0007) 2021; 181
Liu (10.1016/j.sigpro.2023.109102_bib0047) 2016; 27
Huang (10.1016/j.sigpro.2023.109102_bib0002) 2010; 74
Kwak (10.1016/j.sigpro.2023.109102_bib0029) 2008; 30
Ding (10.1016/j.sigpro.2023.109102_bib0010) 2017
Jiang (10.1016/j.sigpro.2023.109102_bib0035) 2015
Zhang (10.1016/j.sigpro.2023.109102_bib0008) 2015; 168
Huang (10.1016/j.sigpro.2023.109102_bib0012) 2012; 42
Yang (10.1016/j.sigpro.2023.109102_bib0028) 2017; 33
Ye (10.1016/j.sigpro.2023.109102_bib0034) 2017
Xue (10.1016/j.sigpro.2023.109102_bib0019) 2021; 573
Ding (10.1016/j.sigpro.2023.109102_bib0011) 1995; 20
Peng (10.1016/j.sigpro.2023.109102_bib0021) 2013; 49
Yang (10.1016/j.sigpro.2023.109102_bib0004) 2017; 33
Yuan (10.1016/j.sigpro.2023.109102_bib0041) 2021; 214
Chen (10.1016/j.sigpro.2023.109102_bib0006) 2016; 128
Yan (10.1016/j.sigpro.2023.109102_bib0033) 2018; 74
Wu (10.1016/j.sigpro.2023.109102_bib0036) 2017
Li (10.1016/j.sigpro.2023.109102_bib0048) 2018
Ma (10.1016/j.sigpro.2023.109102_bib0042) 2021; 180
Mukherjee (10.1016/j.sigpro.2023.109102_bib0031) 2016; 123
Sirsat (10.1016/j.sigpro.2023.109102_bib0049) 2017; 135
Schölkopf (10.1016/j.sigpro.2023.109102_bib0023) 2001
Huang (10.1016/j.sigpro.2023.109102_bib0046) 2014; 44
Zhang (10.1016/j.sigpro.2023.109102_sbref0009) 2016; 58
Melacci (10.1016/j.sigpro.2023.109102_bib0045) 2009; 12
Qi (10.1016/j.sigpro.2023.109102_bib0017) 2012; 35
Wang (10.1016/j.sigpro.2023.109102_bib0043) 2019; 112
Yang (10.1016/j.sigpro.2023.109102_bib0018) 2016; 171
References_xml – year: 2017
  ident: bib0036
  article-title: Feature selection and clustering via robust graph-Laplacian PCA based on capped
  publication-title: IEEE International Conference on Bioinformatics & Biomedicine
– volume: 227
  start-page: 107226
  year: 2021
  ident: bib0044
  article-title: Kernel risk-sensitive loss based hyper-graph regularized robust extreme learning machine and its semi-supervised extension for classification
  publication-title: Knowl. Based Syst.
– volume: 135
  start-page: 269
  year: 2017
  end-page: 279
  ident: bib0049
  article-title: Classification of agricultural soil parameters in India
  publication-title: Comput. Electron. Agric.
– volume: 573
  start-page: 1
  year: 2021
  end-page: 19
  ident: bib0019
  article-title: Laplacian pair-weight vector projection for semi-supervised learning
  publication-title: Inf. Sci. (Ny)
– start-page: 1
  year: 2017
  end-page: 10
  ident: bib0034
  article-title: -Norm distance minimization-based fast robust twin support vector k-plane clustering
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 112
  start-page: 41
  year: 2019
  end-page: 53
  ident: bib0043
  article-title: A robust outlier control framework for classification designed with family of homotopy loss function
  publication-title: Neural Netw.
– volume: 44
  start-page: 828
  year: 2014
  end-page: 842
  ident: bib0030
  article-title: Fisher discriminant analysis with
  publication-title: IEEE Trans. Cybern.
– start-page: 260
  year: 2017
  ident: bib0022
  article-title: Twin extreme learning machines for pattern classification
  publication-title: Neurocomputing
– volume: 49
  start-page: 63
  year: 2013
  end-page: 72
  ident: bib0021
  article-title: Structural twin parametric-margin support vector machine for binary classification
  publication-title: Knowl. Based Syst.
– year: 2017
  ident: bib0010
  article-title: Optimization extreme learning machine with
  publication-title: Neurocomputing
– start-page: 3590
  year: 2015
  end-page: 3596
  ident: bib0035
  article-title: Robust dictionary learning with capped
  publication-title: International Conference on Artificial Intelligence
– volume: 33
  start-page: 3373
  year: 2017
  end-page: 3381
  ident: bib0028
  article-title: A smooth extreme learning machine framework
  publication-title: J. Intell. Fuzzy Syst.
– volume: 180
  start-page: 107861
  year: 2021
  ident: bib0042
  article-title: Robust supervised and semi-supervised twin extreme learning machines for pattern classification
  publication-title: Signal Process.
– year: 2015
  ident: bib0050
  article-title: A soil moisture classification model based on SVM used in agricultural WSN
  publication-title: IEEE Joint International Information Technology & Artificial Intelligence Conference
– volume: 181
  start-page: 107915
  year: 2021
  ident: bib0007
  article-title: A fingerprint technique for indoor localization using autoencoder based semi-supervised deep extreme learning machine
  publication-title: Signal Process.
– start-page: 2415
  year: 2017
  end-page: 2421
  ident: bib0040
  article-title: Multiclass capped
  publication-title: The 31st AAAI Conference on Artificial Intelligence (AAAI)
– volume: 12
  start-page: 1149
  year: 2009
  end-page: 1184
  ident: bib0045
  article-title: Laplacian support vector machines trained in the primal
  publication-title: J. Mach. Learn. Res.
– volume: 44
  start-page: 2405
  year: 2014
  ident: bib0046
  article-title: Semi-supervised and unsupervised extreme learning machines
  publication-title: IEEE Trans. Cybern.
– volume: 123
  start-page: 42
  year: 2016
  end-page: 52
  ident: bib0031
  article-title: -K-SVD: a robust dictionary learning algorithm with simultaneous update
  publication-title: Signal Process.
– volume: 33
  start-page: 3373
  year: 2017
  end-page: 3381
  ident: bib0004
  article-title: A smooth extreme learning machine framework
  publication-title: J. Intell. Fuzzy Syst.
– volume: 30
  start-page: 1672
  year: 2008
  end-page: 1680
  ident: bib0029
  article-title: Principal component analysis based on
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 20
  start-page: 5
  year: 2001
  end-page: 22
  ident: bib0024
  article-title: SSVM: a smooth support vector machine for classification
  publication-title: Comput. Optim. Appl.
– volume: 74
  start-page: 434
  year: 2018
  end-page: 447
  ident: bib0033
  article-title: Least squares twin bounded support vector machines based on
  publication-title: Pattern Recognit.
– volume: 5
  start-page: 459
  year: 2014
  end-page: 468
  ident: bib0027
  article-title: Laplacian smooth twin support vector machine for semi-supervised classification
  publication-title: Int. J. Mach. Learn.Cybern.
– volume: 74
  start-page: 155
  year: 2010
  end-page: 163
  ident: bib0002
  article-title: Optimization method based extreme learning machine for classification
  publication-title: Neurocomputing
– volume: 114
  start-page: 47
  year: 2019
  end-page: 59
  ident: bib0037
  article-title: Robust capped
  publication-title: Neural Netw.
– volume: 128
  start-page: 1
  year: 2016
  end-page: 7
  ident: bib0006
  article-title: Efficient modeling of fiber optic gyroscope drift using improved EEMD and extreme learning machine
  publication-title: Signal Process.
– year: 2018
  ident: bib0048
  article-title: Laplacian twin extreme learning machine for semi-supervised classification
  publication-title: Neurocomputing
– year: 2017
  ident: bib0038
  article-title: Rolling fault diagnosis via robust semi-supervised model with capped
  publication-title: IEEE International Conference on Industrial Technology
– volume: 152
  start-page: 255
  year: 2018
  end-page: 264
  ident: bib0005
  article-title: Learning a discriminative dictionary for classification with outliers
  publication-title: Signal Process.
– volume: 7
  start-page: 2399
  year: 2006
  end-page: 2434
  ident: bib0016
  article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
  publication-title: J. Mach. Learn. Res.
– volume: 180
  start-page: 3863
  year: 2010
  end-page: 3875
  ident: bib0014
  article-title: A
  publication-title: Inf. Sci. (Ny)
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: bib0001
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
– volume: 214
  start-page: 106707
  year: 2021
  ident: bib0041
  article-title: Robust twin extreme learning machines with correntropy-based metric
  publication-title: Knowl. Based Syst
– volume: 22
  start-page: 962
  year: 2011
  end-page: 968
  ident: bib0015
  article-title: Improvements on twin support vector machines
  publication-title: IEEE Trans. Neural Netw.
– volume: 46
  start-page: 305
  year: 2013
  end-page: 316
  ident: bib0020
  article-title: Robust twin support vector machine for pattern classification
  publication-title: Pattern Recognit.
– volume: 61
  start-page: 32
  year: 2015
  end-page: 48
  ident: bib0003
  article-title: Trends in extreme learning machines: a review
  publication-title: Neural Netw.
– volume: 21
  start-page: 505
  year: 2012
  end-page: 513
  ident: bib0026
  article-title: Smooth twin support vector regression
  publication-title: Neural Comput. Appl.
– volume: 168
  start-page: 823
  year: 2015
  end-page: 828
  ident: bib0008
  article-title: A novel extreme learning machine using privileged information
  publication-title: Neurocomputing
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib0011
  article-title: Support vector networks
  publication-title: Mach. Learn.
– volume: 29
  start-page: 1842
  year: 2008
  end-page: 1848
  ident: bib0025
  article-title: Application of smoothing technique on twin support vector machines
  publication-title: Pattern Recognit. Lett.
– volume: 705
  start-page: 0
  year: 2011
  end-page: 34
  ident: bib0051
  article-title: Comparison of various chemometric approaches for large near infrared spectroscopic data of feed and feed products
  publication-title: Anal. Chim. Acta
– volume: 35
  start-page: 46
  year: 2012
  end-page: 53
  ident: bib0017
  article-title: Laplacian twin support vector machine for semi-supervised classification
  publication-title: Neural Netw.
– volume: 171
  start-page: 325
  year: 2016
  end-page: 334
  ident: bib0018
  article-title: Laplacian twin parametric-margin support vector machine for semi-supervised classification
  publication-title: Neurocomputing
– volume: 29
  start-page: 905
  year: 2007
  ident: bib0013
  article-title: Twin support vector machines for pattern classification
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 58
  start-page: 135
  year: 2016
  end-page: 148
  ident: bib0009
  article-title: Memetic extreme learning machine
  publication-title: Pattern Recognit.
– volume: 142
  start-page: 457
  year: 2021
  end-page: 478
  ident: bib0039
  article-title: Capped
  publication-title: Neural Netw.
– volume: 42
  start-page: 513
  year: 2012
  end-page: 529
  ident: bib0012
  article-title: Extreme learning machine for regression and multiclass classification
  publication-title: IEEE Trans. Syst. Man Cybern. B Cybern.
– start-page: 1
  year: 2015
  end-page: 15
  ident: bib0032
  article-title: Robust
  publication-title: Optimization
– year: 2001
  ident: 10.1016/j.sigpro.2023.109102_bib0023
– volume: 49
  start-page: 63
  issue: 49
  year: 2013
  ident: 10.1016/j.sigpro.2023.109102_bib0021
  article-title: Structural twin parametric-margin support vector machine for binary classification
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2013.04.013
– volume: 114
  start-page: 47
  year: 2019
  ident: 10.1016/j.sigpro.2023.109102_bib0037
  article-title: Robust capped l1-norm twin support vector machine
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.01.016
– volume: 5
  start-page: 459
  issue: 3
  year: 2014
  ident: 10.1016/j.sigpro.2023.109102_bib0027
  article-title: Laplacian smooth twin support vector machine for semi-supervised classification
  publication-title: Int. J. Mach. Learn.Cybern.
  doi: 10.1007/s13042-013-0183-3
– volume: 61
  start-page: 32
  year: 2015
  ident: 10.1016/j.sigpro.2023.109102_bib0003
  article-title: Trends in extreme learning machines: a review
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.10.001
– volume: 29
  start-page: 1842
  issue: 13
  year: 2008
  ident: 10.1016/j.sigpro.2023.109102_bib0025
  article-title: Application of smoothing technique on twin support vector machines
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2008.05.016
– volume: 168
  start-page: 823
  issue: C
  year: 2015
  ident: 10.1016/j.sigpro.2023.109102_bib0008
  article-title: A novel extreme learning machine using privileged information
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.05.042
– volume: 123
  start-page: 42
  year: 2016
  ident: 10.1016/j.sigpro.2023.109102_bib0031
  article-title: l1-K-SVD: a robust dictionary learning algorithm with simultaneous update
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2015.12.008
– volume: 573
  start-page: 1
  year: 2021
  ident: 10.1016/j.sigpro.2023.109102_bib0019
  article-title: Laplacian pair-weight vector projection for semi-supervised learning
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2021.05.039
– volume: 27
  start-page: 255
  issue: 2
  year: 2016
  ident: 10.1016/j.sigpro.2023.109102_bib0047
  article-title: Manifold regularized extreme learning machine
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-014-1777-8
– volume: 58
  start-page: 135
  year: 2016
  ident: 10.1016/j.sigpro.2023.109102_sbref0009
  article-title: Memetic extreme learning machine
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.04.003
– volume: 180
  start-page: 107861
  year: 2021
  ident: 10.1016/j.sigpro.2023.109102_bib0042
  article-title: Robust supervised and semi-supervised twin extreme learning machines for pattern classification
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2020.107861
– volume: 70
  start-page: 489
  issue: 1
  year: 2006
  ident: 10.1016/j.sigpro.2023.109102_bib0001
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 12
  start-page: 1149
  issue: 5
  year: 2009
  ident: 10.1016/j.sigpro.2023.109102_bib0045
  article-title: Laplacian support vector machines trained in the primal
  publication-title: J. Mach. Learn. Res.
– volume: 33
  start-page: 3373
  issue: 6
  year: 2017
  ident: 10.1016/j.sigpro.2023.109102_bib0028
  article-title: A smooth extreme learning machine framework
  publication-title: J. Intell. Fuzzy Syst.
– volume: 214
  start-page: 106707
  year: 2021
  ident: 10.1016/j.sigpro.2023.109102_bib0041
  article-title: Robust twin extreme learning machines with correntropy-based metric
  publication-title: Knowl. Based Syst
  doi: 10.1016/j.knosys.2020.106707
– volume: 135
  start-page: 269
  issue: C
  year: 2017
  ident: 10.1016/j.sigpro.2023.109102_bib0049
  article-title: Classification of agricultural soil parameters in India
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.01.019
– year: 2017
  ident: 10.1016/j.sigpro.2023.109102_bib0038
  article-title: Rolling fault diagnosis via robust semi-supervised model with capped l2,1-norm regularization
– volume: 44
  start-page: 828
  issue: 6
  year: 2014
  ident: 10.1016/j.sigpro.2023.109102_bib0030
  article-title: Fisher discriminant analysis with l1-norm
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2013.2273355
– volume: 21
  start-page: 505
  issue: 3
  year: 2012
  ident: 10.1016/j.sigpro.2023.109102_bib0026
  article-title: Smooth twin support vector regression
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-010-0454-9
– start-page: 1
  year: 2015
  ident: 10.1016/j.sigpro.2023.109102_bib0032
  article-title: Robust l1-norm non-parallel proximal support vector machine
  publication-title: Optimization
– volume: 29
  start-page: 905
  issue: 5
  year: 2007
  ident: 10.1016/j.sigpro.2023.109102_bib0013
  article-title: Twin support vector machines for pattern classification
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.1068
– volume: 22
  start-page: 962
  issue: 6
  year: 2011
  ident: 10.1016/j.sigpro.2023.109102_bib0015
  article-title: Improvements on twin support vector machines
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2011.2130540
– volume: 33
  start-page: 3373
  issue: 6
  year: 2017
  ident: 10.1016/j.sigpro.2023.109102_bib0004
  article-title: A smooth extreme learning machine framework
  publication-title: J. Intell. Fuzzy Syst.
– volume: 74
  start-page: 155
  year: 2010
  ident: 10.1016/j.sigpro.2023.109102_bib0002
  article-title: Optimization method based extreme learning machine for classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.02.019
– volume: 20
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.sigpro.2023.109102_bib0024
  article-title: SSVM: a smooth support vector machine for classification
  publication-title: Comput. Optim. Appl.
  doi: 10.1023/A:1011215321374
– volume: 44
  start-page: 2405
  issue: 12
  year: 2014
  ident: 10.1016/j.sigpro.2023.109102_bib0046
  article-title: Semi-supervised and unsupervised extreme learning machines
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2307349
– year: 2017
  ident: 10.1016/j.sigpro.2023.109102_bib0036
  article-title: Feature selection and clustering via robust graph-Laplacian PCA based on capped l1-norm
– volume: 112
  start-page: 41
  year: 2019
  ident: 10.1016/j.sigpro.2023.109102_bib0043
  article-title: A robust outlier control framework for classification designed with family of homotopy loss function
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.01.013
– volume: 227
  start-page: 107226
  year: 2021
  ident: 10.1016/j.sigpro.2023.109102_bib0044
  article-title: Kernel risk-sensitive loss based hyper-graph regularized robust extreme learning machine and its semi-supervised extension for classification
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2021.107226
– start-page: 2415
  year: 2017
  ident: 10.1016/j.sigpro.2023.109102_sbref0040
  article-title: Multiclass capped lp-norm SVM for robust classifications
– year: 2015
  ident: 10.1016/j.sigpro.2023.109102_bib0050
  article-title: A soil moisture classification model based on SVM used in agricultural WSN
– volume: 181
  start-page: 107915
  year: 2021
  ident: 10.1016/j.sigpro.2023.109102_bib0007
  article-title: A fingerprint technique for indoor localization using autoencoder based semi-supervised deep extreme learning machine
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2020.107915
– volume: 180
  start-page: 3863
  issue: 20
  year: 2010
  ident: 10.1016/j.sigpro.2023.109102_bib0014
  article-title: A ν-twin support vector machine (ν-TSVM) classifier and its geometric algorithms
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2010.06.039
– volume: 35
  start-page: 46
  issue: 11
  year: 2012
  ident: 10.1016/j.sigpro.2023.109102_bib0017
  article-title: Laplacian twin support vector machine for semi-supervised classification
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2012.07.011
– volume: 705
  start-page: 0
  issue: 1-2
  year: 2011
  ident: 10.1016/j.sigpro.2023.109102_bib0051
  article-title: Comparison of various chemometric approaches for large near infrared spectroscopic data of feed and feed products
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2011.03.023
– volume: 152
  start-page: 255
  year: 2018
  ident: 10.1016/j.sigpro.2023.109102_bib0005
  article-title: Learning a discriminative dictionary for classification with outliers
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2018.06.005
– start-page: 3590
  year: 2015
  ident: 10.1016/j.sigpro.2023.109102_bib0035
  article-title: Robust dictionary learning with capped l1-norm
– start-page: 260
  year: 2017
  ident: 10.1016/j.sigpro.2023.109102_bib0022
  article-title: Twin extreme learning machines for pattern classification
  publication-title: Neurocomputing
– volume: 128
  start-page: 1
  year: 2016
  ident: 10.1016/j.sigpro.2023.109102_bib0006
  article-title: Efficient modeling of fiber optic gyroscope drift using improved EEMD and extreme learning machine
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.03.016
– volume: 74
  start-page: 434
  year: 2018
  ident: 10.1016/j.sigpro.2023.109102_bib0033
  article-title: Least squares twin bounded support vector machines based on l1-norm distance metric for classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.09.035
– volume: 142
  start-page: 457
  year: 2021
  ident: 10.1016/j.sigpro.2023.109102_bib0039
  article-title: Capped l2,p-norm metric based robust least squares twin support vector machine for pattern classification
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2021.06.028
– volume: 42
  start-page: 513
  issue: 2
  year: 2012
  ident: 10.1016/j.sigpro.2023.109102_bib0012
  article-title: Extreme learning machine for regression and multiclass classification
  publication-title: IEEE Trans. Syst. Man Cybern. B Cybern.
  doi: 10.1109/TSMCB.2011.2168604
– volume: 171
  start-page: 325
  issue: 1
  year: 2016
  ident: 10.1016/j.sigpro.2023.109102_bib0018
  article-title: Laplacian twin parametric-margin support vector machine for semi-supervised classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.056
– start-page: 1
  year: 2017
  ident: 10.1016/j.sigpro.2023.109102_bib0034
  article-title: l1-Norm distance minimization-based fast robust twin support vector k-plane clustering
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 30
  start-page: 1672
  issue: 9
  year: 2008
  ident: 10.1016/j.sigpro.2023.109102_bib0029
  article-title: Principal component analysis based on l1-norm maximization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.114
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.sigpro.2023.109102_bib0011
  article-title: Support vector networks
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022627411411
– volume: 7
  start-page: 2399
  issue: 11
  year: 2006
  ident: 10.1016/j.sigpro.2023.109102_bib0016
  article-title: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
  publication-title: J. Mach. Learn. Res.
– year: 2017
  ident: 10.1016/j.sigpro.2023.109102_bib0010
  article-title: Optimization extreme learning machine with ν regularization
  publication-title: Neurocomputing
– year: 2018
  ident: 10.1016/j.sigpro.2023.109102_bib0048
  article-title: Laplacian twin extreme learning machine for semi-supervised classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.08.028
– volume: 46
  start-page: 305
  issue: 1
  year: 2013
  ident: 10.1016/j.sigpro.2023.109102_bib0020
  article-title: Robust twin support vector machine for pattern classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.06.019
SSID ssj0001360
Score 2.4165013
Snippet •A novel generalized adaptive robust distance metric is presented, called Lδ(u).•The Lδ(u) has some desirable salient properties, such as symmetry,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109102
SubjectTerms DC programming algorithm
Generalized adaptive robust distance metric
Manifold regularization
Newton-Armijo algorithm
Robust classification
Twin extreme learning machine
Title A generalized adaptive robust distance metric driven smooth regularization learning framework for pattern recognition
URI https://dx.doi.org/10.1016/j.sigpro.2023.109102
Volume 211
WOSCitedRecordID wos001015768100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1872-7557
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001360
  issn: 0165-1684
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5QAHVF5qS4t84LbyqnHsPI6rqhVwqJAo0nKKHMdebUWzUR6o4tczfmVTigo9cIlWUexY-30ZTyYz8yH0npWM0ZRTclJpRlgmKCmjVBJe6kxwnceKSis2kV5cZMtl_tm3J-isnEBa19nNTd78V6jhHIBtSmcfAPc4KZyA3wA6HAF2OP4T8AujimwiTeuf4EyKSjQ2O6jdlEPXmw8yva0SuDZSWnJWtcbczbrrDUA2a60yfetrM4OkxGqmQwqXzUpsbE9OUwfjk488tN7H_bJeGRe3cSUIYWu0UW9XBzLy8dtgw_KDEQ6ahh_oNpFtjEgmnESJ03kLJpV6A-qMouk9asuq79prFzq4mnfrFaxqbm4w315-uz32b9vWmEwY8tSuCjdLYWYp3CyP0S4wMQeLvbv4eLb8NG7SUWwLyMfVh6pKm_p3dzV_9lomnsjlHnruXyHwwkH_Aj1S9Uv0bNJY8hUaFnhCAhxIgB0JcCABdiTAjgTYkQDfJgEOJMAjCTCQAHsS4AkJXqOv52eXpx-IF9ggEt4Ue8JEkua0VKZrHJc6zwVYfyYilWgFj62WMk0q070dLH0pqIhKlmjKZJWdlJnkMn6DdupNrfYR5pxXlAkYUUmmyiSXmQLvUpnvrlrH2QGKwx9YSN993oigfC_ug-8AkXFU47qv_OX6NGBTeA_SeYYFEO7ekYcPvNNb9HT7NByhnb4d1DF6In_0665959n2C1g2mo4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generalized+adaptive+robust+distance+metric+driven+smooth+regularization+learning+framework+for+pattern+recognition&rft.jtitle=Signal+processing&rft.au=Ma%2C+Jun&rft.au=Yu%2C+Guolin&rft.date=2023-10-01&rft.issn=0165-1684&rft.volume=211&rft.spage=109102&rft_id=info:doi/10.1016%2Fj.sigpro.2023.109102&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sigpro_2023_109102
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon